Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. De Marchis, M.
    et al.
    Milici, B.
    Sardina, Gaetano
    Stockholm University, Faculty of Science, Department of Meteorology .
    Napoli, E.
    Interaction between turbulent structures and particles in roughened channel2016In: International Journal of Multiphase Flow, ISSN 0301-9322, E-ISSN 1879-3533, Vol. 78, p. 117-131Article in journal (Refereed)
    Abstract [en]

    The distribution of inertial particles in turbulent flows is highly non-uniform and is driven by the local dynamics of the turbulent structures of the underlying carrier flow field. In the specific context of dilute particle-laden wall-bounded flows, deposition and resuspension mechanisms are dominated by the interaction between inertial particles and coherent turbulent structures characteristic of the wall region. The macroscopic behavior of these two-phase systems is influenced by particle inertia, which plays a role at the microscale of a single dispersed element. These turbulent structures, which control the turbulent regeneration cycles, are strongly affected by the wall roughness. The effect of the roughness on turbulent transport in dilute suspension has been still poorly investigated. The issue is discussed here by addressing direct numerical simulation (DNS), at friction Reynolds number Re-tau = 180, of a dilute dispersion of heavy particles in a turbulent channel flow, spanning two orders of magnitude of particle inertia. The irregular wall roughness is obtained through the superimposition of four sinusoidal functions of different wavelengths and random amplitudes. We use DNS combined with Lagrangian particle tracking to characterize the effect of inertia on particle preferential accumulation, looking at the effect of roughness on particle distribution, by comparing the statistics computed for fluid and particles of different size and observing differences in terms of distribution patterns and preferential sampling.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf