Endre søk
Begrens søket
1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Atoufi, Zhaleh
    et al.
    Kamrava, Seyed Kamran
    Davachi, Seyed Mohammad
    Hassanabadi, Majid
    Saeedi Garakani, Sadaf
    University of Medical Sciences (IUMS), Iran; University of Tehran, Iran.
    Alizadeh, Rafieh
    Farhadi, Mohammad
    Tavakol, Shima
    Bagher, Zohreh
    Hashemi Motlagh, Ghodratollah
    Injectable PNIPAM/Hyaluronic acid hydrogels containing multipurpose modified particles for cartilage tissue engineering: Synthesis, characterization, drug release and cell culture study2019Inngår i: International Journal of Biological Macromolecules, ISSN 0141-8130, E-ISSN 1879-0003, Vol. 139, s. 1168-1181Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Novel injectable thermosensitive PNIPAM/hyaluronic acid hydrogels containing various amounts of chitosan-g-acrylic acid coated PLGA (ACH-PLGA) micro/nanoparticles were synthesized and designed to facilitate the regeneration of cartilage tissue. The ACH-PLGA particles were used in the hydrogels to play a triple role: first, the allyl groups on the chitosan-g-acrylic acid shell act as crosslinkers for PNIPAM and improved the mechanical properties of the hydrogel to mimic the natural cartilage tissue. Second, PLGA core acts as a carrier for the controlled release of chondrogenic small molecule melatonin. Third, they could reduce the syneresis of the thermosensitive hydrogel during gelation. The optimum hydrogel with the minimum syneresis and the maximum compression modulus was chosen for further evaluations. This hydrogel showed a great integration with the natural cartilage during the adhesion test, and also, presented an interconnected porous structure in scanning electron microscopy images. Eventually, to evaluate the cytotoxicity, mesenchymal stem cells were encapsulated inside the hydrogel. MTT and Live/Dead assay showed that the hydrogel improved the cells growth and proliferation as compared to the tissue culture polystyrene. Histological study of glycosaminoglycan (GAG) showed that melatonin treatment has the ability to increase the GAG synthesis. Overall, due to the improved mechanical properties, low syneresis, the ability of sustained drug release and also high bioactivity, this injectable hydrogel is a promising material system for cartilage tissue engineering.

  • 2. Mousavi Nejad, Zohre
    et al.
    Torabinejad, Bahman
    Davachi, Seyed Mohammad
    Zamanian, Ali
    Saeedi Garakani, Sadaf
    University of Tehran, Iran.
    Najafi, Farhood
    Nezafati, Nader
    Synthesis, physicochemical, rheological and in-vitro characterization of double-crosslinked hyaluronic acid hydrogels containing dexamethasone and PLGA/dexamethasone nanoparticles as hybrid systems for specific medical applications2019Inngår i: International Journal of Biological Macromolecules, ISSN 0141-8130, E-ISSN 1879-0003, Vol. 126, s. 193-208Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Injectable hydrogels and biodegradable nanoparticles are using in tissue engineering applications and drug delivery systems. To improve physiochemical properties of biomaterials and to develop their applications, hybrid systems consist of hydrogels, and biodegradable nanoparticles were synthesized. In this study, hybrid systems based on double crosslinked hyaluronic acid and PLGA/Dexamethasone sodium phosphate (PLGADEX) nanoparticles are designed and synthesized in several steps. At the first step, poly(l-lactide-co-glycolide) (PLGA) in a ratio of LLA:GA = 85:15 mol% was synthesized via ring-opening polymerization. Then, PLGADEX nanoparticles were synthesized in different ratios using the partially modified emulsification-diffusion method and fully characterized, and desirable nanoparticle was selected (PLGADEX20). At the second step, a double cross-linked hyaluronic acid (XHA) was prepared by mixing various ratios of amino-hyaluronic acid and aldehyde-hyaluronic acid in the presence of genipin. Finally, by mixing of various ratios of PLGADEX20 and Dexamethasone sodium phosphate (DEX) with different ratios of XHA, hybrid systems were prepared. Based on the characterization of hybrid samples and the release studies, hydrogels containing nanoparticles showed a controlled drug release, while the best sample with 3% of optimized nanoparticle was chosen. According to physiochemical and biological properties, these hybrid systems can be good candidates for anti-adhesion barriers, wound dressings, and novel drug delivery systems.

  • 3.
    Niegowski, Damian
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Hedrén, Marie
    Nordlund, Pär
    Eshaghi, Said
    A simple strategy towards membrane protein purification and crystallization2006Inngår i: International Journal of Biological Macromolecules, ISSN 0141-8130, E-ISSN 1879-0003, Vol. 39, nr 1-3, s. 83-87Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A simple and cost-efficient detergent screening strategy has been developed, by which a number of detergents were screened for their efficiency to extract and purify the recombinant ammonium/ammonia channel, AmtB, from Escherichia coli, hence selecting the most efficient detergents prior to large-scale protein production and crystallization. The method requires 1 ml cell culture and is a combination of immobilized metal ion affinity chromatography and filtration steps in 96-well plates. Large-scale protein purification and subsequent crystallization screening resulted in AmtB crystals diffracting to low resolution with three detergents. This strategy allows exclusion of detergents with the lowest probability in yielding protein crystals and selecting those with higher probability, hence, reducing the number of detergents to be screened prior to large-scale membrane protein purification and perhaps also crystallization.

1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf