Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Huang, Jing
    et al.
    Xu, Bo
    Yuan, Chunze
    Chen, Hong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Sun, Junliang
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Sun, Licheng
    Ågren, Hans
    Improved Performance of Colloidal CdSe Quantum Dot-Sensitized Solar Cells by Hybrid Passivation2014In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 6, no 21, p. 18808-18815Article in journal (Refereed)
    Abstract [en]

    A hybrid passivation strategy is employed to modify the surface of colloidal CdSe quantum dots (QDs) for quantum dot-sensitized solar cells (QDSCs), by using mercaptopropionic acid (MPA) and iodide anions through a ligand exchange reaction in solution. This is found to be an effective way to improve the performance of QDSCs based on colloidal QDs. The results show that MPA can increase the coverage of the QDs on TiO2 electrodes and facilitate the hole extraction from the photoxidized QDs, and simultaneously, that the iodide anions can remedy the surface defects of the CdSe QDs and thus reduce the recombination loss in the device. This hybrid passivation treatment leads to a significant enhancement of the power conversion efficiency of the QDSCs by 41%. Furthermore, an optimal ratio of iodide ions to MPA was determined for favorable hybrid passivation; results show that excessive iodine anions are detrimental to the loading of the QDs. This study demonstrates that the improvement in QDSC performance can be realized by using a combination of different functional ligands to passivate the QDs, and that ligand exchange in solution effective approach to introduce can be an different ligands.

  • 2. Jia, Xueen
    et al.
    Hu, Guangzhi
    Nitze, Florian
    Barzegar, Hamid Reza
    Sharifi, Tiva
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Wågberg, Thomas
    Synthesis of Palladium/Helical Carbon Nanofiber Hybrid Nanostructures and Their Application for Hydrogen Peroxide and Glucose Detection2013In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 5, no 22, p. 12017-12022Article in journal (Refereed)
    Abstract [en]

    We report on a novel sensing platform for H2O2 and glucose based on immobilization of palladium-helical carbon nanofiber (Pd-HCNF) hybrid nanostnictures and glucose oxidase (GOx) with Nafion on a glassy carbon electrode (GCE). HCNFs were synthesized by a chemical vapor deposition process on a C-60-supported Pd catalyst. Pd-HCNF nanocomposites were prepared by a one-step reduction free method in dimethylformamide (DMF). The prepared materials were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy. The Nafion/Pd-HCNF/GCE sensor exhibits excellent electrocatalytic sensitivity toward H2O2 (315 mA M-1 cm(-2)) as probed by cyclic voltammetry (CV) and chronoamperometry. We show that Pd-HCNF-modified electrodes significantly reduce the overpotential and enhance the electron transfer rate. A linear range from 5.0 mu M to 2.1 mM with a detection limit of 3.0 mu M (based on the S/N = 3) and good reproducibility were obtained. Furthermore, a sensing platform for glucose was prepared by immobilizing the Pd-HCNFs and glucose oxidase (GOx) with Nafion on a glassy carbon electrode. The resulting biosensor exhibits a good response to glucose with a wide linear range (0.06-6.0 mM) with a detection limit of 0.03 mM and a sensitivity of 13 mA M-1 cm(-2). We show that small size and homogeneous distribution of the Pd nanoparticles in combination with good conductivity and large surface area of the HCNFs lead to a H2O2 and glucose sensing platform that performs in the top range of the herein reported sensor platforms.

  • 3.
    Keshavarzi, Neda
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Mashayekhy Rad, Farshid
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Mace, Amber
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Ansari, Farhan
    Akhtar, Farid
    Nilsson, Ulrika
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Berglund, Lars
    Bergström, Lennart
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Nanocellulose-Zeolite Composite Films for Odor Elimination2015In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 7, no 26, p. 14254-14262Article in journal (Refereed)
    Abstract [en]

    Free standing and strong odor-removing composite films of cellulose nanofibrils (CNF) with a high content of nanoporous zeolite adsorbents have been colloidally processed. Thermogravimetric desorption analysis (TGA) and infrared spectroscopy combined with computational simulations showed that commercially available silicalite-1 and ZSM-5 have a high affinity and uptake of volatile odors like ethanethiol and propanethiol, also in the presence of water. The simulations showed that propanethiol has a higher affinity, up to 16%, to the two zeolites compared with ethanethiol. Highly flexible and strong free-standing zeolite CNF films with an adsorbent loading of 89 w/w% have been produced by Ca-induced gelation and vacuum filtration. The CNF-network controls the strength of the composite films and 100 mu m thick zeolite CNF films with a CNF content of less than 10 vol % displayed a tensile strength approaching 10 MPa. Headspace solid phase microextraction (SPME) coupled to gas chromatography mass spectroscopy (GC/MS) analysis showed that the CNF zeolite films can eliminate the volatile thiol-based odors to concentrations below the detection ability of the human olfactory system. Odor removing zeolite-cellulose nanofibril films could enable improved transport and storage of fruits and vegetables rich in odors, for example, onion and the tasty but foul-smelling South-East Asian Durian fruit.

  • 4. Lu, Huiran
    et al.
    Guccini, Valentina
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). KTH Royal Institute of Technology, Sweden.
    Kim, Hyeyun
    Salazar-Alyarez, German
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). KTH Royal Institute of Technology, Sweden.
    Lindbergh, Göran
    Cornell, Ann
    Effects of Different Manufacturing Processes on TEMPO-Oxidized Carboxylated Cellulose Nanofiber Performance as Binder for Flexible Lithium-Ion Batteries2017In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, no 43, p. 37712-37720Article in journal (Refereed)
    Abstract [en]

    Carboxylated cellulose nanofibers (CNF) prepared using the TEMPO-route are good binders of electrode components in flexible lithium-ion batteries (LIB). However, the different parameters employed for the defibrillation of CNF such as charge density and degree of homogenization affect its properties when used as binder. This work presents a systematic study of CNF prepared with different surface charge densities and varying degrees of homogenization and their performance as binder for flexible LiFePO4 electrodes. The results show that the CNF with high charge density had shorter fiber lengths compared with those of CNF with low charge density, as observed with atomic force microscopy. Also, CNF processed with a large number of passes in the homogenizer showed a better fiber dispersibility, as observed from rheological measurements. The electrodes fabricated with highly charged CNF exhibited the best mechanical and electrochemical properties. The CNF at the highest charge density (ISSO mu mol g(-1)) and lowest degree of homogenization (3 + 3 passes in the homogenizer) achieved the overall best performance, including a high Young's modulus of approximately 311 MPa and a good rate capability with a stable specific capacity of 116 mAh g(-1) even up to 1 C. This work allows a better understanding of the influence of the processing parameters of CNF on their performance as binder for flexible electrodes. The results also contribute to the understanding of the optimal processing parameters of CNF to fabricate other materials, e.g., membranes or separators.

  • 5. Ma, Yue
    et al.
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Li, Shaowen
    Edström, Kristina
    Wei, Bingqing
    Multiscale Interfacial Strategy to Engineer Mixed Metal-Oxide Anodes toward Enhanced Cycling Efficiency2018In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 23, p. 20095-20105Article in journal (Refereed)
    Abstract [en]

    Interconnected macro/mesoporous structures of mixed metal oxide (MMO) are developed on nickel foam as freestanding anodes for Li-ion batteries. The sustainable production is realized via a wet chemical etching process with bio-friendly chemicals. By means of divalent iron doping during an in situ recrystallization process, the as-developed MMO anodes exhibit enhanced levels of cycling efficiency. Furthermore, this atomic-scale modification coherently synergizes with the encapsulation layer across a micrometer scale. During this step, we develop a quasi-gel-state tri-copolymer, i.e., F127-resorcinol-melamine, as the N-doped carbon source to regulate the interfacial chemistry of the MMO electrodes. Electrochemical tests of the modified FexN1-xO@NC-NiF anode in both half-cell and full-cell configurations unravel the favorable suppression of the irreversible capacity loss and satisfactory cyclability at the high rates. This study highlights a proof-of-concept modification strategy across multiple scales to govern the interfacial chemical process of the electrodes toward better reversibility.

  • 6. Namanga, Jude E.
    et al.
    Gerlitzki, Niels
    Smetana, Volodymyr
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). U.S. Department of Energy, United States.
    Mudring, Anja-Verena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Ruhr-Universität Bochum, Germany; U.S. Department of Energy, United States.
    Supramolecularly Caged Green-Emitting Ionic Ir(III)-Based Complex with Fluorinated CN Ligands and Its Application in Light-Emitting Electrochemical Cells2018In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 13, p. 11026-11036Article in journal (Refereed)
    Abstract [en]

    Ionic Ir(III) complexes are the most promising emitters in light emitting electrochemical cells (LECs), especially in the high energy emission range for which it is difficult to find emitters with sufficient efficiencies and lifetimes. To overcome this challenge, we introduced the concept of intramolecular pi-pi stacking of an ancillary ligand (6-phenyl-2,2'-bipyridine, pbpy) in the design of a new green-emitting iridium ionic transition metal complex with a fluoro-substituted cyclometallated ligand, 2-(4-fluorophenyOpyridinato (4Fppy). [Ir(4Fppy)(2)(pbpy)][PF6] has been synthesized and characterized and its photophysical and electrochemical properties have been studied. The complex emits green light with maxima at 561 and 556 nm under UV excitation from powder and thin film, respectively, and displays a high photoluminescence quantum yield (PLQY) of 78.5%. [Ir(4Fppy)(2)(pbpy)][PF6] based LECs driven under pulsed current conditions showed under an average current density of 100 A m(-2) (at 50% duty cycle) a maximum luminance of 1443 cd m(-2), resulting in 14.4 cd A(-1) and 7.4 lm W-1 current and power efficiencies, respectively. A remarkable long device lifetime of 214 h was observed. Reducing the average current density to 18.5 A m(-2) (at 75% duty cycle) led to an exceptional device performance of 19.3 cd A(-1) and 14.4 lm W1- for current and power efficiencies, an initial maximum luminance of 352 cd m(-2) and a lifetime of 617 h.

  • 7.
    Ojuva, Arto
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Akhtar, Farid
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Tomsia, Antoni P.
    Bergström, Lennart
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Laminated Adsorbents with Very Rapid CO2 Uptake by Freeze-Casting of Zeolites2013In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 5, no 7, p. 2669-2676Article in journal (Refereed)
    Abstract [en]

    Structured zeolite 13X monoliths with a laminated structure and hierarchical macro-/microporosity were prepared by freeze-casting aqueous suspensions of zeolite 13X powder, bentonite, and polyethylene glycol. Colloidally stable suspensions with a low viscosity at both room temperature and near freezing could be prepared at alkaline conditions where both the zeolite 13X powder and bentonite carry a negative surface charge. Slow directional freezing of the suspensions led to the formation of well-defined and thin lamellar pores and pore walls while fast freezing resulted in more cylindrical pores. The wall thickness, which varied between 8 and 35 mu m, increased with increasing solids loading of the suspension. Thermal treatment at 1053 K of the freeze-cast bodies containing between 9 and 17 wt % bentonite resulted in mechanically stable zeolite 13X monoliths. The monoliths displayed a carbon dioxide uptake capacity of 4-5 mmol/g and an uptake kinetics characterized by a very fast initial uptake where more than 50% of the maximum uptake was reached within 15 s. Freeze-cast laminated zeolite monoliths could be used to improve the volumetric efficiency and reduce the cycle time, of importance in, for example, biogas upgrading and CO2 separation from flue gas.

  • 8.
    Salazar-Alvarez, German
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Geshev, Julian
    Agramunt-Puig, Sebastia
    Navau, Carles
    Sanchez, Alvaro
    Sort, Jordi
    Nogues, Josep
    Tunable High-Field Magnetization in Strongly Exchange-Coupled Freestanding Co/CoO Core/Shell Coaxial Nanowires2016In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 8, no 34, p. 22477-22483Article in journal (Refereed)
    Abstract [en]

    The exchange bias properties of Co/CoO coaxial core/shell nanowires were investigated with cooling and applied fields perpendicular to the wire axis. This configuration leads to unexpected exchange-bias effects. First, the magnetization value at high fields is found to depend on the field-cooling conditions. This effect arises from the competition between the magnetic anisotropy and the Zeeman energies for cooling fields perpendicular to the wire axis. This allows imprinting predefined magnetization states to the antiferromagnetic (AFM) shell, as corroborated by micromagnetic simulations. Second, the system exhibits a high-field magnetic irreversibility, leading to open hysteresis loops attributed to the AFM easy axis reorientation during the reversal (effect similar to athermal training). A distinct way to manipulate the high-field magnetization in exchange-biased systems, beyond the archetypical effects, was thus experimentally and theoretically demonstrated.

  • 9. Sun, Rui
    et al.
    Zhang, Peng
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Uppsala University, Sweden.
    Bajnócz, Éva G.
    Neagu, Alexandra
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Persson, Ingmar
    Strømme, Maria
    Cheung, Ocean
    Amorphous Calcium Carbonate Constructed from Nanoparticle Aggregates with Unprecedented Surface Area and Mesoporosity2018In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 25, p. 21556-21564Article in journal (Refereed)
    Abstract [en]

    Amorphous calcium carbonate (ACC), with the highest reported specific surface area of all current forms of calcium carbonate (over 350 m(2) g(-1)), was synthesized using a surfactant-free, one-pot method. Electron microscopy, helium pycnometry, and nitrogen sorption analysis revealed that this highly mesoporous ACC, with a pore volume of similar to 0.86 cm(3) g(-1) and a pore-size distribution centered at 8-9 nm, is constructed from aggregated ACC nanoparticles with an estimated average diameter of 7.3 nm. The porous ACC remained amorphous and retained its high porosity for over 3 weeks under semi-air-tight storage conditions. Powder X-ray diffraction, large-angle X-ray scattering, infrared spectroscopy, and electron diffraction exposed that the porous ACC did not resemble any of the known CaCO3 structures. The atomic order of porous ACC diminished at interatomic distances over 8 angstrom. Porous ACC was evaluated as a potential drug carrier of poorly soluble substances in vitro. Itraconazole and celecoxib remained stable in their amorphous forms within the pores of the material. Drug release rates were significantly enhanced for both drugs (up to 65 times the dissolution rates for the crystalline forms), and supersaturation release of celecoxib was also demonstrated. Citric acid was used to enhance the stability of the ACC nanoparticles within the aggregates, which increased the surface area of the material to over 600 m(2) g(-1). This porous ACC has potential for use in various applications where surface area is important, including adsorption, catalysis, medication, and bone regeneration.

  • 10.
    Wang, Yong-Lei
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Golets, Mikhail
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Li, Bin
    Sarman, Sten
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Laaksonen, Aatto
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Interfacial Structures of Trihexyltetradecylphosphonium-bis(mandelato)borate Ionic Liquid Confined between Gold Electrodes2017In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, no 5, p. 4976-4987Article in journal (Refereed)
    Abstract [en]

    Atomistic molecular dynamics simulations have been performed to study microscopic the interfacial ionic structures, molecular arrangements, and orientational preferences of trihexyltetradecylphosphonium-bis(mandelato)borate ([P-6,P-6,P-6,P-14][BM]) ionic liquid confined between neutral and charged gold electrodes. It was found that both [P-6,P-6,P-6,P-14] cations and [BMB] anions are coabsorbed onto neutral electrodes at different temperatures. The hexyl and tetradecyl chains in [P-6,P-6,P-6,P-14] cations lie preferentially flat on neutral electrodes. The oxalato and phenyl rings in [BMB] anions are characterized by alternative parallel perpendicular orientations in the mixed innermost ionic layer adjacent to neutral electrodes. An increase in temperature has a marginal effect on the interfacial ionic structures and molecular orientations of [P-6,P-6,P-6,P-14] [BMB] ionic species in a confined environment. Electrifying gold electrodes leads to peculiar changes in the interfacial ionic structures and molecular orientational arrangements of [p(6,6,414)] cations and [BMB] anions in negatively and positively charged gold electrodes, respectively. As surface charge density increases (but lower than 20 mu C/cm(2)), the layer thickness of the mixed innermost interfacial layer gradually increases due to a consecutive accumulation of [P6,6,614] cations and [BMB] anions at negatively and positively charged electrodes, respectively, before the formation of distinct cationic and anionic innermost layers. Meanwhile, the molecular orientations of two oxalato rings in the same [BMB] anions change gradually from a parallel perpendicular feature to being partially characterized by a tilted arrangement at an angle of 45 from the electrodes and finally to a dominant parallel coordination pattern along positively charged electrodes. Distinctive interfacial distribution patterns are also observed accordingly for phenyl rings that are directly connected to neighboring oxalato rings in [BMB] anions.

  • 11.
    Zhu, Chuantao
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Liu, Peng
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Mathew, Aji P.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Self-Assembled TEMPO Cellulose Nanofibers: Graphene Oxide-Based Biohybrids for Water Purification2017In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, no 24, p. 21048-21058Article in journal (Refereed)
    Abstract [en]

    Nanocellulose, graphene oxide (GO), and their combinations there off have attracted great attention for the application of water purification recently because of their unique adsorption capacity, mechanical characteristics, coordination with transition metal ions, surface charge density, and so on. In the current study, (2,2,6,6-tetramethylpiperidine-1-oxylradical) (TEMPO)-mediated oxidized cellulose nanofibers (TOCNF) and GO sheets or graphene oxide nanocolloid (nanoGO) biohybrids were prepared by vacuum filtration method to obtain self-assembled adsorbents and membranes for water purification. The porous biohybrid structure, studied using advanced microscopy techniques, revealed a unique networking and self-assembling of TOCNF, GO, and nanoGO, driven by the morphology of the GO phase and stabilized by the intermolecular H-bonding between carboxyl groups and hydroxyl groups. The biohybrids exhibited a promising adsorption capacity toward Cu(II) due to TOCNF and formed a unique arrested state in water because of ionic cross-linking between adsorbed Cu(II) and the negatively charged TOCNF and GO phase. The mechanical performance of the freestanding biohybrid membranes investigated using PeakForce Quantative NanoMechanics characterization confirmed the enhanced modulus of the hybrid membrane compared to that of the TOCNF membrane. Besides, the TOCNF+nanoGO membrane shows unique hydrolytic stability and recyclability even under several cycles of adsorption and desorption and strong sonication. This study shows that TOCNF and nanoGO hybrids can generate new water-cleaning membranes with synergistic properties because of their high adsorption capacity, flexibility, hydrolytic stability, and mechanical robustness.

1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf