Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Han, Guang
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Müller, Werner E. G.
    Wang, Xiaohong
    Lilja, Louise
    Shen, Zhijian
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Porous titania surfaces on titanium with hierarchical macro- and mesoporosities for enhancing cell adhesion, proliferation and mineralization2015In: Materials science & engineering. C, biomimetic materials, sensors and systems, ISSN 0928-4931, E-ISSN 1873-0191, Vol. 47, p. 376-383Article in journal (Refereed)
    Abstract [en]

    Titanium received a macroporous titania surface layer by anodization, which contains open pores with average pore diameter around 5 gm. An additional mesoporous titania top layer following the contour of the macropores, of 100-200 nm thickness and with a pore diameter of 10 nm, was formed by using the evaporation-induced self-assembly (EISA) method with titanium (IV) tetraethoxide as the precursor. A coherent laminar titania surface layer was thus obtained, creating a hierarchical macro- and mesoporous surface that was characterized by high-resolution electron microscopy. The interfacial bonding between the surface layers and the titanium matrix was characterized by the scratch test that confirmed a stable and strong bonding of titania surface layers on titanium. The wettability to water and the effects on the osteosarcoma cell line (SaOS-2) proliferation and mineralization of the formed titania surface layers were studied systematically by cell culture and scanning electron microscopy. The results proved that the porous titania surface with hierarchical macro- and mesoporosities was hydrophilic that significantly promoted cell attachment and spreading. A synergistic role of the hierarchical macro- and mesoporosities was revealed in terms of enhancing cell adhesion, proliferation and mineralization, compared with the titania surface with solo scale topography.

  • 2.
    Han, Guang
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Shen, Zhijian
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Microscopic view of osseointegration and functional mechanisms of implant surfaces2015In: Materials science & engineering. C, biomimetic materials, sensors and systems, ISSN 0928-4931, E-ISSN 1873-0191, Vol. 56, p. 380-385Article in journal (Refereed)
    Abstract [en]

    Argon ion beam polishing technique was applied to prepare the cross sections of implants feasible for high resolution scanning electron microscope investigation. The interfacial microstructure between newly formed bone and implants with three modified surfaces retrieved after in vivo test using three different animal models was characterized. By this approach it has become possible to directly observe early bone formation, the increase of bone density, and the evolution of bone structure. The two bone growth mechanisms, distant osteogenesis and contact osteogenesis, can also be distinguished. These direct observations give, at microscopic level, a better view of osseointegration and expound the functional mechanisms of various implant surfaces for osseointegration.

  • 3. Hussein, Kamal Hany
    et al.
    Abdelhamid, Hani Nasser
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Assuit University, Egypt.
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Woo, Heung-Myong
    Ultrasonicated graphene oxide enhances bone and skin wound regeneration2019In: Materials science & engineering. C, biomimetic materials, sensors and systems, ISSN 0928-4931, E-ISSN 1873-0191, Vol. 94, p. 484-492Article in journal (Refereed)
    Abstract [en]

    In the present study, we investigated the applications of ultrasonicated graphene oxide (UGO) for bone regeneration and skin wound healing. Ultrasonication of a GO suspension increased the dispersion and stability (by increasing the zeta potential) of the GO suspension. UGO has fewer oxygen-containing groups but still displays excellent water dispersion. The UGO supension showed high biocompatibility for human fetal osteoblast (hFOB cells), human endothelial cells (EA.hy 926 cells), and mouse embryonic fibroblasts. Importantly, UGO could support cell attachment and proliferation, in addition to promoting the osteogenesis of seeded cells and the promotion of new bone formation. In addition, a 1% UGO supension enhanced cell migration in an in vitro skin scratch assay and promoted wound closure in an in vivo rat excisional skin defect model. These results showed that UGO offers a good environment for cells involved in bone and skin healing, suggesting its potential application in tissue regeneration.

  • 4.
    Salih, Tagrid
    et al.
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Ahlford, Annika
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Nilsson, Mats
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Plichta, Zdenek
    Horak, Daniel
    Streptavidin-modified monodispersed magnetic poly(2-hydroxyethyl methacrylate) microspheres as solid support in DNA-based molecular protocols2016In: Materials science & engineering. C, biomimetic materials, sensors and systems, ISSN 0928-4931, E-ISSN 1873-0191, Vol. 61, p. 362-367Article in journal (Refereed)
    Abstract [en]

    Molecular diagnostics may provide tailored and cost efficient treatment for infectious disease and cancer. Rolling circle amplification (RCA) of padlock probes guarantees high specificity to identify nucleic acid targets down to single nucleotide resolution in a multiplex fashion. This makes the assay suitable for molecular analysis of various diseases, and interesting to integrate into automated devices for point-of-care analysis. A critical prerequisite for many molecular assays is (i) target-specific isolation from complex clinical samples and (ii) removal of reagents, inhibitors and contaminants between reaction steps. Efficient solid supports are therefore essential to enable multi-step, multi-analyte protocols. Superparamagnetic micro- and nanoparticles, with large surface area and rapid liquid-phase kinetics, are attractive for multi-step protocols. Recently, streptavidin-modified magnetic monodispersed poly(2-hydroxyethyl methacrylate) (STV-mag.PHEMA) microspheres were developed by multiple swelling polymerization. They are easily separated by a magnet and exhibit low non-specific protein sorption. In this study, the performance and the binding efficiency of STV-mag.PHEMA was addressed by circle-to-circle amplification (C2CA). A lower number of RCA products were detected as compared to the gold standard Dynabeads. Nevertheless, this study was the first to successfully adapt STV-mag.PHEMA microspheres as solid support in a DNA-based protocol, which is an important finding. The STV-mag.PHEMA microspheres were larger with about 16 times less surface area as compared to the Dynabeads, which might partly explain the lower rolling circle product (RCP) count obtained. Further research is currently ongoing comparing particles of similar sizes and optimizing reaction conditions to establish their full utility in the field. Ultimately, low cost and versatile particles are a great resource to facilitate future clinical molecular diagnostics.

  • 5. Zhang, Ranran
    et al.
    Elkhooly, Tarek A.
    Huang, Qianli
    Liu, Xujie
    Yang, Xing
    Yan, Hao
    Xiong, Zhiyuan
    Ma, Jing
    Feng, Qingling
    Shen, Zhijian
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Tsinghua University, China.
    A dual-layer macro/mesoporous structured TiO2 surface improves the initial adhesion of osteoblast-like cells2017In: Materials science & engineering. C, biomimetic materials, sensors and systems, ISSN 0928-4931, E-ISSN 1873-0191, Vol. 78, p. 443-451Article in journal (Refereed)
    Abstract [en]

    A dual-layer TiO2 surface with hierarchical macro and mesoporous structure was prepared by a combinational approach of micro-arc oxidation followed by evaporation-induced self-assembly of nano-crystallites. The mesoporous layer contains pores with an average size of <10 nm and consists of anatase TiO2 nanocrystallites. The dual-layer hierarchical macro/mesoporous structured TiO2 surface improves the hydrophilicity and fibronectin adsorption ability in comparison with the sole macroporous or smooth TiO2 surface. With the formation of an additional mesoporous layer on macroporous TiO2 surface, the attached number of human osteogenic sarcoma cells (SaOS-2) increases in the initial incubation of 4 h but it does not show significant difference after 24 h compared to that attached on the macroporous or smooth surfaces. Whereas, it was noticed that SaOS-2 cells have larger spread area and more stress fibers on the macro/mesoporous structured surface than those on the other surfaces. To understand the intracellular mechanism of the initial cell adhesion on the macro/mesoporous surface, the Rho/ROCK pathway was investigated to reveal the topography-induced biological functions by introducing the ROCK inhibitor Y-27632 during cell culture. In the presence of Y-27632, cells on the macroporous surface and macro/mesoporous surface both show stellate appearance, with poor assembly stress fibers and long cell membrane protrusions. Cells on the smooth surface have larger spread areas compared to the former two surfaces. And the attached cells significantly reduced but there are no differences among the three surfaces. It reveals that the ROCK inhibitor invalidates the promotion of initial cell adhesion on the macro/mesoporous structure. This study may shed light on the mechanism behind the enhancement effect of macro/mesoporous structure for initial cell adhesion.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf