Change search
Refine search result
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Boucher, Justin M.
    et al.
    Cousins, Ian T.
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Scheringer, Martin
    Hungerbühler, Konrad
    Wang, Zhanyun
    Toward a Comprehensive Global Emission Inventory of C-4-C-10 Perfluoroalkanesulfonic Acids (PFSAs) and Related Precursors: Focus on the Life Cycle of C-6- and C-10-Based Products2019In: Environmental Science and Technology Letters, E-ISSN 2328-8930, Vol. 6, no 1, p. 1-7Article in journal (Refereed)
    Abstract [en]

    A first global emission inventory of C-4-C-10 perfluoroalkanesulfonic acids (PFSAs) released during the life cycle of perfluorohexanesulfonyl fluoride (PHxSF)- and perfluorodecanesulfonyl fluoride (PDSF)-based products is presented. This study complements previous research on emissions of PFSAs that focused largely on the life cycle of perfluorooctanesulfonyl fluoride (POSF) and its derivatives. It reviews and integrates existing information about the life cycle of PHxSF, PDSF, and their derivatives; the limited data available in the public domain point to potentially significant global production, uses, and releases of these substances. Between 1958 and 2015, ranges of total emissions of perfluorohexanesulfonic acid (PFHxS) and perfluorodecanesulfonic acid (PFDS) are estimated to be 120-1022 and 38-378 metric tons, respectively. With the new emission estimates as inputs in a global multimedia environmental fate model (CliMoChem), the model-derived environmental concentrations well capture the reported field concentrations, providing strong support for the plausibility of the developed emission inventories. The results highlight the ongoing environmental exposure to these substances and the need for more detailed data in the public domain about their production levels and uses.

  • 2.
    Gewert, Berit
    et al.
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Plassmann, Merle
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Sandblom, Oskar
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    MacLeod, Matthew
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Identification of Chain Scission Products Released to Water by Plastic Exposed to Ultraviolet Light2018In: Environmental Science and Technology Letters, E-ISSN 2328-8930, Vol. 5, no 5, p. 272-276Article in journal (Refereed)
    Abstract [en]

    Buoyant plastic in the marine environment is exposed to sunlight, oxidants, and physical stress, which may lead to degradation of the plastic polymer and the release of compounds that are potentially hazardous. We report the development of a laboratory protocol that simulates the exposure of plastic floating in the marine environment to ultraviolet light (UV) and nontarget analysis to identify degradation products of plastic polymers in water. Plastic pellets [polyethylene, polypropylene, polystyrene, and poly(ethylene terephthalate)] suspended in water were exposed to a UV light source for 5 days. Organic chemicals in the water were concentrated by solid phase extraction and then analyzed by ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry using a nontarget approach with a C18 LC column coupled to a Q Exactive Orbitrap HF mass spectrometer. We designed a data analysis scheme to identify chemicals that are likely chain scission products from degradation of the plastic polymers. For all four polymers, we found homologous series of low-molecular weight polymer fragments with oxidized end groups. In total, we tentatively identified 22 degradation products, which are mainly dicarboxylic acids.

  • 3. Kademoglou, Katerina
    et al.
    Giovanoulis, Georgios
    Palm-Cousins, Anna
    Padilla-Sanchez, Juan Antonio
    Magnér, Jörgen
    de Wit, Cynthia A.
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Collin, Christopher D.
    In Vitro Inhalation Bioaccessibility of Phthalate Esters and Alternative Plasticizers Present in Indoor Dust Using Artificial Lung Fluids2018In: Environmental Science and Technology Letters, E-ISSN 2328-8930, Vol. 5, no 6, p. 329-334Article in journal (Refereed)
    Abstract [en]

    Phthalate esters (PEs) are used as plasticizers in consumer products. Their low migration stability has resulted in the classification of PEs as major indoor contaminants. Because of PE's ubiquity and adverse health effects on humans and especially children, non-phthalate alternative plasticizers have been introduced into the market. This is the first study of in vitro inhalation bioaccessibility of PEs (e.g., DMP, DEP, and DEHP) and alternative plasticizers (e.g., DEHT and DINCH) via indoor dust to assess inhalation as an alternative route of exposure. Two artificial lung fluids were used, mimicking two distinctively different pulmonary environments: (1) artificial lysosomal fluid (ALF, pH 4.5) representing the intracellular acidic lung fluid inhaled particle contact after phagocytosis by alveolar macrophages and (2) Gamble's solution (pH 7.4), the extracellular healthy fluid for deep lung deposition of dust. DMP and DEP were highly bioaccessible (>75%), whereas highly hydrophobic compounds such as DEHP, DINCH, and DEHT were <5% bioaccessible via both artificial lung fluids. Our findings show that the inhalation bioaccessibility of PEs is primarily governed by their hydrophobicity and water solubility. Further research is necessary to develop unified and biologically relevant inhalation bioaccessibility tests, employed as part of human risk assessment of volatile and semivolatile organic pollutants.

  • 4.
    Plassmann, Merle M.
    et al.
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Fischer, Stellan
    Benskin, Jonathan P.
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Nontarget Time Trend Screening in Human Blood2018In: Environmental Science and Technology Letters, E-ISSN 2328-8930, Vol. 5, no 6, p. 335-340Article in journal (Refereed)
    Abstract [en]

    Human biomonitoring (HBM) programs monitor exposure to a limited number of prioritized chemicals resulting in some important substances being overlooked. Nontarget analysis shows promise for capturing novel substances, yet the large quantity of data produced by these methods remains challenging to interrogate. Here, we apply a prioritization strategy for temporal nontarget HBM data, which shortlists features with increasing time trends, possibly representing substances which are bioaccumulating or to which humans are increasingly exposed. Human whole blood sampled in Germany between 1983 and 2015 was extracted using a modified QuEChERS method and analyzed by UHPLC-Oribtrap-mass spectrometry. Following alignment, peak detection, grouping, and gap filling, up to 14,460 features were obtained. This number was reduced to <= 716 using time trend ratios and Spearman's rank correlation coefficients to identify features which increased over the 32-year time series. Increasing features were investigated further using the KemI market list database (which prioritizes based on human hazard and/or exposure potential) as well as data-dependent product ion scans, followed by MetFrag and mzCloud database searches. Finally, seven prioritized substances, including one pharmaceutical, two pesticides, and four performance chemicals, were confirmed using standards, demonstrating the potential of time trend screening as a prioritization strategy for nontarget HBM data.

  • 5.
    Schultes, Lara
    et al.
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Peaslee, Graham F.
    Brockman, John D.
    Majumdar, Ashabari
    McGuinness, Sean R.
    Wilkinson, John T.
    Sandblom, Oskar
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Ngwenyama, Ruth A.
    Benskin, Jonathan P.
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Total Fluorine Measurements in Food Packaging: How Do Current Methods Perform?2019In: Environmental Science and Technology Letters, E-ISSN 2328-8930, Vol. 6, no 2, p. 73-78Article in journal (Refereed)
    Abstract [en]

    Per- and polyfluoroalkyl substances (PFASs) represent a class of more than 4000 compounds. Their large number and structural diversity pose a considerable challenge to analytical chemists. Measurement of total fluorine in environmental samples and consumer products is therefore critical for rapidly screening for PFASs and for assessing the fraction of unexplained fluorine(i.e., fluorine mass balance). Here we compare three emerging analytical techniques for total fluorine determination: combustion ion chromatography (CIC), particle-induced gamma-ray emission spectroscopy (PIGE), and instrumental neutron activation analysis (INAA). Application of each method to a certified reference material (CRM), spiked filters, and representative food packaging samples revealed good accuracy and precision. INAA and PIGE had the advantage of being nondestructive, while CIC displayed the lowest detection limits. Inconsistencies between the methods arose due to the high aluminum content in the CRM, which precluded its analysis by INAA, and sample heterogeneity (i.e., coating on the surface of the material), which resulted in higher values from the surface measurement technique PIGE compared to the values from the bulk volume techniques INAA and CIC. Comparing CIC-based extractable organic fluorine to target PFAS measurements of food packaging samples by liquid chromatography-tandem mass spectrometry revealed large amounts of unidentified organic fluorine not captured by compound-specific analysis.

  • 6.
    Yuan, Bo
    et al.
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Benskin, Jonathan P.
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Chen, Chang-Er L.
    Bergman, Åke
    Determination of Chlorinated Paraffins by Bromide-Anion Attachment Atmospheric-Pressure Chemical Ionization Mass Spectrometry2018In: Environmental Science and Technology Letters, E-ISSN 2328-8930, Vol. 5, no 6, p. 348-353Article in journal (Refereed)
    Abstract [en]

    A novel method for the quantitative determination of chlorinated paraffins (CPs) was developed using bromide-anion attachment atmospheric-pressure chemical ionization mass spectrometry (APCI-MS). Bromoform was used to enhance ionization of CPs. Near exclusive formation of stable bromide adduct ions ([M + BR](-)) enabled accurate detection of individual CP congener groups (CnClm) with only a moderate-resolution quadrupole time-of-flight mass spectrometer. Furthermore, the method was free from interference commonly observed with chloride-anion attachment methods (e.g., decomposition ions [M + Cl - HCl](-)) that require deconvolution. Together with a CnClm-response-factor algorithm for quantifying short-chain CPs and a CnClm-pattern-reconstruction algorithm for quantifying medium- and long-chain CPs, method applicability was demonstrated on biota and sediment samples. These data were generated significantly faster and with improved selectivity and sensitivity versus those of conventional measurements by chloride-anion attachment APCI-MS.

  • 7.
    Yuan, Bo
    et al.
    Stockholm University, Faculty of Science, Department of Environmental Science.
    Hui Tay, Joo
    Stockholm University, Faculty of Science, Department of Environmental Science.
    Papadopoulou, Eleni
    Småstuen Haug, Line
    Padilla-Sánchez, Juan Antonio
    de Wit, Cynthia A.
    Stockholm University, Faculty of Science, Department of Environmental Science.
    Complex Mixtures of Chlorinated Paraffins Found in Hand Wipes of a Norwegian Cohort2020In: Environmental Science and Technology Letters, E-ISSN 2328-8930, Vol. 7, no 3, p. 198-205Article in journal (Refereed)
    Abstract [en]

    Up to 18000 ng of total chlorinated paraffins (CPs) was found in hand wipes of individual adult participants in a Norwegian cohort study (n = 60), with a geometric mean (SD) value of 870 (2700) ng. The CPs covered a wide range of alkane chain lengths from C-7 to C-48 with variable chlorine substitution. Complex mixtures of very-short-chain (vSCCPs, C-<10), short-chain (SCCPs, C10-13), medium-chain (MCCPs, C14-17), and long-chain (LCCPs, C->17) CPs were found, contributing on average 0.3%, 20%, 58%, and 22%, respectively, of the total CPs. Significant positive correlations were found between CP levels and factors related to the indoor environment and product use, including living in a house/apartment built before the ban of SCCPs, having a sofa, the number of TVs in the home, and owning a car, which mirrors CP usage as flame retardants and/or plasticizers in consumer products. Compared to previous studies of other organic contaminants in hand wipe samples from the same cohort, CPs were the most abundant flame retardants. This is the first report of CPs in hand wipes, and dermal exposure based on these data suggested that hand contact could be an important human exposure pathway for LCCPs.

  • 8. Åkerblom, Staffan
    et al.
    Meili, Markus
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Bishop, Kevin
    Organic Matter in Rain: An Overlooked Influence on Mercury Deposition2015In: Environmental Science and Technology Letters, E-ISSN 2328-8930, Vol. 2, no 4, p. 128-132Article in journal (Refereed)
    Abstract [en]

    The importance of Hg emissions for deposition will be scrutinized in the future as new legislation to control emissions of Hg to the atmosphere comes into effect. We show that mercury (Hg) concentrations in rainfall are closely linked to organic matter (OM) with consistent Hg/TOC ratios over large spatial scales decreasing from that in an open field (OF, 1.5 mu g g(-1)) to that in throughfall (TF, 0.9 mu g g(-1)). The leaf area index was positively correlated with both TF [Hg] and total organic carbon ([TOC]), but not the Hg/TOC ratio. This study shows that the progression in the Hg/TOC ratio through catchments starts in precipitation with Hg/TOCbulk dep > Hg/TOCsoil (water) > Hg/TOCstreamwater These findings raise an intriguing question about the extent to which it is not just atmospheric [Hg] but also OM that influences [Hg] in precipitation. This question should be resolved to improve the ability to discern the importance of changing global Hg emissions for deposition of Hg at specific sites.

1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf