Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Arama, Charles
    et al.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Immunology.
    Assefaw-Redda, Yohannes
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Immunology.
    Rodriguez, Ariane
    Fernández, Carmen
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Immunology.
    Corradin, Giampietro
    Kaufmann, Stefan H. E.
    Reece, Stephen T.
    Troye-Blomberg, Marita
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Immunology.
    Heterologous prime-boost regimen adenovector 35-circumsporozoite protein vaccine/recombinant Bacillus Calmette-Guerin expressing the Plasmodium falciparum circumsporozoite induces enhanced long-term memory immunity in BALB/c mice2012In: Vaccine, ISSN 0264-410X, E-ISSN 1873-2518, Vol. 30, no 27, p. 4040-4045Article in journal (Refereed)
    Abstract [en]

    Background: Sustained antibody levels are a hallmark of immunity against many pathogens, and induction of long-term durable antibody titers is an essential feature of effective vaccines. Heterologous prime-boost approaches with vectors are optimal strategies to improve a broad and prolonged immunogenicity of malaria vaccines. Results: In this study, we demonstrate that the heterologous prime-boost regimen Ad35-CS/BCG-CS induces stronger immune responses by enhancing type 1 cellular producing-cells with high levels of CSp-specific IFN-gamma and cytophilic IgG2a antibodies as compared to a homologous BCG-CS and a heterologous BCG-CS/CSp prime-boost regimen. Moreover, the heterologous prime-boost regimen elicits the highest level of LLPC-mediated immune responses. Conclusion: The increased IFN-gamma-producing cell responses induced by the combination of Ad35-CS/BCG-CS and sustained type 1 antibody profile together with high levels of LLPCs may be essential for the development of long-term protective immunity against liver-stage parasites.

  • 2.
    Arama, Charles
    et al.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute, Immunology.
    Waseem, Shahid
    Stockholm University, Faculty of Science, The Wenner-Gren Institute, Immunology.
    Fernández, Carmen
    Stockholm University, Faculty of Science, The Wenner-Gren Institute, Immunology.
    Assefaw-Redda, Yohannes
    Stockholm University, Faculty of Science, The Wenner-Gren Institute, Immunology.
    You, Liya
    Stockholm University, Faculty of Science, The Wenner-Gren Institute, Immunology.
    Rodriguez, Ariane
    Radošević, Katarina
    Goudsmit, Jaap
    Kaufmann, Stefan H E
    Reece, Stephen T
    Troye-Blomberg, Marita
    Stockholm University, Faculty of Science, The Wenner-Gren Institute, Immunology.
    A recombinant Bacille Calmette-Guerin construct expressing the Plasmodium falciparum circumsporozoite protein enhances dendritic cell activation and primes for circumsporozoite-specific memory cells in BALB/c mice2012In: Vaccine, ISSN 0264-410X, E-ISSN 1873-2518, Vol. 30, no 37, p. 5578-5584Article in journal (Refereed)
    Abstract [en]

    A protective malaria vaccine may induce both high levels of neutralising antibodies and strong T-cell responses. The Plasmodium falciparum circumsporozoite protein (CSp) is a leading pre-erythrocytic vaccine candidate. CSp is a week immunogen per se, but Mycobacterium bovis Bacille Calmette-Guérin (BCG) has excellent adjuvant activity and has been utilized as a vector to deliver heterologous vaccine candidate antigens. It is safe in immunocompetent individuals and inexpensive to produce. We assessed in vitro and in vivo a recombinant BCG-expressing CSp (BCG-CS) as malaria vaccine candidate. Immunisation of BALB/c mice with BCG-CS augmented numbers of dendritic cells (DCs) in draining lymph nodes and in the spleen. The activation markers MHC-class-II, CD40, CD80 and CD86 on DCs were significantly upregulated by BCG-CS as compared to wild-type BCG (wt-BCG). In vitro stimulation of bone marrow-derived DCs and macrophages with BCG-CS induced IL-12 and TNF-α production. BCG-CS induced higher phagocytic activity in macrophages as compared to wt-BCG. Immunogenicity studies show that BCG-CS induced CS-specific antibodies and IFN-γ-producing memory cells. In conclusion, BCG-CS is highly efficient in activating antigen-presenting cells (APCs) for priming of adaptive immunity. Implications for the rational design of novel vaccines against malaria and TB, the two major devastating poverty-related diseases, are discussed.

  • 3.
    Arko-Mensah, John
    et al.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Immunology.
    Rahman, Muhammad J
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Immunology.
    Dégano, Irene R
    Chuquimia, Olga D
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Immunology.
    Fotio, Agathe L
    Garcia, Irene
    Fernández, Carmen
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Immunology.
    Resistance to mycobacterial infection: a pattern of early immune responses leads to a better control of pulmonary infection in C57BL/6 compared with BALB/c mice.2009In: Vaccine, ISSN 0264-410X, E-ISSN 1873-2518, Vol. 27, no 52, p. 7418-27Article in journal (Refereed)
    Abstract [en]

    In this study, we have compared the immunological responses associated with early pulmonary mycobacterial infection in two mouse strains, BALB/c and C57BL/6 known to exhibit distinct differences in susceptibility to infection with several pathogens. We infected mice via the intranasal route. We have demonstrated that BALB/c was less able to control mycobacterial growth in the lungs during the early phase of pulmonary infection. Our results showed that during the early phase (day 3 to week 1), BALB/c mice exhibited a delay in the production of TNF and IFN-gamma in the lungs compared to C57BL/6 mice. Levels of IL-12 and soluble TNF receptors (sTNFR) were comparable between the mouse strains. The cellular subset distribution in these mice before and after infection showed a higher increase in CD11b+ cells in the lungs of C57BL/6, compared to BALB/c as early as day 3 postinfection. At early time points, higher levels of monocyte chemoattractant protein (MCP)-1 and macrophage inflammatory protein 1 (MIP)-alpha were detected in C57BL/6 than BALB/c mice. In vitro, BCG-infected bone marrow derived macrophages (BMM) from both mouse strains displayed similar capacities to either phagocytose bacteria or produce soluble mediators such as TNF, IL-12 and nitric oxide (NO). Although IFN-gamma stimulation of infected BMM in both mouse strains resulted in the induction of antimycobacterial activity, BALB/c mice had a reduced capacity to kill ingested bacteria. The above observations indicate that the chain of early, possibly innate immunological events occurring during pulmonary mycobacterial infection may directly impact on increased susceptibility or resistance to infection.

  • 4.
    Balogun, Halima A.
    et al.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Immunology.
    Awah, Nancy W.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Immunology.
    Farouk, Salah E.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Immunology.
    Berzins, Klavs
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Immunology.
    Pf332-C231-reactive antibodies affect growth and development of intra-erythrocytic Plasmodium falciparum parasites2011In: Vaccine, ISSN 0264-410X, E-ISSN 1873-2518, Vol. 30, no 1, p. 21-28Article in journal (Refereed)
    Abstract [en]

    The Plasmodium falciparum antigen 332 (Pf332), is a megadalton parasite protein expressed at the surface of infected red cells during later stages of the parasite's developmental cycle. Antibodies to different parts of this antigen have been shown to inhibit parasite growth and adherence to host cells with or without ancillary cells. However, the mechanisms involved in these inhibitions remain largely unknown. We further analysed the activities of specific antibodies with regard to their specific mechanisms of action. For these analyses, affinity purified human antibodies against epitopes in the C-terminal fragment of Pf332 (Pf332-C231) were employed. All purified antibodies recognized Pf332-C231 both by immunofluorescence and ELISA. IgG was the main antibody isotype detected, although all sera investigated had varying proportions of IgG and IgM content. All the antibodies showed a capacity to inhibit parasite growth in P. falciparum cultures to different extents, mainly by acting on the more mature parasite stages. Morphological analysis revealed the antibody effects to be characterized by the presence of a high proportion of abnormal schizonts (15-30%) and pyknotic parasites. There was also an apparent antibody effect on the red cell integrity, as many developing parasites (up to 10% of trophozoites and schizonts) were extracellular. In some cases, the infected red cells appeared to be disintegrating/fading, staining paler than surrounding infected and uninfected cells. Antigen reversal of inhibition confirmed that these inhibitions were antigen specific. Furthermore, the growth of parasites after 22-42 h exposure to antibodies was investigated. Following the removal of antibody pressure, a decreased growth rate of these parasites was seen compared to that of control parasites. The present study confirms the potential of Pf332 as a target antigen for parasite neutralizing antibodies, and further indicates that epitopes within the C231 region of Pf332 should constitute important tools in the dissection of the role of Pf332 in the biology of the malaria parasite, as well as in the design of a malaria vaccine.

  • 5.
    Balogun, Halima A.
    et al.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Immunology.
    Vasconcelos, N.-M.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Immunology.
    Lindberg, R.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Immunology.
    Haeggström, M.
    Moll, K.
    Chen, Q.
    Wahlgren, M.
    Berzins, Klavs
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Immunology.
    Immunogenicity and antigenic properties of Pf332-C231, a fragment of a non-repeat region of the Plasmodium falciparum antigen Pf332 2009In: Vaccine, ISSN 0264-410X, E-ISSN 1873-2518, Vol. 28, no 1, p. 90-97Article in journal (Refereed)
    Abstract [en]

    Antigen Pf332, a megadalton protein has been shown to be associated with the membrane of infected erythrocytes. Detailed functional studies on the antigen have remained hampered by the cross-reactive nature of antibodies generated to Pf332. Pf332-C231, identified in the C-terminal region of Pf332 was cloned and antibodies against the C231 fragment were shown to react with intact Pf332 antigen by both immunofluorescence and immunoblotting analyses. Antibodies to C231 inhibited in vitro Plasmodium falciparum growth efficiently. In addition, human sera from malaria-exposed individuals reacted with recombinant C231. We show that Pf332-C231 represents a functional domain and is expected to facilitate further studies on Pf332 as a potential target for protective immune responses and the function of the antigen.

  • 6. Giha, Hayder A
    et al.
    Nasr, Amre
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Immunology.
    Iriemenam, Nnaemeka C
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Immunology.
    Balogun, Halima A
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Immunology.
    Arnot, David
    Theander, Thor G
    Troye-Blomberg, Marita
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Immunology.
    Berzins, Klavs
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Immunology.
    Elghazali, Gehad
    Age-dependent association between IgG2 and IgG3 subclasses to Pf332-C231 antigen and protection from malaria, and induction of protective antibodies by sub-patent malaria infections, in Daraweesh2010In: Vaccine, ISSN 0264-410X, E-ISSN 1873-2518, Vol. 28, no 7, p. 1732-1739Article in journal (Refereed)
    Abstract [en]

    The certainty of the protective role of acquired immunity in malaria is the major drive for malaria vaccine development. In this study, we measured the levels of total IgG and IgG subclasses to four candidate malaria vaccine antigens; MSP2-3D7, MSP2-FC27, AMA-1 and Pf332-C231, in plasma obtained from a cohort of 136 donors from Daraweesh in Sudan. The cohort was followed for malaria infection for 9 years. After an initial analysis, the immune response to Pf332-C231 antigen was the only one found associated with protection, thus taken for further analysis. The number of previous clinical malaria episodes experienced by the donors was used as an index for relative protection. The number of these episodes was found to be negatively correlated with the levels of pre-existing total IgG, IgG2 and IgG3 to Pf332-C231 (correlation coefficient, CC - 0.215, p=0.012; CC - 0.195, p=0.023 and CC - 0.211, p=0.014, respectively), and also with age (CC - 0.311, p<0.001). Unexpectedly, equal levels of Pf332-C231 antibodies were induced by both patent and sub-patent infections regardless of the number of previous malaria episodes (1-7). Combining the correlation analysis with a multi-linear regression, three variable markers for protection were emerged, two age-dependent, the antibody response to Pf332-C231 and an unidentified marker (likely immune response to other antigens), and the third was an age-independent unidentified marker (possibly gene polymorphisms). In conclusion, this report suggests a protective effect for IgG subclasses to Pf332-C231 antigen against malaria.

  • 7.
    Iriemenam, Nnaemeka C.
    et al.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Khirelsied, Atif H.
    Nasr, Amre
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    ElGhazali, Gehad
    Giha, Haider A.
    Elhassan A-Elgadir, Thoraya
    Agab-Aldour, Ahmed A.
    Montgomery, Scott M.
    Anders, Robin F.
    Theisen, Michael
    Troye-Blomberg, Marita
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Elbashir, Mustafa I.
    Berzins, Klavs
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Antibody responses to a panel of Plasmodium falciparum malaria blood-stage antigens in relation to clinical disease outcome in Sudan2009In: Vaccine, ISSN 0264-410X, E-ISSN 1873-2518, Vol. 27, no 1, p. 62-71Article in journal (Refereed)
    Abstract [en]

    Despite many intervention programmes aimed at curtailing the scourge, malaria remains a formidable problem of human health. Immunity to asexual blood-stage of Plasmodium falciparum malaria is thought to be associated with protective antibodies of certain immunoglobulin classes and subclasses. We have analysed immunoglobulin G profiles to six leading blood-stage antigens in relation to clinical malaria outcome in a hospital-based study in Sudan. Our results revealed a linear association with anti-AMA-1-IgG1 antibodies in children <5 years and reduced risk of severe malaria, while the responses of the IgG3 antibodies against MSP-2, MSP-3, GLURP in individuals above 5 years were bi-modal. A dominance of IgG3 antibodies in >5 years was also observed. In the final combined model, the highest levels of IgG1 antibodies to AMA-1, GLURP-R0, and the highest levels of IgG3 antibodies to 3D7 MSP-2 were independently associated with protection from clinical malaria. The study provides further support for the potential importance of the studied merozoite vaccine candidate antigens as targets for parasite neutralizing antibody responses of the IgG1 and IgG3 subclasses.

  • 8. Laestadius, Åsa
    et al.
    Ingelman-Sundberg, Hanna M.
    Hed Myrberg, Ida
    Verme, Anna
    Sundberg, Erik
    Schweiger, Brunhilde
    Saghafian-Hedengren, Shanie
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. Karolinska Institutet, Sweden.
    Nilsson, Anna
    Altered proportions of circulating CXCR5+helper T cells do not dampen influenza vaccine responses in children with rheumatic disease2019In: Vaccine, ISSN 0264-410X, E-ISSN 1873-2518, Vol. 37, no 28, p. 3685-3693Article in journal (Refereed)
    Abstract [en]

    Biological therapy options for the treatment of rheumatic disease target molecules that can affect the cross-talk between innate and adaptive immune responses upon vaccination. Influenza vaccination in children with rheumatic disease has been recommended, but there are only sparse data on the quality of vaccine responses from pediatric patients treated with biological therapy. We conducted an influenza vaccine study over 3 consecutive seasons where the antibody response to TIV was evaluated in children with PRD (n = 78), including both non-treated (n = 17) and treated (with methotrexate, TNF-inhibitors with or without methotrexate, or IL-inhibitors, n = 61) children as well as healthy age-matched controls (n = 24). Peripheral B cells, T and NK cell populations, as well as CXCR5+ (follicular) helper T cells (T-FH) and chemokines involved in antibody responses were assessed prior to immunization in the same cohort. Data on disease duration, therapy and data on previous influenza vaccinations were retrieved. The proportion of circulating T-FH cells were significantly lower in non-treated children with PRD compared to treated patients and healthy controls. The significantly lower proportion of T-FH cells was mirrored by a marked significant increase in CXCL13 serum level, the ligand for CXCR5, with higher levels in non-treated children with PRD compared to treated patients and healthy controls. However, the proportion of T-FH cells or CXCL13 level at the time of vaccination was not a predictor of the antibody response to TIV in this cohort of children. Children with PRD had an overall similar response to TIV as healthy children. Although not significant, children treated with TNF-inhibitors differed as a few children remained seronegative towards H3N2- and influenza B viruses after immunization. Our data show that children with PRD respond to TIV as healthy children. Furthermore, plasma CXCL13 levels did not correlate to the proportion of T-FH cells in blood prior to immunisation, or to antibody responses following immunization.

  • 9.
    Rahman, Muhammad Jubayer
    et al.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Department of Immunology.
    Fernández, Carmen
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Department of Immunology.
    Neonatal vaccination with Mycobacterium bovis BCG: potential effects as a priming agent shown in a heterologous prime-boost immunization protocol2009In: Vaccine, ISSN 0264-410X, E-ISSN 1873-2518, Vol. 27, no 30, p. 4038-4046Article in journal (Refereed)
    Abstract [en]

    In general prime-boost immunization including Mycobacterium bovis bacille Calmette-Guérin (BCG) as a priming agent has been a recent successful strategy in animal models. However, the effects of BCG as a priming vaccine have not been investigated systematically. Thus, we modelled a heterologous prime-boost immunization in mice with BCG administered at the neonatal period and mycobacterial heparin-binding hemagglutinin (HBHA) at adult ages. Mice were challenged with a high dose of BCG (10(7) colony forming units) via intranasal (i.n.) route. We addressed whether the route of administration and addition of adjuvants could be of importance in HBHA-immunizations while animals were primed with BCG. Our results showed that prime-boost immunization induced significantly higher levels of protection in animals compared to the group vaccinated with BCG alone. Most importantly, the levels of protection were comparable between the i.n. and subcutaneous (s.c.) boostings with native (n) HBHA and the coadministration of adjuvant was not necessary. Moreover, priming with BCG improved also the protection promoted by the recombinant form of HBHA, even if to a lower degree to that observed after nHBHA boosting. In general, vaccination with BCG prior to the HBHA administration was found to contribute in two ways: it primed the immune system and provided adjuvant effect. We discuss the several outcomes following neonatal BCG priming and HBHA boosting for better protection against tuberculosis

  • 10.
    Rodriguez, Ariane
    et al.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Tjärnlund, Anna
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Ivanyi, Juraj
    Singh, Mahavir
    García, Irene
    Williams, Ann
    Marsh, Philip
    Troye-Blomberg, Marita
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Fernández, Carmen
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Role of IgA in the defense against respiratory infections: IgA deficient mice exhibited increased susceptibility to intranasal infection with Mycobacterium bovis BCG2005In: Vaccine, ISSN 0264-410X, E-ISSN 1873-2518, Vol. 23, no 20, p. 2565-2572Article in journal (Refereed)
    Abstract [en]

    IgA is the predominant Ig isotype in mucosal tissue and is believed to be involved in defense against viral and bacterial infections at these sites. Here, we examined the role of IgA in the protection against intranasal (i.n.) infection with Mycobacterium bovis Bacillus Calmette-Guérin (BCG). IgA deficient (IgA−/−) mice and wild type non-targeted littermate (IgA+/+) mice were immunized by i.n. route with the mycobacterium surface antigen PstS-1 formulated with cholera toxin (CT). Our data showed that IgA−/− mice were more susceptible to BCG infection compared to IgA+/+ mice, as revealed by the higher bacterial loads in the lungs and bronchoalveolar lavage (BAL). Analysis of the Ig levels and the antibody responses to PstS-1 showed that IgA−/− mice had no detectable IgA either in the saliva or in the BAL. However, these mice displayed higher levels of total and specific IgM than IgA+/+ mice in both mucosal fluids. More importantly, analysis of the cytokine responses revealed a reduction in the IFN-γ and TNF-α production in the lungs of IgA−/− compared to IgA+/+ mice. Altogether, our results suggest that IgA may play a role in protection against mycobacterial infections in the respiratory tract by blocking the pathogen entrance and/or by modulating the pro-inflammatory responses.

  • 11. Weidemann, Felix
    et al.
    Dehnert, Manuel
    Koch, Judith
    Wichmann, Ole
    Höhle, Michael
    Stockholm University, Faculty of Science, Department of Mathematics.
    Modelling the epidemiological impact of rotavirus vaccination in Germany - A Bayesian approach2014In: Vaccine, ISSN 0264-410X, E-ISSN 1873-2518, Vol. 32, no 40, p. 5250-5257Article in journal (Refereed)
    Abstract [en]

    Background: Rotavirus (RV) infection is the primary cause of severe gastroenteritis in children aged <5 years in Germany and worldwide. In 2013 the German Standing Committee on Vaccination (STIKO) developed a national recommendation for routine RV-immunization of infants. To support informed decision-making we predicted the epidemiological impact of routine RV-vaccination in Germany using statistical modelling. Methods: We developed a population-based model for the dynamic transmission of RV-infection in a vaccination setting. Using data from the communicable disease reporting system and survey records on the vaccination coverage from the eastern federal states, where the vaccine was widely used before recommended at national level, we first estimated RV vaccine effectiveness (VE) within a Bayesian framework utilizing adaptive Markov Chain Monte Carlo inference. The calibrated model was then used to compute the predictive distribution of RV-incidence after achieving high vaccination coverage with the introduction of routine vaccination. Results: Our model estimated that RV-vaccination provides high protection against symptomatic RV-infection (VE=96%; 95% credibility interval (CI): 91-99%) that remains at its maximum level for three years (95% CI: 1.43-5.80 years) and is fully waned after twelve years. At population level, routine vaccination at 90% coverage is predicted to reduce symptomatic RV-incidence among children aged <5 years by 84% (95% prediction interval (PI): 71-90%) including a 2.5% decrease due to herd protection. Ten years after vaccine introduction an increase in RV incidences of 12% (95% PI: -16 to 85%) among persons aged 5-59 years and 14% (95% PI: -6 to 109%) within the age-group >60 years was predicted. Conclusion: Routine infant RV-vaccination is predicted to considerably reduce RV-incidence in Germany among children <5 years. Outwork generated estimates of RV VE in the field and predicted the population-level impact, while adequately addressing the role of model and prediction uncertainty when making statements about the future.

1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf