Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Lindström, Ida
    et al.
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Dogan, Jakob
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Dynamics, Conformational Entropy, and Frustration in Protein-Protein Interactions Involving an Intrinsically Disordered Protein Domain2018In: ACS Chemical Biology, ISSN 1554-8929, E-ISSN 1554-8937, Vol. 13, no 5, p. 1218-1227Article in journal (Refereed)
    Abstract [en]

    Intrinsically disordered proteins (IDPs) are abundant in the eukaryotic proteome. However, little is known about the role of subnanosecond dynamics and the conformational entropy that it represents in protein-protein interactions involving IDPs. Using nuclear magnetic resonance side chain and backbone relaxation, stopped-flow kinetics, isothermal titration calorimetry, and computational studies, we have characterized the interaction between the globular TAZ1 domain of the CREB binding protein and the intrinsically disordered transactivation domain of STAT2 (TAD-STAT2). We show that the TAZ1/TAD-STAT2 complex retains considerable subnanosecond motions, with TAD-STAT2 undergoing only a partial disorder-to-order transition. We report here the first experimental determination of the conformational entropy change for both binding partners in an IDP binding interaction and find that the total change even exceeds in magnitude the binding enthalpy and is comparable to the contribution from the hydrophobic effect, demonstrating its importance in the binding energetics. Furthermore, we show that the conformational entropy change for TAZ1 is also instrumental in maintaining a biologically meaningful binding affinity. Strikingly, a spatial clustering of very high amplitude motions and a cluster of more rigid sites in the complex exist, which through computational studies we found to overlap with regions that experience energetic frustration and are less frustrated, respectively. Thus, the residual dynamics in the bound state could be necessary for faster dissociation, which is important for proteins that interact with multiple binding partners.

  • 2. Pansieri, Jonathan
    et al.
    Ostojic, Lucija
    Iashchishyn, Igor A.
    Magzoub, Mazin
    Wallin, Cecilia
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Wärmländer, Sebastian K. T. S.
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Gräslund, Astrid
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Mai, Nguyen
    Smirnovas, Vytautas
    Svedruzic, Zeljko
    Morozova-Roche, Ludmilla A.
    Pro-Inflammatory S100A9 Protein Aggregation Promoted by NCAM1 Peptide Constructs2019In: ACS Chemical Biology, ISSN 1554-8929, E-ISSN 1554-8937, Vol. 14, no 7, p. 1410-1417Article in journal (Refereed)
    Abstract [en]

    Amyloid cascade and neuroinflammation are hallmarks of neurodegenerative diseases, and pro-inflammatory S100A9 protein is central to both of them. Here, we have shown that NCAM1 peptide constructs carrying polycationic sequences derived from A beta peptide (KKLVFF) and PrP protein (KKRPKP) significantly promote the S100A9 amyloid self-assembly in a concentration-dependent manner by making transient interactions with individual S100A9 molecules, perturbing its native structure and acting as catalysts. Since the individual molecule misfolding is a rate-limiting step in S100A9 amyloid aggregation, the effects of the NCAM1 construct on the native S100A9 are so critical for its amyloid self-assembly. S100A9 rapid self assembly into large aggregated clumps may prevent its amyloid tissue propagation, and by modulating S100A9 aggregation as a part of the amyloid cascade, the whole process may be effectively tuned.

  • 3.
    Ranganathan, Anirudh
    et al.
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Heine, Philipp
    Rudling, Axel
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Plückthun, Andreas
    Kummer, Lutz
    Carlsson, Jens
    Ligand Discovery for a Peptide-Binding GPCR by Structure-Based Screening of Fragment- and Lead-Like Chemical Libraries2017In: ACS Chemical Biology, ISSN 1554-8929, E-ISSN 1554-8937, Vol. 12, no 3, p. 735-745Article in journal (Refereed)
    Abstract [en]

    Peptide-recognizing G protein-coupled receptors (GPCRs) are promising therapeutic targets but often resist drug discovery efforts. Determination of crystal structures for peptide binding GPCRs has provided opportunities to explore structure based methods in lead development. Molecular docking screens of two chemical libraries, containing either fragment- or lead-like compounds, against a neurotensin receptor 1 crystal structure allowed for a comparison between different drug development strategies for peptide-binding GPCRs. A total of 2.3 million molecules were screened computationally, and 25 fragments and 27 leads that were top-ranked in each library were selected for experimental evaluation. Of these, eight fragments and five leads were confirmed as ligands by surface plasmon resonance. The hit rate for the fragment screen (32%) was thus higher than for the lead-like library (19%), but the affinities of the fragments were similar to 100-fold lower. Both screens returned unique scaffolds and demonstrated that a crystal structure of a stabilized peptide-binding GPCR can guide the discovery of small-molecule agonists. The complementary advantages of exploring fragment- and lead-like chemical space suggest that these strategies should be applied synergistically in structure-based screens against challenging GPCR targets.

  • 4.
    Rodriguez, David
    et al.
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Chakraborty, Saibal
    Warnick, Eugene
    Crane, Steven
    Gao, Zhan-Guo
    O'Connor, Robert
    Jacobson, Kenneth A.
    Carlsson, Jens
    Structure-Based Screening of Uncharted Chemical Space for Atypical Adenosine Receptor Agonists2016In: ACS Chemical Biology, ISSN 1554-8929, E-ISSN 1554-8937, Vol. 11, no 10, p. 2763-2772Article in journal (Refereed)
    Abstract [en]

    Small molecule screening libraries cover only a small fraction of the astronomical number of possible drug-like compounds, limiting the success of ligand discovery efforts. Computational screening of virtual libraries representing unexplored chemical space could potentially bridge this gap. Drug development for adenosine receptors (ARs) as targets for inflammation and cardiovascular diseases has been hampered by the paucity of agonist scaffolds. To identify novel AR agonists, a virtual library of synthetically tractable nucleosides with alternative bases was generated and structure-based virtual screening guided selection of compounds for synthesis. Pharmacological assays were carried out at three AR subtypes for 13 ribosides. Nine compounds displayed significant activity at the ARs, and several of these represented atypical agonist scaffolds. The discovered ligands also provided insights into receptor activation and revealed unknown interactions of endogenous and clinical compounds with the ARs. The results demonstrate that virtual compound databases provide access to bioactive matter from regions of chemical space that are sparsely populated in commercial libraries, an approach transferrable to numerous drug targets.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf