Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abdelfattah, Ahmed
    et al.
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences. Graz University of Technology, Austria.
    Whitehead, Susan R.
    Macarisin, Dumitru
    Liu, Jia
    Burchard, Erik
    Freilich, Shiri
    Dardick, Christopher
    Droby, Samir
    Wisniewski, Michael
    Effect of Washing, Waxing and Low-Temperature Storage on the Postharvest Microbiome of Apple2020In: Microorganisms, E-ISSN 2076-2607, Vol. 8, no 6, article id 944Article in journal (Refereed)
    Abstract [en]

    There is growing recognition of the role that the microbiome plays in the health and physiology of many plant species. However, considerably less research has been conducted on the postharvest microbiome of produce and the impact that postharvest processing may have on its composition. Here, amplicon sequencing was used to study the effect of washing, waxing, and low-temperature storage at 2 degrees C for six months on the bacterial and fungal communities of apple calyx-end, stem-end, and peel tissues. The results of the present work reveal that tissue-type is the main factor defining fungal and bacterial diversity and community composition on apple fruit. Both postharvest treatments and low temperature storage had a strong impact on the fungal and bacterial diversity and community composition of these tissue types. Distinct spatial and temporal changes in the composition and diversity of the microbiota were observed in response to various postharvest management practices. The greatest impact was attributed to sanitation practices with major differences among unwashed, washed and washed-waxed apples. The magnitude of the differences, however, was tissue-specific, with the greatest impact occurring on peel tissues. Temporally, the largest shift occurred during the first two months of low-temperature storage, although fungi were more affected by storage time than bacteria. In general, fungi and bacteria were impacted equally by sanitation practices, especially the epiphytic microflora of peel tissues. This research provides a foundation for understanding the impact of postharvest management practices on the microbiome of apple and its potential subsequent effects on postharvest disease management and food safety.

  • 2. Centler, Florian
    et al.
    Guennigmann, Sarah
    Fetzer, Ingo
    Stockholm University, Faculty of Science, Stockholm Resilience Centre.
    Wendeberg, Annelie
    Keystone Species and Modularity in Microbial Hydrocarbon Degradation Uncovered by Network Analysis and Association Rule Mining2020In: Microorganisms, E-ISSN 2076-2607, Vol. 8, no 2, article id 190Article in journal (Refereed)
    Abstract [en]

    Natural microbial communities in soils are highly diverse, allowing for rich networks of microbial interactions to unfold. Identifying key players in these networks is difficult as the distribution of microbial diversity at the local scale is typically non-uniform, and is the outcome of both abiotic environmental factors and microbial interactions. Here, using spatially resolved microbial presence-absence data along an aquifer transect contaminated with hydrocarbons, we combined co-occurrence analysis with association rule mining to identify potential keystone species along the hydrocarbon degradation process. Derived co-occurrence networks were found to be of a modular structure, with modules being associated with specific spatial locations and metabolic activity along the contamination plume. Association rules identify species that never occur without another, hence identifying potential one-sided cross-feeding relationships. We find that hub nodes in the rule network appearing in many rules as targets qualify as potential keystone species that catalyze critical transformation steps and are able to interact with varying partners. By contrasting analysis based on data derived from bulk samples and individual soil particles, we highlight the importance of spatial sample resolution. While individual inferred interactions are hypothetical in nature, requiring experimental verification, the observed global network patterns provide a unique first glimpse at the complex interaction networks at work in the microbial world.

  • 3.
    Koonjan, Shazeeda
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Cooper, Callum J.
    Nilsson, Anders S.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Complete Genome Sequence of vB_EcoP_SU7, a Podoviridae Coliphage with the Rare C3 Morphotype2021In: Microorganisms, E-ISSN 2076-2607, Vol. 9, no 8, article id 1576Article in journal (Refereed)
    Abstract [en]

    Enterotoxigenic Escherichia coli (ETEC) strains are an important cause of bacterial diarrheal illness in humans and animals. Infections arising from ETEC could potentially be treated through the use of bacteriophage (phage) therapy, as phages encode for enzymes capable of bacterial cell lysis. vB_EcoP_SU7 was isolated from the Käppala wastewater treatment plant in Stockholm, Sweden, and propagated on an ETEC strain exhibiting the O:139 serovar. Transmission electron microscopy confirmed that vB_EcoP_SU7 belongs to the Podoviridae family and has the rare C3 morphotype of an elongated head. Bioinformatic analyses showed that the genome was 76,626 base pairs long and contained 35 genes with predicted functions. A total of 81 open reading frames encoding proteins with hypothetical function and two encoding proteins of no significant similarity were also found. A putative tRNA gene, which may aid in vB_EcoP_SU7's translation, was also identified. Phylogenetic analyses showed that compared to other Podoviridae, vB_EcoP_SU7 is a rare Kuravirus and is closely related to E. coli phages with the uncommon C3 morphotype, such as ECBP2, EK010, vB_EcoP_EcoN5, and vB_EcoP_SU10. Phage vB_EcoP_SU7 has a narrow host range, infecting 11 out of the 137 E. coli strains tested, a latency period of 30 min, a burst size of 12 PFU/cell, and an adsorption rate of 8.78 x 10(-9) mL/min five minutes post infection. With a limited host range and poor infection kinetics, it is unlikely that SU7 can be a standalone phage used for therapeutic purposes; rather, it must be used in combination with other phages for broad-spectrum therapeutic success.

  • 4. Piombo, Edoardo
    et al.
    Abdelfattah, Ahmed
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences. University of Technology, Graz, Austria.
    Danino, Yaara
    Salim, Shoshana
    Feygenberg, Oleg
    Spadaro, Davide
    Wisniewski, Michael
    Droby, Samir
    Characterizing the Fungal Microbiome in Date (Phoenix dactylifera) Fruit Pulp and Peel from Early Development to Harvest2020In: Microorganisms, E-ISSN 2076-2607, Vol. 8, no 5, article id 641Article in journal (Refereed)
    Abstract [en]

    Date palm (Phoenix dactylifera) is considered to be a highly important food crop in several African and Middle Eastern countries due to its nutritional value and health-promoting properties. Microbial contamination of dates has been of concern to consumers, but very few works have analyzed in detail the microbial load of the different parts of date fruit. In the present work, we characterized the fungal communities of date fruit using a metagenomic approach, analyzing the data for differences between microbial populations residing in the pulp and peel of Medjool dates at the different stages of fruit development. The results revealed that Penicillium, Cladosporium, Aspergillus, and Alternaria were the most abundant genera in both parts of the fruit, however, the distribution of taxa among the time points and tissue types (peel vs. pulp) was very diverse. Penicillium was more abundant in the pulp at the green developmental stage (Kimri), while Aspergillus was more frequent in the peel at the brown developmental stage (Tamer). The highest abundance of Alternaria was detected at the earliest sampled stage of fruit development (Hababauk stage). Cladosporium had a high level of abundance in peel tissues at the Hababauk and yellow (Khalal) stages. Regarding the yeast community, the abundance of Candida remained stable up until the Khalal stage, but exhibited a dramatic increase in abundance at the Tamer stage in peel tissues, while the level of Metschnikowia, a genus containing several species with postharvest biocontrol activity, exhibited no significant differences between the two tissue types or stages of fruit development. This work constitutes a comprehensive metagenomic analysis of the fungal microbiome of date fruits, and has identified changes in the composition of the fungal microbiome in peel and pulp tissues at the different stages of fruit development. Notably, this study has also characterized the endophytic fungal microbiome present in pulp tissues of dates.

  • 5. Piombo, Edoardo
    et al.
    Abdelfattah, Ahmed
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences. Graz University of Technology, Austria.
    Droby, Samir
    Wisniewski, Michael
    Spadaro, Davide
    Schena, Leonardo
    Metagenomics Approaches for the Detection and Surveillance of Emerging and Recurrent Plant Pathogens2021In: Microorganisms, E-ISSN 2076-2607, Vol. 9, no 1, article id 188Article, review/survey (Refereed)
    Abstract [en]

    Globalization has a dramatic effect on the trade and movement of seeds, fruits and vegetables, with a corresponding increase in economic losses caused by the introduction of transboundary plant pathogens. Current diagnostic techniques provide a useful and precise tool to enact surveillance protocols regarding specific organisms, but this approach is strictly targeted, while metabarcoding and shotgun metagenomics could be used to simultaneously detect all known pathogens and potentially new ones. This review aims to present the current status of high-throughput sequencing (HTS) diagnostics of fungal and bacterial plant pathogens, discuss the challenges that need to be addressed, and provide direction for the development of methods for the detection of a restricted number of related taxa (specific surveillance) or all of the microorganisms present in a sample (general surveillance). HTS techniques, particularly metabarcoding, could be useful for the surveillance of soilborne, seedborne and airborne pathogens, as well as for identifying new pathogens and determining the origin of outbreaks. Metabarcoding and shotgun metagenomics still suffer from low precision, but this issue can be limited by carefully choosing primers and bioinformatic algorithms. Advances in bioinformatics will greatly accelerate the use of metagenomics to address critical aspects related to the detection and surveillance of plant pathogens in plant material and foodstuffs.

  • 6. Rutere, Cyrus
    et al.
    Knoop, Kirsten
    Posselt, Malte
    Stockholm University, Faculty of Science, Department of Environmental Science.
    Ho, Adrian
    Horn, Marcus A.
    Ibuprofen Degradation and Associated Bacterial Communities in Hyporheic Zone Sediments2020In: Microorganisms, E-ISSN 2076-2607, Vol. 8, no 8, article id 1245Article in journal (Refereed)
    Abstract [en]

    Ibuprofen, a non-steroidal anti-inflammatory pain reliever, is among pharmaceutical residues of environmental concern ubiquitously detected in wastewater effluents and receiving rivers. Thus, ibuprofen removal potentials and associated bacteria in the hyporheic zone sediments of an impacted river were investigated. Microbially mediated ibuprofen degradation was determined in oxic sediment microcosms amended with ibuprofen (5, 40, 200, and 400 µM), or ibuprofen and acetate, relative to an un-amended control. Ibuprofen was removed by the original sediment microbial community as well as in ibuprofen-enrichments obtained by re-feeding of ibuprofen. Here, 1-, 2-, 3-hydroxy- and carboxy-ibuprofen were the primary transformation products. Quantitative real-time PCR analysis revealed a significantly higher 16S rRNA abundance in ibuprofen-amended relative to un-amended incubations. Time-resolved microbial community dynamics evaluated by 16S rRNA gene and 16S rRNA analyses revealed many new ibuprofen responsive taxa of the Acidobacteria, Actinobacteria, Bacteroidetes, Gemmatimonadetes, Latescibacteria, and Proteobacteria. Two ibuprofen-degrading strains belonging to the genera Novosphingobium and Pseudomonas were isolated from the ibuprofen-enriched sediments, consuming 400 and 300 µM ibuprofen within three and eight days, respectively. The collective results indicated that the hyporheic zone sediments sustain an efficient biotic (micro-)pollutant degradation potential, and hitherto unknown microbial diversity associated with such (micro)pollutant removal.

  • 7. Spreckels, Johanne E.
    et al.
    Wejryd, Erik
    Marchini, Giovanna
    Jonsson, Baldvin
    de Vries, Dylan H.
    Jenmalm, Maria C.
    Landberg, Eva
    Sverremark-Ekström, Eva
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Marti, Magali
    Abrahamsson, Thomas
    Lactobacillus reuteri Colonisation of Extremely Preterm Infants in a Randomised Placebo-Controlled Trial2021In: Microorganisms, E-ISSN 2076-2607, Vol. 9, no 5, article id 915Article in journal (Refereed)
    Abstract [en]

    Lactobacillus reuteri DSM 17938 supplementation reduces morbidities in very low birth weight infants (<1500 g), while the effect on extremely low birth weight infants (ELBW, <1000 g) is still questioned. In a randomised placebo-controlled trial (ClinicalTrials.gov ID NCT01603368), head growth, but not feeding tolerance or morbidities, improved in L. reuteri-supplemented preterm ELBW infants. Here, we investigate colonisation with the probiotic strain in preterm ELBW infants who received L. reuteri DSM 17938 or a placebo from birth to postmenstrual week (PMW) 36. Quantitative PCR was used on 582 faecal DNA samples collected from 132 ELBW infants at one, two, three, and four weeks, at PMW 36, and at two years of age. Human milk oligosaccharides were measured in 31 milk samples at two weeks postpartum. At least 86% of the ELBW infants in the L. reuteri group were colonised with the probiotic strain during the neonatal period, despite low gestational age, high antibiotic pressure, and independent of infant feeding mode. Higher concentrations of lacto-N-tetraose, sialyl-lacto-N-neotetraose c, and 6 '-sialyllactose in mother's milk weakly correlated with lower L. reuteri abundance. Within the L. reuteri group, higher L. reuteri abundance weakly correlated with a shorter time to reach full enteral feeding. Female sex and L. reuteri colonisation improved head growth from birth to four weeks of age. In conclusion, L. reuteri DSM 17938 supplementation leads to successful colonisation in ELBW infants.

  • 8. Stone, Virginia M.
    et al.
    Ringqvist, Emma E.
    Larsson, Par G.
    Domsgen, Erna
    Holmlund, Ulrika
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. Karolinska University Hospital, Sweden.
    Sverremark-Ekström, Eva
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Flodström-Tullberg, Malin
    Inhibition of Type III Interferon Expression in Intestinal Epithelial Cells-A Strategy Used by Coxsackie B Virus to Evade the Host's Innate Immune Response at the Primary Site of Infection?2021In: Microorganisms, E-ISSN 2076-2607, Vol. 9, no 1, article id 105Article in journal (Refereed)
    Abstract [en]

    Increasing evidence highlights the importance of the antiviral activities of the type III interferons (IFN lambda s; IL-28A, IL-28B, IL29, and IFN lambda 4) in the intestine. However, many viruses have developed strategies to counteract these defense mechanisms by preventing the production of IFNs. Here we use infection models, a clinical virus isolate, and several molecular biology techniques to demonstrate that both type I and III IFNs induce an antiviral state and attenuate Coxsackievirus group B (CVB) replication in human intestinal epithelial cells (IECs). While treatment of IECs with a viral mimic (poly (I:C)) induced a robust expression of both type I and III IFNs, no such up-regulation was observed after CVB infection. The blunted IFN response was paralleled by a reduction in the abundance of proteins involved in the induction of interferon gene transcription, including TIR-domain-containing adapter-inducing interferon-beta (TRIF), mitochondrial antiviral-signaling protein (MAVS), and the global protein translation initiator eukaryotic translation initiation factor 4G (eIF4G). Taken together, this study highlights a potent anti-Coxsackieviral effect of both type I and III IFNs in cells located at the primary site of infection. Furthermore, we show for the first time that the production of type I and III IFNs in IECs is blocked by CVBs. These findings suggest that CVBs evade the host immune response in order to successfully infect the intestine.

  • 9. Varsadiya, Milan
    et al.
    Urich, Tim
    Hugelius, Gustaf
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Bárta, Jiří
    Fungi in Permafrost-Affected Soils of the Canadian Arctic: Horizon- and Site-Specific Keystone Taxa Revealed by Co-Occurrence Network2021In: Microorganisms, E-ISSN 2076-2607, Vol. 9, no 9, article id 1943Article in journal (Refereed)
    Abstract [en]

    Permafrost-affected soil stores a significant amount of organic carbon. Identifying the biological constraints of soil organic matter transformation, e.g., the interaction of major soil microbial soil organic matter decomposers, is crucial for predicting carbon vulnerability in permafrost-affected soil. Fungi are important players in the decomposition of soil organic matter and often interact in various mutualistic relationships during this process. We investigated four different soil horizon types (including specific horizons of cryoturbated soil organic matter (cryoOM)) across different types of permafrost-affected soil in the Western Canadian Arctic, determined the composition of fungal communities by sequencing (Illumina MPS) the fungal internal transcribed spacer region, assigned fungal lifestyles, and by determining the co-occurrence of fungal network properties, identified the topological role of keystone fungal taxa. Compositional analysis revealed a significantly higher relative proportion of the litter saprotroph Lachnum and root-associated saprotroph Phialocephala in the topsoil and the ectomycorrhizal close-contact exploring Russula in cryoOM, whereas Sites 1 and 2 had a significantly higher mean proportion of plant pathogens and lichenized trophic modes. Co-occurrence network analysis revealed the lowest modularity and average path length, and highest clustering coefficient in cryoOM, which suggested a lower network resistance to environmental perturbation. Zi-Pi plot analysis suggested that some keystone taxa changed their role from generalist to specialist, depending on the specific horizon concerned, Cladophialophora in topsoil, saprotrophic Mortierella in cryoOM, and Penicillium in subsoil were classified as generalists for the respective horizons but specialists elsewhere. The litter saprotrophic taxon Cadophora finlandica played a role as a generalist in Site 1 and specialist in the rest of the sites. Overall, these results suggested that fungal communities within cryoOM were more susceptible to environmental change and some taxa may shift their role, which may lead to changes in carbon storage in permafrost-affected soil.

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf