Ändra sökning
Avgränsa sökresultatet
1 - 3 av 3
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Liu, Rujuan
    et al.
    Ström, Anna-Lena
    University of Kentucky, USA.
    Zhai, Jianjun
    Gal, Jozsef
    Bao, Shilai
    Gong, Weimin
    Zhu, Haining
    Enzymatically inactive adenylate kinase 4 interacts with mitochondrial ADP/ATP translocase2009Ingår i: International Journal of Biochemistry and Cell Biology, ISSN 1357-2725, E-ISSN 1878-5875, Vol. 41, nr 6, s. 1371-1380Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Adenylate kinase 4 (AK4) is a unique member with no enzymatic activity in vitro in the adenylate kinase (AK) family although it shares high sequence homology with other AKs. It remains unclear what physiological function AK4 might play or why it is enzymatically inactive. In this study, we showed increased AK4 protein levels in cultured cells exposed to hypoxia and in an animal model of the neurodegenerative disease amyotrophic lateral sclerosis. We also showed that short hairpin RNA (shRNA)-mediated knockdown of AK4 in HEK293 cells with high levels of endogenous AK4 resulted in reduced cell proliferation and increased cell death. Furthermore, we found that AK4 over-expression in the neuronal cell line SH-SY5Y with low endogenous levels of AK4 protected cells from H(2)O(2) induced cell death. Proteomic studies revealed that the mitochondrial ADP/ATP translocases (ANTs) interacted with AK4 and higher amount of ANT was co-precipitated with AK4 when cells were exposed to H(2)O(2) treatment. In addition, structural analysis revealed that, while AK4 retains the capability of binding nucleotides, AK4 has a glutamine residue instead of a key arginine residue in the active site well conserved in other AKs. Mutation of the glutamine residue to arginine (Q159R) restored the adenylate kinase activity with GTP as substrate. Collectively, these results indicate that the enzymatically inactive AK4 is a stress responsive protein critical to cell survival and proliferation. It is likely that the interaction with the mitochondrial inner membrane protein ANT is important for AK4 to exert the protective benefits to cells under stress.

  • 2.
    Sánchez-Hernández, Noemí
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för molekylär biovetenskap, Wenner-Grens institut.
    Prieto-Sanchez, Silvia
    Moreno-Castro, Cristina
    Pablo Munoz-Cobo, Juan
    El Yousfi, Younes
    Boyero-Corral, Sofia
    Sune-Pou, Marc
    Hernandez-Munain, Cristina
    Suñé, Carlos
    Targeting proteins to RNA transcription and processing sites within the nucleus2017Ingår i: International Journal of Biochemistry and Cell Biology, ISSN 1357-2725, E-ISSN 1878-5875, Vol. 91, s. 194-202Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Studies of the spatial organization of the highly compartmentalized eukaryotic nucleus and dynamics of transcription and RNA processing within it are fundamental for fully understanding how gene expression is regulated in the cell. Although some progress has been made in deciphering the functional consequences of this complex network of interacting molecules in the context of nuclear organization, how proteins and RNA move in the nucleus and how the transcription and RNA processing machineries find their targets are important questions that remain largely unexplored. Here, we review major hallmarks and novel insights regarding the movement of RNA and proteins in the context of nuclear organization as well as the mechanisms by which the proteins involved in RNA processing localize to specific nuclear compartments.

  • 3.
    Wikstöm, Jakob
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Wenner-Grens institut.
    Twig, Gilad
    Shirihai, Orian S.
    What can mitochondrial heterogeneity tell us about mitochondrial dynamics and autophagy?2009Ingår i: International Journal of Biochemistry and Cell Biology, ISSN 1357-2725, E-ISSN 1878-5875, Vol. 41, nr 10, s. 1914-1927Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    A growing body of evidence shows that mitochondria are heterogeneous in terms of structure and function. Increased heterogeneity has been demonstrated in a number of disease models including ischemia-reperfusion and nutrient-induced beta cell dysfunction and diabetes. Subcellular location and proximity to other organelles, as well as uneven distribution of respiratory components have been considered as the main contributors to the basal level of heterogeneity. Recent studies point to mitochondrial dynamics and autophagy as major regulators of mitochondrial heterogeneity. While mitochondrial fusion mixes the content of the mitochondrial network, fission dissects the mitochondrial network and generates depolarized segments. These depolarized mitochondria are segregated from the networking population, forming a pre-autophagic pool contributing to heterogeneity. The capacity of a network to yield a depolarized daughter mitochondrion by a fission event is fundamental to the generation of heterogeneity. Several studies and data presented here provide a potential explanation, suggesting that protein and membranous structures are unevenly distributed within the individual mitochondrion and that inner membrane components do not mix during a fusion event to the same extent as the matrix components do. In conclusion, mitochondrial subcellular heterogeneity is a reflection of the mitochondrial lifecycle that involves frequent fusion events in which components maybe unevenly mixed and followed by fission events generating disparate daughter mitochondria, some of which may fuse again, others will remain solitary and join a pre-autophagic pool. 

1 - 3 av 3
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf