Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Bolmgren, K.
    et al.
    Vanhoenacker, Didrik
    Stockholm University, Faculty of Science, Department of Botany. Swedish Natural History Museum.
    Miller-Rushing, A. J.
    One man, 73 years, and 25 species. Evaluating phenological responses using a lifelong study of first flowering dates2013In: International journal of biometeorology, ISSN 0020-7128, E-ISSN 1432-1254, Vol. 57, no 3, p. 367-375Article in journal (Refereed)
    Abstract [en]

    Phenological shifts linked to global warming reflect the ability of organisms to track changing climatic conditions. However, different organisms track global warming differently and there is an increasing interest in the link between phenological traits and plant abundance and distribution. Long-term data sets are often used to estimate phenological traits to climate change, but so far little has been done to evaluate the quality of these estimates. Here, we use a 73-year long data series of first flowering dates for 25 species from north-temperate Sweden to evaluate (i) correlations between first flowering dates and year for different time periods and (ii) linear regression models between first flowering date and mean monthly temperatures in preceding months. Furthermore, we evaluate the potential of this kind of data to estimate the phenological temperature sensitivities (i.e. number of days phenological change per degree temperature change, beta(60)) in such models. The sign of the correlations between first flowering dates and year were highly inconsistent among different time periods, highlighting that estimates of phenological change are sensitive to the specific time period used. The first flowering dates of all species were correlated with temperature, but with large differences in both the strength of the response and the period(s) of the year that were most strongly associated with phenological variation. Finally, our analyses indicated that legacy data sets need to be relatively long-term to be useful for estimating phenological temperature sensitivities (beta(60)) for inter-specific comparisons. In 10-year long observation series only one out of 24 species reached a parts per thousand yen80 % probability of estimating temperature sensitivity (beta(60)) within a +/- 1 range, and 17 out of 24 species reached a parts per thousand yen80 % probability when observation series were 20 years or shorter. The standard error for beta(60) ranged from 0.6 to 2.0 for 10-year long observation series, and 19 out of 24 species reached SE < 1 after 15 years. In general, late flowering species will require longer time series than early flowering species.

  • 2. He, Minhui
    et al.
    Yang, Bao
    Shishov, Vladimir
    Rossi, Sergio
    Bräuning, Achim
    Charpentier Ljungqvist, Fredrik
    Stockholm University, Faculty of Humanities, Department of History.
    Grießinger, Jussi
    Projections for the changes in growing season length of tree-ring formation on the Tibetan Plateau based on CMIP5 model simulations2018In: International journal of biometeorology, ISSN 0020-7128, E-ISSN 1432-1254, Vol. 62, no 4, p. 631-641Article in journal (Refereed)
    Abstract [en]

    The response of the growing season to the ongoing global warming has gained considerable attention. In particular, how and to which extent the growing season will change during this century is essential information for the Tibetan Plateau, where the observed warming trend has exceeded the global mean. In this study, the 1960-2014 mean length of the tree-ring growing season (LOS) on the Tibetan Plateau was derived from results of the Vaganov-Shashkin oscilloscope tree growth model, based on 20 composite study sites and more than 3000 trees. Bootstrap and partial correlations were used to evaluate the most significant climate factors determining the LOS in the study region. Based on this relationship, we predicted the future variability of the LOS under three emission scenarios (Representative Concentration Pathways (RCP) 2.6, 6.0, and 8.5, representing different concentrations of greenhouse gasses) derived from 17 Earth system models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). The averaged LOS on the Tibetan Plateau is 103 days during the period 1960-2014, and April-September minimum temperature is the strongest factor controlling the LOS. We detected a general increase in the LOS over the twenty-first century under all the three selected scenarios. By the middle of this century, LOS will extend by about 3 to 4 weeks under the RCPs 2.6 and 6.0, and by more than 1 month (37 days) under the RCP 8.5, relative to the baseline period 1960-2014. From the middle to the end of the twenty-first century, LOS will further extend by about 3 to 4 weeks under the RCPs 6.0 and 8.5, respectively. Under the RCP 2.6 scenario, however, the extension reaches a plateau at around 2050 and about 2 weeks LOS extension. In total, we found an average rate of 2.1, 3.6, and 5.0 days decade(-1) for the LOS extension from 2015 to 2100 under the RCPs 2.6, 6.0, and 8.5, respectively. However, such estimated LOS extensions may be offset by other ecological factors that were not included into the growth model. The estimated lengthening of the growing season could substantially affect carbon sequestration and forest productivity on the Tibetan Plateau.

  • 3.
    Karlsson, Bengt
    Stockholm University, Faculty of Science, Department of Zoology, Animal Ecology.
    Extended season for northern butterflies2014In: International journal of biometeorology, ISSN 0020-7128, E-ISSN 1432-1254, Vol. 58, no 5, p. 691-701Article in journal (Refereed)
    Abstract [en]

    Butterflies are like all insects temperature sensitive and a changing climate with higher temperatures might affect their phenology. Several studies have found support for earlier flight dates among the investigated species. A comparative study including 66 species of Swedish butterflies in Sweden was undertaken and the result confirms that most butterfly species will now fly earlier during the season. This is especially evident for butterflies overwintering as adults or as pupae. However, the advancement in phenology is correlated with flight date and some late season species show no advancement or have even postponed their flight dates and are now flying later in the season. The result also showed that latitude had a strong effect on the adult flight date, and the majority of the investigated species showed significantly later flights towards the north. Species flying early in the season were more affected by temperature than species flying later in the season and species overwintering in their late stages (as pupae or adults) were more influenced by temperature compared to species overwintering in their early stages (as larvae or eggs). In essence, a climate with earlier springs and longer growing seasons seems not to change the appearance patterns in a one way direction. We now see butterflies on the wings both earlier and later in the season and some consequences of these understudied and complex patterns are discussed. So far, studies have concentrated mostly on early season butterfly – plant interactions but also late season studies are needed for a better understanding of long term population consequences.

  • 4.
    Lessard-Therrien, Malie
    et al.
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences. McGill University, Canada.
    Davies, T. Jonathan
    Bolmgren, Kjell
    A phylogenetic comparative study of flowering phenology along an elevational gradient in the Canadian subarctic2014In: International journal of biometeorology, ISSN 0020-7128, E-ISSN 1432-1254, Vol. 58, no 4, p. 455-462Article in journal (Refereed)
    Abstract [en]

    Climate change is affecting high-altitude and high-latitude communities in significant ways. In the short growing season of subarctic habitats, it is essential that the timing and duration of phenological phases match favorable environmental conditions. We explored the time of the first appearance of flowers (first flowering day, FFD) and flowering duration across subarctic species composing different communities, from boreal forest to tundra, along an elevational gradient (600-800 m). The study was conducted on Mount Irony (856 m), North-East Canada (54A degrees 90'N, 67A degrees 16'W) during summer 2012. First, we quantified phylogenetic signal in FFD at different spatial scales. Second, we used phylogenetic comparative methods to explore the relationship between FFD, flowering duration, and elevation. We found that the phylogenetic signal for FFD was stronger at finer spatial scales and at lower elevations, indicating that closely related species tend to flower at similar times when the local environment is less harsh. The comparatively weaker phylogenetic signal at higher elevation may be indicative of convergent evolution for FFD. Flowering duration was correlated significantly with mean FFD, with later-flowering species having a longer flowering duration, but only at the lowest elevation. Our results indicate significant evolutionary conservatism in responses to phenological cues, but high phenotypic plasticity in flowering times. We suggest that phylogenetic relationships should be considered in the search for predictions and drivers of flowering time in comparative analyses, because species cannot be considered as statistically independent. Further, phenological drivers should be measured at spatial scales such that variation in flowering matches variation in environment.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf