Change search
Refine search result
1234567 1 - 50 of 825
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Abazajian, Kevork
    et al.
    Addison, Graeme E.
    Adshead, Peter
    Ahmed, Zeeshan
    Akerib, Daniel
    Ali, Aamir
    Allen, Steven W.
    Alonso, David
    Alvarez, Marcelo
    Amin, Mustafa A.
    Anderson, Adam
    Arnold, Kam S.
    Ashton, Peter
    Baccigalupi, Carlo
    Bard, Debbie
    Barkats, Denis
    Barron, Darcy
    Barry, Peter S.
    Bartlett, James G.
    Thakur, Ritoban Basu
    Battaglia, Nicholas
    Bean, Rachel
    Bebek, Chris
    Bender, Amy N.
    Benson, Bradford A.
    Bianchini, Federico
    Bischoff, Colin A.
    Bleem, Lindsey
    Bock, James J.
    Bocquet, Sebastian
    Boddy, Kimberly K.
    Bond, J. Richard
    Borrill, Julian
    Bouchet, Francois R.
    Brinckmann, Thejs
    Brown, Michael L.
    Bryan, Sean
    Buza, Victor
    Byrum, Karen
    Caimapo, Carlos Hervias
    Calabrese, Erminia
    Calafut, Victoria
    Caldwell, Robert
    Carlstrom, John E.
    Carron, Julien
    Cecil, Thomas
    Challinor, Anthony
    Chang, Clarence L.
    Chinone, Yuji
    Cho, Hsiao-Mei Sherry
    Cooray, Asantha
    Coulton, Will
    Crawford, Thomas M.
    Crites, Abigail
    Cukierman, Ari
    Cyr-Racine, Francis-Yan
    de Haan, Tijmen
    Delabrouille, Jacques
    Devlin, Mark
    Di Valentino, Eleonora
    Dierickx, Marion
    Dobbs, Matt
    Duff, Shannon
    Dvorkin, Cora
    Eimer, Joseph
    Elleflot, Tucker
    Errard, Josquin
    Essinger-Hileman, Thomas
    Fabbian, Giulio
    Feng, Chang
    Ferraro, Simone
    Filippini, Jeffrey P.
    Flauger, Raphael
    Flaugher, Brenna
    Fraisse, Aurelien A.
    Frolov, Andrei
    Galitzki, Nicholas
    Gallardo, Patricio A.
    Galli, Silvia
    Ganga, Ken
    Gerbino, Martina
    Gluscevic, Vera
    Goeckner-Wald, Neil
    Green, Daniel
    Grin, Daniel
    Grohs, Evan
    Gualtieri, Riccardo
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Faculty of Science, Department of Physics.
    Gullett, Ian
    Gupta, Nikhel
    Habib, Salman
    Halpern, Mark
    Halverson, Nils W.
    Hanany, Shaul
    Harrington, Kathleen
    Hasegawa, Masaya
    Hasselfield, Matthew
    Hazumi, Masashi
    Heitmann, Katrin
    Henderson, Shawn
    Hensley, Brandon
    Hill, Charles
    Hill, J. Colin
    Hlozek, Renee
    Ho, Shuay-Pwu Patty
    Hoang, Thuong
    Holder, Gil
    Holzapfel, William
    Hood, John
    Hubmayr, Johannes
    Huffenberger, Kevin M.
    Hui, Howard
    Irwin, Kent
    Jeong, Oliver
    Johnson, Bradley R.
    Jones, William C.
    Kang, Jae Hwan
    Karkare, Kirit S.
    Katayama, Nobuhiko
    Keskitalo, Reijo
    Kisner, Theodore
    Knox, Lloyd
    Koopman, Brian J.
    Kosowsky, Arthur
    Kovac, John
    Kovetz, Ely D.
    Kuhlmann, Steve
    Kuo, Chao-lin
    Kusaka, Akito
    Lahteenmaki, Anne
    Lawrence, Charles R.
    Lee, Adrian T.
    Lewis, Antony
    Li, Dale
    Linder, Eric
    Loverde, Marilena
    Lowitz, Amy
    Lubin, Phil
    Madhavacheril, Mathew S.
    Mantz, Adam
    Marques, Gabriela
    Matsuda, Frederick
    Mauskopf, Philip
    McCarrick, Heather
    McMahon, Jeffrey
    Meerburg, P. Daniel
    Melin, Jean-Baptiste
    Menanteau, Felipe
    Meyers, Joel
    Millea, Marius
    Mohr, Joseph
    Moncelsi, Lorenzo
    Monzani, Maria
    Mroczkowski, Tony
    Mukherjee, Suvodip
    Nagy, Johanna
    Namikawa, Toshiya
    Nati, Federico
    Natoli, Tyler
    Newburgh, Laura
    Niemack, Michael D.
    Nishino, Haruki
    Nord, Brian
    Novosad, Valentine
    O'Brient, Roger
    Padin, Stephen
    Palladino, Steven
    Partridge, Bruce
    Petravick, Don
    Pierpaoli, Elena
    Pogosian, Levon
    Prabhu, Karthik
    Pryke, Clement
    Puglisi, Giuseppe
    Racine, Benjamin
    Rahlin, Alexandra
    Rao, Mayuri Sathyanarayana
    Raveri, Marco
    Reichardt, Christian L.
    Remazeilles, Mathieu
    Rocha, Graca
    Roe, Natalie A.
    Roy, Anirban
    Ruhl, John E.
    Salatino, Maria
    Saliwanchik, Benjamin
    Schaan, Emmanuel
    Schillaci, Alessandro
    Schmitt, Benjamin
    Schmittfull, Marcel M.
    Scott, Douglas
    Sehgal, Neelima
    Shandera, Sarah
    Sherwin, Blake D.
    Shirokoff, Erik
    Simon, Sara M.
    Slosar, Anze
    Spergel, David
    St Germaine, Tyler
    Staggs, Suzanne T.
    Stark, Antony
    Starkman, Glenn D.
    Stompor, Radek
    Stoughton, Chris
    Suzuki, Aritoki
    Tajima, Osamu
    Teply, Grant P.
    Thompson, Keith
    Thorne, Ben
    Timbie, Peter
    Tomasi, Maurizio
    Tristram, Matthieu
    Tucker, Gregory
    Umilta, Caterina
    van Engelen, Alexander
    Vavagiakis, Eve M.
    Vieira, Joaquin D.
    Vieregg, Abigail G.
    Wagoner, Kasey
    Wallisch, Benjamin
    Wang, Gensheng
    Watson, Scott
    Westbrook, Ben
    Whitehorn, Nathan
    Wollack, Edward J.
    Wu, W. L. Kimmy
    Xu, Zhilei
    Yang, H. Y. Eric
    Yasini, Siavash
    Yefremenko, Volodymyr G.
    Yoon, Ki Won
    Young, Edward
    Yu, Cyndia
    Zonca, Andrea
    CMB-S4: Forecasting Constraints on Primordial Gravitational Waves2022In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 926, no 1, article id 54Article in journal (Refereed)
    Abstract [en]

    CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5σ, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL.

  • 2. Abbasi, R.
    et al.
    Ahrens, Maryon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    IceCube Search for Neutrinos Coincident with Gravitational Wave Events from LIGO/Virgo Run O32023In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 944, no 1, article id 80Article in journal (Refereed)
    Abstract [en]

    Using data from the IceCube Neutrino Observatory, we searched for high-energy neutrino emission from the gravitational-wave events detected by the advanced LIGO and Virgo detectors during their third observing run. We did a low-latency follow-up on the public candidate events released during the detectors' third observing run and an archival search on the 80 confident events reported in the GWTC-2.1 and GWTC-3 catalogs. An extended search was also conducted for neutrino emission on longer timescales from neutron star containing mergers. Follow-up searches on the candidate optical counterpart of GW190521 were also conducted. We used two methods; an unbinned maximum likelihood analysis and a Bayesian analysis using astrophysical priors, both of which were previously used to search for high-energy neutrino emission from gravitational-wave events. No significant neutrino emission was observed by any analysis, and upper limits were placed on the time-integrated neutrino flux as well as the total isotropic equivalent energy emitted in high-energy neutrinos.

  • 3. Abbasi, R.
    et al.
    Ahrens, Maryon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    Search for Astrophysical Neutrinos from 1FLE Blazars with IceCube2022In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 938, no 1, article id 38Article in journal (Refereed)
    Abstract [en]

    The majority of astrophysical neutrinos have undetermined origins. The IceCube Neutrino Observatory has observed astrophysical neutrinos but has not yet identified their sources. Blazars are promising source candidates, but previous searches for neutrino emission from populations of blazars detected in ≳GeV gamma rays have not observed any significant neutrino excess. Recent findings in multimessenger astronomy indicate that high-energy photons, coproduced with high-energy neutrinos, are likely to be absorbed and reemitted at lower energies. Thus, lower-energy photons may be better indicators of TeV–PeV neutrino production. This paper presents the first time-integrated stacking search for astrophysical neutrino emission from MeV-detected blazars in the first Fermi Large Area Telescope low energy (1FLE) catalog using ten years of IceCube muon–neutrino data. The results of this analysis are found to be consistent with a background-only hypothesis. Assuming an E−2 neutrino spectrum and proportionality between the blazars MeV gamma-ray fluxes and TeV–PeV neutrino flux, the upper limit on the 1FLE blazar energy-scaled neutrino flux is determined to be 1.64 × 10−12 TeV cm−2 s−1 at 90% confidence level. This upper limit is approximately 1% of IceCube's diffuse muon–neutrino flux measurement.

  • 4. Abbasi, R.
    et al.
    Ahrens, Maryon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    Searches for Neutrinos from Gamma-Ray Bursts Using the IceCube Neutrino Observatory2022In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 939, no 2, article id 116Article in journal (Refereed)
    Abstract [en]

    Gamma-ray bursts (GRBs) are considered as promising sources of ultra-high-energy cosmic rays (UHECRs) due to their large power output. Observing a neutrino flux from GRBs would offer evidence that GRBs are hadronic accelerators of UHECRs. Previous IceCube analyses, which primarily focused on neutrinos arriving in temporal coincidence with the prompt gamma-rays, found no significant neutrino excess. The four analyses presented in this paper extend the region of interest to 14 days before and after the prompt phase, including generic extended time windows and targeted precursor searches. GRBs were selected between 2011 May and 2018 October to align with the data set of candidate muon-neutrino events observed by IceCube. No evidence of correlation between neutrino events and GRBs was found in these analyses. Limits are set to constrain the contribution of the cosmic GRB population to the diffuse astrophysical neutrino flux observed by IceCube. Prompt neutrino emission from GRBs is limited to ≲1% of the observed diffuse neutrino flux, and emission on timescales up to 104 s is constrained to 24% of the total diffuse flux.

    Download full text (pdf)
    fulltext
  • 5. Abbasi, R.
    et al.
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hidvegi, Attila
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kovacevich, M.
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    A Search for Coincident Neutrino Emission from Fast Radio Bursts with Seven Years of IceCube Cascade Events2023In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 946, no 2, article id 80Article in journal (Refereed)
    Abstract [en]

    This paper presents the results of a search for neutrinos that are spatially and temporally coincident with 22 unique, nonrepeating fast radio bursts (FRBs) and one repeating FRB (FRB 121102). FRBs are a rapidly growing class of Galactic and extragalactic astrophysical objects that are considered a potential source of high-energy neutrinos. The IceCube Neutrino Observatory's previous FRB analyses have solely used track events. This search utilizes seven years of IceCube cascade events which are statistically independent of track events. This event selection allows probing of a longer range of extended timescales due to the low background rate. No statistically significant clustering of neutrinos was observed. Upper limits are set on the time-integrated neutrino flux emitted by FRBs for a range of extended time windows.

  • 6. Abbasi, R.
    et al.
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hidvegi, Attila
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Nisa, M. U.
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zimmerman, M.
    Search for Extended Sources of Neutrino Emission in the Galactic Plane with IceCube2023In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 956, no 1, article id 20Article in journal (Refereed)
    Abstract [en]

    The Galactic plane, harboring a diffuse neutrino flux, is a particularly interesting target in which to study potential cosmic-ray acceleration sites. Recent gamma-ray observations by HAWC and LHAASO have presented evidence for multiple Galactic sources that exhibit a spatially extended morphology and have energy spectra continuing beyond 100 TeV. A fraction of such emission could be produced by interactions of accelerated hadronic cosmic rays, resulting in an excess of high-energy neutrinos clustered near these regions. Using 10 years of IceCube data comprising track-like events that originate from charged-current muon neutrino interactions, we perform a dedicated search for extended neutrino sources in the Galaxy. We find no evidence for time-integrated neutrino emission from the potential extended sources studied in the Galactic plane. The most significant location, at 2.6σ post-trials, is a sized region coincident with the unidentified TeV gamma-ray source 3HWC J1951+266. We provide strong constraints on hadronic emission from several regions in the galaxy.

  • 7. Abbasi, R.
    et al.
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hidvegi, Attila
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    A Search for IceCube Sub-TeV Neutrinos Correlated with Gravitational-wave Events Detected By LIGO/Virgo2023In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 959, no 2, article id 96Article in journal (Refereed)
    Abstract [en]

    The LIGO/Virgo collaboration published the catalogs GWTC-1, GWTC-2.1, and GWTC-3 containing candidate gravitational-wave (GW) events detected during its runs O1, O2, and O3. These GW events can be possible sites of neutrino emission. In this paper, we present a search for neutrino counterparts of 90 GW candidates using IceCube DeepCore, the low-energy infill array of the IceCube Neutrino Observatory. The search is conducted using an unbinned maximum likelihood method, within a time window of 1000 s, and uses the spatial and timing information from the GW events. The neutrinos used for the search have energies ranging from a few GeV to several tens of TeV. We do not find any significant emission of neutrinos, and place upper limits on the flux and the isotropic-equivalent energy emitted in low-energy neutrinos. We also conduct a binomial test to search for source populations potentially contributing to neutrino emission. We report a nondetection of a significant neutrino-source population with this test.

  • 8. Abbasi, R.
    et al.
    Deoskar, Kunal
    Stockholm Univ, Oskar Klein Ctr, Stockholm, Sweden.
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hidvegi, Attila
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    Constraints on Populations of Neutrino Sources from Searches in the Directions of IceCube Neutrino Alerts2023In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 951, no 1, article id 45Article in journal (Refereed)
    Abstract [en]

    Beginning in 2016, the IceCube Neutrino Observatory has sent out alerts in real time containing the information of high-energy (E & GSIM; 100 TeV) neutrino candidate events with moderate to high (& GSIM;30%) probability of astrophysical origin. In this work, we use a recent catalog of such alert events, which, in addition to events announced in real time, includes events that were identified retroactively and covers the time period of 2011-2020. We also search for additional, lower-energy neutrinos from the arrival directions of these IceCube alerts. We show how performing such an analysis can constrain the contribution of rare populations of cosmic neutrino sources to the diffuse astrophysical neutrino flux. After searching for neutrino emission coincident with these alert events on various timescales, we find no significant evidence of either minute-scale or day-scale transient neutrino emission or of steady neutrino emission in the direction of these alert events. This study also shows how numerous a population of neutrino sources has to be to account for the complete astrophysical neutrino flux. Assuming that sources have the same luminosity, an E (-2.5) neutrino spectrum, and number densities that follow star formation rates, the population of sources has to be more numerous than 7 x 10(-9) Mpc(-3). This number changes to 3 x 10(-7) Mpc(-3) if number densities instead have no cosmic evolution.

  • 9. Abbasi, R.
    et al.
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hidvegi, Attila
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    Search for Correlations of High-energy Neutrinos Detected in IceCube with Radio-bright AGN and Gamma-Ray Emission from Blazars2023In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 954, no 1, article id 75Article in journal (Refereed)
    Abstract [en]

    The IceCube Neutrino Observatory sends realtime neutrino alerts with a high probability of being astrophysical in origin. We present a new method to correlate these events and possible candidate sources using 2089 blazars from the Fermi-LAT 4LAC-DR2 catalog and with 3413 active galactic nuclei (AGNs) from the Radio Fundamental Catalog. No statistically significant neutrino emission was found in any of the catalog searches. The result suggests that a small fraction, <1%, of the studied AGNs emit neutrinos that pass the alert criteria, and is compatible with prior evidence for neutrino emission presented by IceCube and other authors from sources such as TXS 0506 + 056 and PKS 1502 + 106. We also present cross-checks to other analyses that claim a significant correlation using similar data samples.

  • 10. Abbasi, R.
    et al.
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hidvegi, Attila
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    Search for Galactic Core-collapse Supernovae in a Decade of Data Taken with the IceCube Neutrino Observatory2024In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 961, no 1, article id 84Article in journal (Refereed)
    Abstract [en]

    The IceCube Neutrino Observatory has been continuously taking data to search for s long neutrino bursts since 2007. Even if a Galactic core-collapse supernova is optically obscured or collapses to a black hole instead of exploding, it will be detectable via the MeV neutrino burst emitted during the collapse. We discuss a search for such events covering the time between 2008 April 17 and 2019 December 31. Considering the average data taking and analysis uptime of 91.7% after all selection cuts, this is equivalent to 10.735 yr of continuous data taking. In order to test the most conservative neutrino production scenario, the selection cuts were optimized for a model based on an 8.8 solar mass progenitor collapsing to an O–Ne–Mg core. Conservative assumptions on the effects of neutrino oscillations in the exploding star were made. The final selection cut was set to ensure that the probability to detect such a supernova within the Milky Way exceeds 99%. No such neutrino burst was found in the data after performing a blind analysis. Hence, a 90% C.L. upper limit on the rate of core-collapse supernovae out to distances of ≈25 kpc was determined to be 0.23 yr−1. For the more distant Magellanic Clouds, only high neutrino luminosity supernovae will be detectable by IceCube, unless external information on the burst time is available. We determined a model-independent limit by parameterizing the dependence on the neutrino luminosity and the energy spectrum.

  • 11. Abbasi, R.
    et al.
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hidvegi, Attila
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    Search for sub-TeV Neutrino Emission from Novae with IceCube-DeepCore2023In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 953, no 2, article id 160Article in journal (Refereed)
    Abstract [en]

    The understanding of novae, the thermonuclear eruptions on the surfaces of white dwarf stars in binaries, has recently undergone a major paradigm shift. Though the bolometric luminosity of novae was long thought to arise directly from photons supplied by the thermonuclear runaway, recent gigaelectronvolt (GeV) gamma-ray observations have supported the notion that a significant portion of the luminosity could come from radiative shocks. More recently, observations of novae have lent evidence that these shocks are acceleration sites for hadrons for at least some types of novae. In this scenario, a flux of neutrinos may accompany the observed gamma rays. As the gamma rays from most novae have only been observed up to a few GeV, novae have previously not been considered as targets for neutrino telescopes, which are most sensitive at and above teraelectronvolt (TeV) energies. Here, we present the first search for neutrinos from novae with energies between a few GeV and 10 TeV using IceCube-DeepCore, a densely instrumented region of the IceCube Neutrino Observatory with a reduced energy threshold. We search both for a correlation between gamma-ray and neutrino emission as well as between optical and neutrino emission from novae. We find no evidence for neutrino emission from the novae considered in this analysis and set upper limits for all gamma-ray detected novae.

  • 12. Abdalla, H.
    et al.
    Aharonian, F.
    Benkhali, F. Ait
    Anguner, E. O.
    Arakawa, M.
    Arcaro, C.
    Armand, C.
    Arrieta, M.
    Backes, M.
    Barnard, M.
    Becherini, Y.
    Tjus, J. Becker
    Berge, D.
    Bernhard, S.
    Bernloehr, K.
    Blackwell, R.
    Bottcher, M.
    Boisson, C.
    Bolmont, J.
    Bonnefoy, S.
    Bordas, P.
    Bregeon, J.
    Brun, F.
    Brun, P.
    Bryan, M.
    Buechele, M.
    Bulik, T.
    Bylund, T.
    Capasso, M.
    Caroff, S.
    Carosi, A.
    Cerruti, M.
    Chakraborty, N.
    Chandra, S.
    Chaves, R. C. G.
    Chen, A.
    Colafrancesco, S.
    Condon, B.
    Davids, I. D.
    Deil, C.
    Devin, J.
    deWilt, P.
    Dirson, L.
    Djannati-Atai, A.
    Dmytriiev, A.
    Donath, A.
    Doroshenko, V
    Drury, L. O'C
    Dyks, J.
    Egberts, K.
    Emery, G.
    Ernenwein, J-P
    Eschbach, S.
    Fegan, S.
    Fiasson, A.
    Fontaine, G.
    Funk, S.
    Fuessling, M.
    Gabici, S.
    Gallant, Y. A.
    Gate, F.
    Giavitto, G.
    Glawion, D.
    Glicenstein, J. F.
    Gottschall, D.
    Grondin, M-H
    Hahn, J.
    Haupt, M.
    Heinzelmann, G.
    Henri, G.
    Hermann, G.
    Hinton, J. A.
    Hofmann, W.
    Hoischen, C.
    Holch, T. L.
    Holler, M.
    Horns, D.
    Huber, D.
    Iwasaki, H.
    Jacholkowska, A.
    Jamrozy, M.
    Jankowsky, D.
    Jankowsky, F.
    Jouvin, L.
    Jung-Richardt, I
    Kastendieck, M. A.
    Katarzynski, K.
    Katsuragawa, M.
    Katz, U.
    Kerszberg, D.
    Khangulyan, D.
    Khelifi, B.
    King, J.
    Klepser, S.
    Kluzniak, W.
    Komin, Nu
    Kosack, K.
    Krakau, S.
    Kraus, M.
    Kruger, P. P.
    Lamanna, G.
    Lau, J.
    Lefaucheur, J.
    Lemiere, A.
    Lemoine-Goumard, M.
    Lenain, J-P
    Leser, E.
    Lohse, T.
    Lorentz, M.
    Lopez-Coto, R.
    Lypova, I
    Malyshev, D.
    Marandon, V
    Marcowith, A.
    Mariaud, C.
    Marti-Devesa, G.
    Marx, R.
    Maurin, G.
    Meintjes, P. J.
    Mitchell, A. M. W.
    Moderski, R.
    Mohamed, M.
    Mohrmann, L.
    Moulin, E.
    Murach, T.
    Nakashima, S.
    de Naurois, M.
    Ndiyavala, H.
    Niederwanger, F.
    Niemiec, J.
    Oakes, L.
    O'Brien, P.
    Odaka, H.
    Ohm, S.
    Ostrowski, M.
    Oya, I
    Padovani, M.
    Panter, M.
    Parsons, R. D.
    Perennes, C.
    Petrucci, P-O
    Peyaud, B.
    Piel, Q.
    Pita, S.
    Poireau, V
    Noel, A. Priyana
    Prokhorov, D.
    Prokoph, H.
    Puehlhofer, G.
    Punch, M.
    Quirrenbach, A.
    Raab, S.
    Rauth, R.
    Reimer, A.
    Reimer, O.
    Renaud, M.
    Rieger, F.
    Rinchiuso, L.
    Romoli, C.
    Rowell, G.
    Rudak, B.
    Ruiz-Velasco, E.
    Sahakian, V
    Saito, S.
    Sanchez, D. A.
    Santangelo, A.
    Sasaki, M.
    Schlickeiser, R.
    Schussler, F.
    Schulz, A.
    Schwanke, U.
    Schwemmer, S.
    Seglar-Arroyo, M.
    Senniappan, M.
    Seyffert, A. S.
    Shafi, N.
    Shilon, I
    Shiningayamwe, K.
    Simoni, R.
    Sinha, A.
    Sol, H.
    Spanier, F.
    Specovius, A.
    Spir-Jacob, M.
    Stawarz, L.
    Steenkamp, R.
    Stegmann, C.
    Steppa, C.
    Takahashi, T.
    Tavernet, J-P
    Tavernier, T.
    Taylor, A. M.
    Terrier, R.
    Tibaldo, L.
    Tiziani, D.
    Tluczykont, M.
    Trichard, C.
    Tsirou, M.
    Tsuji, N.
    Tuffs, R.
    Uchiyama, Y.
    van der Walt, D. J.
    van Eldik, C.
    van Rensburg, C.
    van Soelen, B.
    Vasileiadis, G.
    Veh, J.
    Venter, C.
    Vincent, P.
    Vink, J.
    Voisin, F.
    Voelk, H. J.
    Vuillaume, T.
    Wadiasingh, Z.
    Wagner, S. J.
    Wagner, Robert M.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    White, R.
    Wierzcholska, A.
    Yang, R.
    Zaborov, D.
    Zacharias, M.
    Zanin, R.
    Zdziarski, A. A.
    Zech, A.
    Zefi, F.
    Ziegler, A.
    Zorn, J.
    Zywucka, N.
    The 2014 TeV γ-Ray Flare of Mrk 501 Seen with H.E.S.S.: Temporal and Spectral Constraints on Lorentz Invariance Violation2019In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 870, no 2, article id 93Article in journal (Refereed)
    Abstract [en]

    The blazar Mrk 501 (z = 0.034) was observed at very-high-energy (VHE, E greater than or similar to 100 GeV) gamma-ray wavelengths during a bright flare on the night of 2014 June 23-24 (MJD 56832) with the H.E.S.S. phase-II array of Cherenkov telescopes. Data taken that night by H.E.S.S. at large zenith angle reveal an exceptional number of gamma-ray photons at multi-TeV energies, with rapid flux variability and an energy coverage extending significantly up to 20 TeV. This data set is used to constrain Lorentz invariance violation (LIV) using two independent channels: a temporal approach considers the possibility of an energy dependence in the arrival time of gamma-rays, whereas a spectral approach considers the possibility of modifications to the interaction of VHE gamma-rays with extragalactic background light (EBL) photons. The non-detection of energy-dependent time delays and the non-observation of deviations between the measured spectrum and that of a supposed power-law intrinsic spectrum with standard EBL attenuation are used independently to derive strong constraints on the energy scale of LIV (E-QG) in the subluminal scenario for linear and quadratic perturbations in the dispersion relation of photons. For the case of linear perturbations, the 95% confidence level limits obtained are E-QG,E-1 > 3.6 x 10(17) GeV using the temporal approach and E-QG,E-1 > 2.6 x 10(19) GeV using the spectral approach. For the case of quadratic perturbations, the limits obtained are E-QG,E-2 > 8.5 x 10(10) GeV using the temporal approach and E-QG,E-2 > 7.8 x 10(11) GeV using the spectral approach.

  • 13. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Allafort, A.
    Amin, M. A.
    Baldini, L.
    Barbiellini, G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Blandford, R. D.
    Bonamente, E.
    Borgland, A. W.
    Bregeon, J.
    Brigida, M.
    Buehler, R.
    Bulmash, D.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Cavazzuti, E.
    Cecchi, C.
    Charles, E.
    Cheung, C. C.
    Chiang, J.
    Chiaro, G.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). The Royal Swedish Academy of Sciences, Sweden.
    Corbet, R. H. D.
    Cutini, S.
    D'Ammando, F.
    de Angelis, A.
    de Palma, F.
    Dermer, C. D.
    Drell, P. S.
    Drlica-Wagner, A.
    Favuzzi, C.
    Finke, J.
    Focke, W. B.
    Fukazawa, Y.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Giglietto, N.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Grenier, I. A.
    Grove, J. E.
    Guiriec, S.
    Hadasch, D.
    Hayashida, M.
    Hays, E.
    Hughes, R. E.
    Inoue, Y.
    Jackson, M. S.
    Jogler, T.
    Johannesson, G.
    Johnson, A. S.
    Kamae, T.
    Knoedlseder, J.
    Kuss, M.
    Lande, J.
    Larsson, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Latronico, L.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Mazziotta, M. N.
    Mehault, J.
    Michelson, P. F.
    Mizuno, T.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nemmen, R.
    Nuss, E.
    Ohno, M.
    Ohsugi, T.
    Paneque, D.
    Perkins, J. S.
    Pesce-Rollins, M.
    Piron, F.
    Pivato, G.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Reyes, L. C.
    Ritz, S.
    Romoli, C.
    Roth, M.
    Parkinson, P. M. Saz
    Sgro, C.
    Siskind, E. J.
    Spandre, G.
    Spinelli, P.
    Takahashi, H.
    Takeuchi, Y.
    Tanaka, T.
    Thayer, J. G.
    Thayer, J. B.
    Thompson, D. J.
    Tibaldo, L.
    Tinivella, M.
    Torres, D. F.
    Tosti, G.
    Troja, E.
    Tronconi, V.
    Usher, T. L.
    Vandenbroucke, J.
    Vasileiou, V.
    Vianello, G.
    Vitale, V.
    Waite, A. P.
    Werner, M.
    Winer, B. L.
    Wood, K. S.
    GAMMA-RAY FLARING ACTIVITY FROM THE GRAVITATIONALLY LENSED BLAZAR PKS 1830-211 OBSERVED BY Fermi LAT2015In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 799, no 2, article id 143Article in journal (Refereed)
    Abstract [en]

    The Large Area Telescope ( LAT) on board the FermiGamma- ray Space Telescope routinely detects the MeV- peaked flat- spectrum radio quasar PKS 1830- 211 ( z = 2.507). Its apparent isotropic. - ray luminosity ( E > 100 MeV), averaged over 3 years of observations and peaking on 2010 October 14/ 15 at 2.9 x 1050 erg s- 1, makes it among the brightest high- redshift Fermi blazars. No published model with a single lens can account for all of the observed characteristics of this complex system. Based on radio observations, one expects time- delayed variability to follow about 25 days after a primary flare, with flux about a factor of 1.5 less. Two large. - ray flares of PKS 1830- 211 have been detected by the LAT in the considered period, and no substantial evidence for such a delayed activity was found. This allows us to place a lower limit of about 6 on the. - ray flux ratio between the two lensed images. Swift XRT observations from a dedicated Target of Opportunity program indicate a hard spectrum with no significant correlation of X- ray flux with the. - ray variability. The spectral energy distribution can be modeled with inverse Compton scattering of thermal photons from the dusty torus. The implications of the LAT data in terms of variability, the lack of evident delayed flare events, and different radio and. - ray flux ratios are discussed. Microlensing effects, absorption, size and location of the emitting regions, the complex mass distribution of the system, an energy- dependent inner structure of the source, and flux suppression by the lens galaxy for one image path may be considered as hypotheses for understanding our results.

  • 14. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Allafort, A.
    Asano, K.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Baring, M. G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Camilo, F.
    Caraveo, P. A.
    Carrigan, S.
    Casandjian, J. M.
    Cecchi, C.
    Celik, Oe
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics.
    den Hartog, P. R.
    Dermer, C. D.
    de Luca, A.
    de Palma, F.
    Dormody, M.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Ferrara, E. C.
    Focke, W. B.
    Frailis, M.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gehrels, N.
    Germani, S.
    Giglietto, N.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Gotthelf, E. V.
    Grenier, I. A.
    Grondin, M. -H
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Hanabata, Y.
    Harding, A. K.
    Hays, E.
    Hobbs, G.
    Horan, D.
    Hughes, R. E.
    Johannesson, G.
    Johnson, A. S.
    Johnson, T. J.
    Johnson, W. N.
    Johnston, S.
    Kamae, T.
    Kanai, Y.
    Kanbach, G.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Keith, M.
    Kerr, M.
    Knoedlseder, J.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lemoine-Goumard, M.
    Garde, Maja Llena
    Stockholm University, Faculty of Science, Department of Physics.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Makeev, A.
    Manchester, R. N.
    Marelli, M.
    Mazziotta, M. N.
    McEnery, J. E.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nakamori, T.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohno, M.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Razzano, M.
    Rea, N.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Rodriguez, A. Y.
    Romani, R. W.
    Roth, M.
    Ryde, F.
    Sadrozinski, H. F. -W
    Sander, A.
    Parkinson, P. M. Saz
    Sgro, C.
    Siskind, E. J.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Starck, J. -L
    Strickman, M. S.
    Suson, D. J.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Thorsett, S. E.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Uchiyama, Y.
    Usher, T. L.
    Vasileiou, V.
    Venter, C.
    Vilchez, N.
    Vitale, V.
    Waite, A. P.
    Wang, P.
    Weltevrede, P.
    Winer, B. L.
    Wood, K. S.
    Yang, Zhaoyu
    Stockholm University, Faculty of Science, Department of Physics.
    Ylinen, T.
    Ziegler, M.
    DETECTION OF THE ENERGETIC PULSAR PSR B1509-58 AND ITS PULSAR WIND NEBULA IN MSH 15-52 USING THE FERMI-LARGE AREA TELESCOPE2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 714, no 1, p. 927-936Article in journal (Refereed)
    Abstract [en]

    We report the detection of high-energy gamma-ray emission from the young and energetic pulsar PSR B1509-58 and its pulsar wind nebula (PWN) in the composite supernova remnant G320.4-1.2 (aka MSH 15-52). Using 1 yr of survey data with the Fermi-Large Area Telescope (LAT), we detected pulsations from PSR B1509-58 up to 1 GeV and extended gamma-ray emission above 1 GeV spatially coincident with the PWN. The pulsar light curve presents two peaks offset from the radio peak by phases 0.96 +/- 0.01 and 0.33 +/- 0.02. New constraining upper limits on the pulsar emission are derived below 1 GeV and confirm a severe spectral break at a few tens of MeV. The nebular spectrum in the 1-100 GeV energy range is well described by a power law with a spectral index of (1.57 +/- 0.17 +/- 0.13) and a flux above 1 GeV of (2.91 +/- 0.79 +/- 1.35) x 10(-9) cm(-2) s(-1). The first errors represent the statistical errors on the fit parameters, while the second ones are the systematic uncertainties. The LAT spectrum of the nebula connects nicely with Cherenkov observations, and indicates a spectral break between GeV and TeV energies.

  • 15. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Allafort, A.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Baring, M. G.
    Bastieri, D.
    Bellazzini, R.
    Berenji, B.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bouvier, A.
    Brandt, T. J.
    Bregeon, J.
    Brigida, M.
    Bruel, P.
    Buehler, R.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Casandjian, J. M.
    Cecchi, C.
    Chaty, S.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Cillis, A. N.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Corbel, S.
    Cutini, S.
    de Angelis, A.
    de Palma, F.
    Dermer, C. D.
    Digel, S. W.
    do Couto e Silva, E.
    Drell, P. S.
    Drlica-Wagner, A.
    Dubois, R.
    Dumora, D.
    Favuzzi, C.
    Ferrara, E. C.
    Fortin, P.
    Frailis, M.
    Fukazawa, Y.
    Fukui, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Giglietto, N.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grondin, M. -H
    Guiriec, S.
    Hadasch, D.
    Hanabata, Y.
    Harding, A. K.
    Hayashida, M.
    Hayashi, K.
    Hays, E.
    Horan, D.
    Jackson, M. S.
    Johannesson, G.
    Johnson, A. S.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kerr, M.
    Knoedlseder, J.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lee, S. -H
    Lemoine-Goumard, M.
    Longo, F.
    Loparco, F.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Makeev, A.
    Mazziotta, M. N.
    McEnery, J. E.
    Michelson, P. F.
    Mignani, R. P.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Naumann-Godo, M.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohsugi, T.
    Okumura, A.
    Orlando, E.
    Ormes, J. F.
    Paneque, D.
    Parent, D.
    Pelassa, V.
    Pesce-Rollins, M.
    Pierbattista, M.
    Piron, F.
    Pohl, M.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Razzano, M.
    Reimer, O.
    Reposeur, T.
    Ritz, S.
    Romani, R. W.
    Roth, M.
    Sadrozinski, H. F. -W
    Parkinson, P. M. Saz
    Sgro, C.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Strickman, M. S.
    Tajima, H.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thayer, J. G.
    Thayer, J. B.
    Thompson, D. J.
    Tibaldo, L.
    Tibolla, O.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Troja, E.
    Uchiyama, Y.
    Vandenbroucke, J.
    Vasileiou, V.
    Vianello, G.
    Vilchez, N.
    Vitale, V.
    Waite, A. P.
    Wang, P.
    Winer, B. L.
    Wood, K. S.
    Yamamoto, H.
    Yamazaki, R.
    Yang, Zhaoyu
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ziegler, M.
    OBSERVATIONS OF THE YOUNG SUPERNOVA REMNANT RX J1713.7-3946 WITH THE FERMI LARGE AREA TELESCOPE2011In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 734, no 1, p. 28-Article in journal (Refereed)
    Abstract [en]

    We present observations of the young supernova remnant (SNR) RX J1713.7-3946 with the Fermi Large Area Telescope (LAT). We clearly detect a source positionally coincident with the SNR. The source is extended with a best-fit extension of 0 degrees.55 +/- 0 degrees.04 matching the size of the non-thermal X-ray and TeV gamma-ray emission from the remnant. The positional coincidence and the matching extended emission allow us to identify the LAT source with SNR RX J1713.7-3946. The spectrum of the source can be described by a very hard power law with a photon index of Gamma = 1.5 +/- 0.1 that coincides in normalization with the steeper H. E. S. S.-detected gamma-ray spectrum at higher energies. The broadband gamma-ray emission is consistent with a leptonic origin as the dominant mechanism for the gamma-ray emission.

  • 16. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Allafort, A.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bouvier, A.
    Brandt, T. J.
    Bregeon, J.
    Brigida, M.
    Bruel, P.
    Buehler, R.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Carrigan, S.
    Casandjian, J. M.
    Cecchi, C.
    Celik, Oe.
    Chekhtman, A.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics.
    Dermer, C. D.
    de Palma, F.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Fukazawa, Y.
    Fukui, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gehrels, N.
    Germani, S.
    Giglietto, N.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grove, J. E.
    Guiriec, S.
    Hadasch, D.
    Hanabata, Y.
    Harding, A. K.
    Hays, E.
    Horan, D.
    Hughes, R. E.
    Johannesson, G.
    Johnson, A. S.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Knoedlseder, J.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lee, S. -H
    Lemoine-Goumard, M.
    Garde, Maja Llena
    Stockholm University, Faculty of Science, Department of Physics.
    Longo, F.
    Loparco, F.
    Lovellette, M. N.
    Lubrano, P.
    Makeev, A.
    Mazziotta, M. N.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nakamori, T.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohno, M.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Rodriguez, Y.
    Roth, M.
    Sadrozinski, H. F. -W
    Sander, A.
    Parkinson, P. M. Saz
    Sgro, C.
    Siskind, E. J.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Strickman, M. S.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Tibolla, O.
    Torres, D. F.
    Tosti, G.
    Uchiyama, Y.
    Uehara, T.
    Usher, T. L.
    Vasileiou, V.
    Vilchez, N.
    Vitale, V.
    Waite, A. P.
    Wang, P.
    Winer, B. L.
    Wood, K. S.
    Yamamoto, H.
    Yamazaki, R.
    Yang, Zhaoyu
    Stockholm University, Faculty of Science, Department of Physics.
    Ylinen, T.
    Ziegler, M.
    FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE SUPERNOVA REMNANT W28 (G6.4-0.1)2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 718, no 1, p. 348-356Article in journal (Refereed)
    Abstract [en]

    We present detailed analysis of two gamma-ray sources, 1FGL J1801.3-2322c and 1FGL J1800.5-2359c, that have been found toward the supernova remnant (SNR) W28 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. 1FGL J1801.3-2322c is found to be an extended source within the boundary of SNR W28, and to extensively overlap with the TeV gamma-ray source HESS J1801-233, which is associated with a dense molecular cloud interacting with the SNR. The gamma-ray spectrum measured with the LAT from 0.2 to 100 GeV can be described by a broken power-law function with a break at similar to 1 GeV and photon indices of 2.09 +/- 0.08 (stat) +/- 0.28 (sys) below the break and 2.74 +/- 0.06 (stat) +/- 0.09 (sys) above the break. Given the clear association between HESS J1801-233 and the shocked molecular cloud and a smoothly connected spectrum in the GeV-TeV band, we consider the origin of the gamma-ray emission in both GeV and TeV ranges to be the interaction between particles accelerated in the SNR and the molecular cloud. The decay of neutral pions produced in interactions between accelerated hadrons and dense molecular gas provides a reasonable explanation for the broadband gamma-ray spectrum. 1FGL J1800.5-2359c, located outside the southern boundary of SNR W28, cannot be resolved. An upper limit on the size of the gamma-ray emission was estimated to be similar to 16' using events above similar to 2 GeV under the assumption of a circular shape with uniform surface brightness. It appears to coincide with the TeV source HESS J1800-240B, which is considered to be associated with a dense molecular cloud that contains the ultra compact H II region W28A2 (G5.89-0.39). We found no significant gamma-ray emission in the LAT energy band at the positions of TeV sources HESS J1800-230A and HESS J1800-230C. The LAT data for HESS J1800-230A combined with the TeV data points indicate a spectral break between 10 GeV and 100 GeV.

  • 17. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Allafort, A.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bouvier, A.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Burnett, T. H.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Carrigan, S.
    Casandjian, J. M.
    Cecchi, C.
    Celik, Oe
    Chekhtman, A.
    Chung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics.
    de Angelis, A.
    de Palma, F.
    Dormody, M.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Focke, W. B.
    Fortin, P.
    Frailis, M.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gehrels, N.
    Germani, S.
    Giavitto, G.
    Giglietto, N.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grondin, M. -H
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Harding, A. K.
    Hayashida, M.
    Hays, E.
    Horan, D.
    Hughes, R. E.
    Jackson, M. S.
    Johannesson, G.
    Johnson, A. S.
    Johnson, T. J.
    Johnson, W. N.
    Johnston, S.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kerr, M.
    Knoedlseder, J.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lee, S. -H
    Lemoine-Goumard, M.
    Garde, Maja Llena
    Stockholm University, Faculty of Science, Department of Physics.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Makeev, A.
    Marelli, M.
    Mazziotta, M. N.
    McEnery, J. E.
    Meurer, C.
    Stockholm University, Faculty of Science, Department of Physics.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nakamori, T.
    Nolan, P. L.
    Norris, J. P.
    Noutsos, A.
    Nuss, E.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Pierbattista, M.
    Piron, F.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Ray, P. S.
    Rea, N.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Ritz, S.
    Rodriguez, A. Y.
    Romani, R. W.
    Roth, M.
    Ryde, F.
    Sadrozinski, H. F. -W
    Sanchez, D.
    Sander, A.
    Parkinson, P. M. Saz
    Scargle, J. D.
    Sgro, C.
    Siskind, E. J.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Strickman, M. S.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Uchiyama, Y.
    Usher, T. L.
    Van Etten, A.
    Vasileiou, V.
    Venter, C.
    Vilchez, N.
    Vitale, V.
    Waite, A. P.
    Wang, P.
    Weltevrede, P.
    Winer, B. L.
    Wood, K. S.
    Ylinen, T.
    Ziegler, M.
    FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE VELA-X PULSAR WIND NEBULA2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 713, no 1, p. 146-153Article in journal (Refereed)
    Abstract [en]

    We report on gamma-ray observations in the off-pulse window of the Vela pulsar PSR B0833-45 using 11 months of survey data from the Fermi Large Area Telescope (LAT). This pulsar is located in the 8 degrees diameter Vela supernova remnant, which contains several regions of non-thermal emission detected in the radio, X-ray, and gamma-ray bands. The gamma-ray emission detected by the LAT lies within one of these regions, the 2 degrees x 3 degrees area south of the pulsar known as Vela-X. The LAT flux is significantly spatially extended with a best-fit radius of 0.degrees 88 +/- 0.degrees 12 for an assumed radially symmetric uniform disk. The 200 MeV to 20 GeV LAT spectrum of this source is well described by a power law with a spectral index of 2.41 +/- 0.09 +/- 0.15 and integral flux above 100 MeV of (4.73 +/- 0.63 +/- 1.32) x 10(-7) cm(-2) s(-1). The first errors represent the statistical error on the fit parameters, while the second ones are the systematic uncertainties. Detailed morphological and spectral analyses give strong constraints on the energetics and magnetic field of the pulsar wind nebula system and favor a scenario with two distinct electron populations.

  • 18. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Antolini, E.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Baring, M. G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Buehler, R.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Carrigan, S.
    Casandjian, J. M.
    Cavazzuti, E.
    Cecchi, C.
    Celik, Oe.
    Chekhtman, A.
    Chen, A. W.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Colafrancesco, S.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics.
    Cutini, S.
    Dermer, C. D.
    de Palma, F.
    Digel, S. W.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Ferrara, E. C.
    Focke, W. B.
    Frailis, M.
    Fukazawa, Y.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Giebels, B.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Godfrey, G.
    Grandi, P.
    Grenier, I. A.
    Guillemot, L.
    Guiriec, S.
    Hadasch, D.
    Harding, A. K.
    Hayashida, M.
    Horan, D.
    Hughes, R. E.
    Itoh, R.
    Jackson, M. S.
    Johannesson, G.
    Johnson, A. S.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Knoedlseder, J.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Makeev, A.
    Mazziotta, M. N.
    McEnery, J. E.
    McGlynn, S.
    Meurer, C.
    Stockholm University, Faculty of Science, Department of Physics.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nestoras, I.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohsugi, T.
    Okumura, A.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Reyes, L. C.
    Rodriguez, A. Y.
    Roth, M.
    Ryde, F.
    Sadrozinski, H. F. -W
    Sambruna, R.
    Sander, A.
    Sato, R.
    Sgro, C.
    Shaw, M. S.
    Siskind, E. J.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Stawarz, L.
    Stecker, F. W.
    Strickman, M. S.
    Suson, D. J.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibolla, O.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Uchiyama, Y.
    Usher, T. L.
    Vasileiou, V.
    Vilchez, N.
    Villata, M.
    Vitale, V.
    von Kienlin, A.
    Waite, A. P.
    Wang, P.
    Winer, B. L.
    Wood, K. S.
    Yang, Zhaoyu
    Stockholm University, Faculty of Science, Department of Physics.
    Ylinen, T.
    Ziegler, M.
    Tavecchio, F.
    Sikora, M.
    Schady, P.
    Roming, P.
    Chester, M. M.
    Maraschi, L.
    SUZAKU OBSERVATIONS OF LUMINOUS QUASARS: REVEALING THE NATURE OF HIGH-ENERGY BLAZAR EMISSION IN LOW-LEVEL ACTIVITY STATES2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 716, no 1, p. 835-849Article in journal (Refereed)
    Abstract [en]

    We present the results from the Suzaku X-ray observations of five flat-spectrum radio quasars (FSRQs), namely PKS 0208-512, Q 0827+243, PKS 1127-145, PKS 1510-089, and 3C 454.3. All these sources were additionally monitored simultaneously or quasi-simultaneously by the Fermi satellite in gamma rays and the Swift UVOT in the UV and optical bands, respectively. We constructed their broadband spectra covering the frequency range from 10(14) Hz up to 10(25) Hz, and those reveal the nature of high-energy emission of luminous blazars in their low-activity states. The analyzed X-ray spectra are well fitted by a power-law model with photoelectric absorption. In the case of PKS 0208-512, PKS 1127-145, and 3C 454.3, the X-ray continuum showed indication of hardening at low energies. Moreover, when compared with the previous X-ray observations, we see a significantly increasing contribution of low-energy photons to the total X-ray fluxes when the sources are getting fainter. The same behavior can be noted in the Suzaku data alone. A likely explanation involves a variable, flat-spectrum component produced via inverse-Compton emission, plus an additional, possibly steady soft X-ray component prominent when the source gets fainter. This soft X-ray excess is represented either by a steep power-law (photon indices Gamma similar to 3-5) or a blackbody-type emission with temperatures kT similar to 0.1-0.2 keV. We model the broadband spectra of the five observed FSRQs using synchrotron self-Compton and/or external-Compton radiation models. Our modeling suggests that the difference between the low-and high-activity states in luminous blazars is due to the different total kinetic power of the jet, most likely related to varying bulk Lorentz factor of the outflow within the blazar emission zone.

  • 19. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Antolini, E.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Baughman, B. M.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bouvier, A.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Burnett, T. H.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Carrigan, S.
    Casandjian, J. M.
    Cavazzuti, E.
    Cecchi, C.
    Celik, Oe
    Charles, E.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics.
    Costamante, L.
    Cutini, S.
    Dermer, C. D.
    de Angelis, A.
    de Palma, F.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Focke, W. B.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grove, J. E.
    Guiriec, S.
    Hadasch, D.
    Hayashida, M.
    Hays, E.
    Healey, S. E.
    Horan, D.
    Hughes, R. E.
    Itoh, R.
    Johannesson, G.
    Johnson, A. S.
    Johnson, T. J.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Knoedlseder, J.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lee, S. -H
    Lemoine-Goumard, M.
    Garde, Maja Llena
    Stockholm University, Faculty of Science, Department of Physics.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lurrano, P.
    Madejski, G. M.
    Makeev, A.
    Mazziotta, M. N.
    McConville, W.
    McEnery, J. E.
    Meurer, C.
    Stockholm University, Faculty of Science, Department of Physics.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Razzan, M.
    Reimer, A.
    Reimer, O.
    Ritz, S.
    Rochester, L. S.
    Rodriguez, A. Y.
    Romani, R. W.
    Roth, M.
    Sadrozinski, H. F. -W
    Sander, A.
    Parkinson, P. M. Saz
    Scargle, J. D.
    Sgro, C.
    Shaw, M. S.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Starck, J. -L
    Strickman, M. S.
    Strong, A. W.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Uchiyama, Y.
    Usher, T. L.
    Vasileiou, V.
    Vilchez, N.
    Vitale, V.
    Waite, A. P.
    Wang, P.
    Winer, B. L.
    Wood, K. S.
    Yang, Zhaoyu
    Stockholm University, Faculty of Science, Department of Physics.
    Ylinen, T.
    Ziegler, M.
    THE FERMI-LAT HIGH-LATITUDE SURVEY: SOURCE COUNT DISTRIBUTIONS AND THE ORIGIN OF THE EXTRAGALACTIC DIFFUSE BACKGROUND2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 720, no 1, p. 435-453Article in journal (Refereed)
    Abstract [en]

    This is the first of a series of papers aimed at characterizing the populations detected in the high-latitude sky of the Fermi-LAT survey. In this work, we focus on the intrinsic spectral and flux properties of the source sample. We show that when selection effects are properly taken into account, Fermi sources are on average steeper than previously found (e.g., in the bright source list) with an average photon index of 2.40 +/- 0.02 over the entire 0.1-100 GeV energy band. We confirm that flat spectrum radio quasars have steeper spectra than BL Lacertae objects with an average index of 2.48 +/- 0.02 versus 2.18 +/- 0.02. Using several methods, we build the deepest source count distribution at GeV energies, deriving that the intrinsic source (i.e., blazar) surface density at F-100 >= 10(-9) ph cm(2) s(-1) is 0.12(-0.02)(+0.03) deg(-2). The integration of the source count distribution yields that point sources contribute 16(+/- 1.8)% (+/- 7% systematic uncertainty) of the GeV isotropic diffuse background. At the fluxes currently reached by LAT, we can rule out the hypothesis that pointlike sources (i.e., blazars) produce a larger fraction of the diffuse emission.

  • 20. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Antolini, E.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bouvier, A.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Buehler, R.
    Burnett, T. H.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Carrigan, S.
    Casandjian, J. M.
    Cavazzuti, E.
    Cecchi, C.
    Celik, Oe.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Cominsky, L. R.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics.
    Costamante, L.
    Cutini, S.
    Dermer, C. D.
    de Angelis, A.
    de Palma, F.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Focke, W. B.
    Fortin, P.
    Frailis, M.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Giebels, B.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grondin, M. -H
    Grove, J. E.
    Guiriec, S.
    Hadasch, D.
    Hayashida, M.
    Hays, E.
    Healey, S. E.
    Horan, D.
    Hughes, R. E.
    Itoh, R.
    Johannesson, G.
    Johnson, A. S.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Knoedlseder, J.
    Kuss, M.
    Lande, J.
    Larsson, Stefan
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, Department of Physics.
    Latronico, L.
    Lemoine-Goumard, M.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Makeev, A.
    Massaro, E.
    Mazziotta, M. N.
    McEnery, J. E.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Mueller, M.
    Murgia, S.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohno, M.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Ritz, S.
    Rodriguez, A. Y.
    Romani, R. W.
    Roth, M.
    Ryde, F.
    Sadrozinski, H. F. -W
    Sander, A.
    Scargle, J. D.
    Sgro, C.
    Shaw, M. S.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Starck, J. -L
    Strickman, M. S.
    Suson, D. J.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Uchiyama, Y.
    Usher, T. L.
    Vasileiou, V.
    Vilchez, N.
    Vitale, V.
    Waite, A. P.
    Wallace, E.
    Wang, P.
    Winer, B. L.
    Wood, K. S.
    Yang, Zhaoyu
    Stockholm University, Faculty of Science, Department of Physics.
    Ylinen, T.
    Ziegler, M.
    GAMMA-RAY LIGHT CURVES AND VARIABILITY OF BRIGHT FERMI-DETECTED BLAZARS2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 722, no 1, p. 520-542Article in journal (Refereed)
    Abstract [en]

    This paper presents light curves as well as the first systematic characterization of variability of the 106 objects in the high-confidence Fermi Large Area Telescope Bright AGN Sample (LBAS). Weekly light curves of this sample, obtained during the first 11 months of the Fermi survey (2008 August 4-2009 July 4), are tested for variability and their properties are quantified through autocorrelation function and structure function analysis. For the brightest sources, 3 or 4 day binned light curves are extracted in order to determine power density spectra (PDSs) and to fit the temporal structure of major flares. More than 50% of the sources are found to be variable with high significance, where high states do not exceed 1/4 of the total observation range. Variation amplitudes are larger for flat spectrum radio quasars and low/intermediate synchrotron frequency peaked BL Lac objects. Autocorrelation timescales derived from weekly light curves vary from four to a dozen of weeks. Variable sources of the sample have weekly and 3-4 day bin light curves that can be described by 1/f(alpha) PDS, and show two kinds of gamma-ray variability: (1) rather constant baseline with sporadic flaring activity characterized by flatter PDS slopes resembling flickering and red noise with occasional intermittence and (2)-measured for a few blazars showing strong activity-complex and structured temporal profiles characterized by long-term memory and steeper PDS slopes, reflecting a random walk underlying mechanism. The average slope of the PDS of the brightest 22 FSRQs and of the 6 brightest BL Lacs is 1.5 and 1.7, respectively. The study of temporal profiles of well-resolved flares observed in the 10 brightest LBAS sources shows that they generally have symmetric profiles and that their total duration vary between 10 and 100 days. Results presented here can assist in source class recognition for unidentified sources and can serve as reference for more detailed analysis of the brightest gamma-ray blazars.

  • 21. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Antolini, E.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Blandford, R. D.
    Bonamente, E.
    Borgland, A. W.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Buehler, R.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Cannon, A.
    Caraveo, P. A.
    Carrigan, S.
    Casandjian, J. M.
    Cecchi, C.
    Celik, Oe
    Charles, E.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Costamante, L.
    Cutini, S.
    Dermer, C. D.
    de Palma, F.
    Donato, D.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Escande, L.
    Favuzzi, C.
    Fegan, S. J.
    Finke, J.
    Focke, W. B.
    Fortin, P.
    Frailis, M.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Giglietto, N.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Guiriec, S.
    Hadasch, D.
    Hayashida, M.
    Hays, E.
    Hughes, R. E.
    Itoh, R.
    Johannesson, G.
    Johnson, A. S.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Knoedlseder, J.
    Kuss, M.
    Lande, J.
    Larsson, Stefan
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Latronico, L.
    Lee, S. -H
    Garde, Maja Llena
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Makeev, A.
    Mazziotta, M. N.
    McEnery, J. E.
    Mehault, J.
    Michelson, P. F.
    Mizuno, T.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nakamori, T.
    Naumann-Godo, M.
    Nishino, S.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohsugi, T.
    Okumura, A.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Ritz, S.
    Roth, M.
    Sadrozinski, H. F. -W
    Sanchez, D.
    Sander, A.
    Schinzel, F. K.
    Sgro, C.
    Siskind, E. J.
    Smith, P. D.
    Sokolovsky, K. V.
    Spandre, G.
    Spinelli, P.
    Strickman, M. S.
    Suson, D. J.
    Takahashi, H.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Uehara, T.
    Usher, T. L.
    Vandenbroucke, J.
    Vasileiou, V.
    Vilchez, N.
    Vitale, V.
    Waite, A. P.
    Wallace, E.
    Wang, P.
    Winer, B. L.
    Wood, K. S.
    SUBYang, Z.
    Ylinen, T.
    Ziegler, M.
    Berdyugin, A.
    Boettcher, M.
    Carraminana, A.
    Carrasco, L.
    de la Fuente, E.
    Diltz, C.
    Hovatta, T.
    Kadenius, V.
    Kovalev, Y. Y.
    Lahteenmaki, A.
    Lindfors, E.
    Marscher, A. P.
    Nilsson, K.
    Pereira, D.
    Reinthal, R.
    Roustazadeh, P.
    Savolainen, T.
    Sillanpaa, A.
    Takalo, L. O.
    Tornikoski, M.
    THE FIRST FERMI MULTIFREQUENCY CAMPAIGN ON BL LACERTAE: CHARACTERIZING THE LOW-ACTIVITY STATE OF THE EPONYMOUS BLAZAR2011In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 730, no 2, p. 101-Article in journal (Refereed)
    Abstract [en]

    We report on observations of BL Lacertae during the first 18 months of Fermi LAT science operations and present results from a 48 day multifrequency coordinated campaign from 2008 August 19 to 2008 October 7. The radio to gamma-ray behavior of BL Lac is unveiled during a low-activity state thanks to the coordinated observations of radio-band (Metsahovi and VLBA), near-IR/optical (Tuorla, Steward, OAGH, and MDM), and X-ray (RXTE and Swift) observatories. No variability was resolved in gamma rays during the campaign, and the brightness level was 15 times lower than the level of the 1997 EGRET outburst. Moderate and uncorrelated variability has been detected in UV and X-rays. The X-ray spectrum is found to be concave, indicating the transition region between the low- and high-energy components of the spectral energy distribution (SED). VLBA observation detected a synchrotron spectrum self-absorption turnover in the innermost part of the radio jet appearing to be elongated and inhomogeneous, and constrained the average magnetic field there to be less than 3 G. Over the following months, BL Lac appeared variable in gamma rays, showing flares (in 2009 April and 2010 January). There is no evidence for the correlation of gamma rays with the optical flux monitored from the ground in 18 months. The SED may be described by a single-zone or a two-zone synchrotron self-Compton (SSC) model, but a hybrid SSC plus external radiation Compton model seems to be preferred based on the observed variability and the fact that it provides a fit closest to equipartition.

  • 22. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Asano, K.
    Atwood, W. B.
    Axelsson, Magnus
    Stockholm University, Faculty of Science, Department of Astronomy.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Baring, M. G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Bhat, P. N.
    Bissaldi, E.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bouvier, A.
    Bregeon, J.
    Brez, A.
    Briggs, M. S.
    Brigida, M.
    Bruel, P.
    Burgess, J. M.
    Burrows, D. N.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Casandjian, J. M.
    Cecchi, C.
    Çelik, Ö.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Cominsky, L. R.
    Connaughton, V.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics.
    Cutini, S.
    d'Elia, V.
    Dermer, C. D.
    de Angelis, A.
    de Palma, F.
    Digel, S. W.
    Dingus, B. L.
    Silva, E. do Couto e.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Finke, J.
    Fishman, G.
    Focke, W. B.
    Fortin, P.
    Frailis, M.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gehrels, N.
    Germani, S.
    Giavitto, G.
    Giebels, B.
    Giglietto, N.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Goldstein, A.
    Granot, J.
    Greiner, J.
    Grenier, I. A.
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Hanabata, Y.
    Harding, A. K.
    Hayashida, M.
    Hays, E.
    Horan, D.
    Hughes, R. E.
    Jackson, M. S.
    Jóhannesson, G.
    Johnson, A. S.
    Johnson, R. P.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kerr, M.
    Kippen, R. M.
    Knödlseder, J.
    Kocevski, D.
    Komin, N.
    Kouveliotou, C.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lemoine-Goumard, M.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Makeev, A.
    Mazziotta, M. N.
    McBreen, S.
    McEnery, J. E.
    McGlynn, S.
    Meegan, C.
    Mészáros, P.
    Meurer, C.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Moretti, E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nakamori, T.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohno, M.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Paciesas, W. S.
    Paneque, D.
    Panetta, J. H.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Petrosian, V.
    Piron, F.
    Porter, T. A.
    Preece, R.
    Rainò, S.
    Rando, R.
    Rau, A.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Ritz, S.
    Rochester, L. S.
    Rodriguez, A. Y.
    Roming, P. W. A.
    Roth, M.
    Ryde, F.
    Sadrozinski, H. F.-W.
    Sanchez, D.
    Sander, A.
    Saz Parkinson, P. M.
    Scargle, J. D.
    Schalk, T. L.
    Sgrò, C.
    Siskind, E. J.
    Smith, P. D.
    Spinelli, P.
    Stamatikos, M.
    Stecker, F. W.
    Stratta, G.
    Strickman, M. S.
    Suson, D. J.
    Swenson, C. A.
    Tajima, H.
    Takahashi, H.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Uchiyama, Y.
    Uehara, T.
    Usher, T. L.
    van der Horst, A. J.
    Vasileiou, V.
    Vilchez, N.
    Vitale, V.
    von Kienlin, A.
    Waite, A. P.
    Wang, P.
    Wilson-Hodge, C.
    Winer, B. L.
    Wood, K. S.
    Yamazaki, R.
    Ylinen, T.
    Ziegler, M.
    Fermi Observations of GRB 090902B: A Distinct Spectral Component in the Prompt and Delayed Emission2009In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 706, no 1, p. L138-L144Article in journal (Refereed)
    Abstract [en]

    We report on the observation of the bright, long gamma-ray burst (GRB), GRB 090902B, by the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) instruments on-board the Fermi observatory. This was one of the brightest GRBs to have been observed by the LAT, which detected several hundred photons during the prompt phase. With a redshift of z = 1.822, this burst is among the most luminous detected by Fermi. Time-resolved spectral analysis reveals a significant power-law component in the LAT data that is distinct from the usual Band model emission that is seen in the sub-MeV energy range. This power-law component appears to extrapolate from the GeV range to the lowest energies and is more intense than the Band component, both below ~50 keV and above 100 MeV. The Band component undergoes substantial spectral evolution over the entire course of the burst, while the photon index of the power-law component remains constant for most of the prompt phase, then hardens significantly toward the end. After the prompt phase, power-law emission persists in the LAT data as late as 1 ks post-trigger, with its flux declining as t –1.5. The LAT detected a photon with the highest energy so far measured from a GRB, 33.4+2.7 –3.5 GeV. This event arrived 82 s after the GBM trigger and ~50 s after the prompt phase emission had ended in the GBM band. We discuss the implications of these results for models of GRB emission and for constraints on models of the extragalactic background light

  • 23. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwoo, W. B.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Blandford, R. D.
    Bonamente, E.
    Borgland, A. W.
    Bottacini, E.
    Bouvier, A.
    Bregeon, J.
    Brigida, M.
    Bruel, P.
    Buehler, R.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Casandjian, J. M.
    Cecchi, C.
    Charles, E.
    Chekhtman, A.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Cutini, S.
    D'Ammando, F.
    de Angelis, A.
    de Palma, F.
    Dermer, C. D.
    Digel, S. W.
    Silva, E. do Couto E
    Drell, P. S.
    Drlica-Wagner, A.
    Dubois, R.
    Favuzzi, C.
    Fegan, S. J.
    Focke, W. B.
    Fortin, P.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gehrels, N.
    Germani, S.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Godfrey, G.
    Gomez-Vargas, G. A.
    Grenier, I. A.
    Grove, J. E.
    Guiriec, S.
    Hadasch, D.
    Hays, E.
    Hill, A. B.
    Horan, D.
    Hou, X.
    Hughes, R. E.
    Iafrate, G.
    Jackson, M. S.
    Johannesson, G.
    Johnson, A. S.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Knoedlseder, J.
    Kuss, M.
    Lande, J.
    Larsson, Stefan
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Latronico, L.
    Lemoine-Goumard, M.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Mazziotta, M. N.
    McEnery, J. E.
    Mehault, J.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Naumann-Godo, M.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohno, M.
    Ohsugi, T.
    Okumura, A.
    Omodei, N.
    Orienti, M.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pesce-Rollins, M.
    Pierbattista, M.
    Piron, F.
    Pivato, G.
    Poon, H.
    Porter, T. A.
    Prokhorov, D.
    Raino, S.
    Rando, R.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Rochester, L. S.
    Roth, M.
    Sadrozinski, H. F. -W
    Sanchez, D. A.
    Sbarra, C.
    Schalk, T. L.
    Sgro, C.
    Share, G. H.
    Siskind, E. J.
    Spandre, G.
    Spinelli, P.
    Stawarz, L.
    Takahashi, H.
    Tanaka, T.
    Thayer, J. G.
    Thayer, J. B.
    Thompson, D. J.
    Tibaldo, L.
    Tinivella, M.
    Torres, D. F.
    Tosti, G.
    Troja, E.
    Uchiyama, Y.
    Usher, T. L.
    Vandenbroucke, J.
    Vasileiou, V.
    Vianello, G.
    Vitale, V.
    Waite, A. P.
    Wang, P.
    Winer, B. L.
    Wood, D. L.
    Wood, K. S.
    Yang, Zhaoyu
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zimmer, Stephan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    FERMI OBSERVATIONS OF gamma-RAY EMISSION FROM THE MOON2012In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 758, no 2, p. 140-Article in journal (Refereed)
    Abstract [en]

    We report on the detection of high-energy gamma-ray emission from the Moon during the first 24 months of observations by the Fermi Large Area Telescope (LAT). This emission comes from particle cascades produced by cosmic-ray (CR) nuclei and electrons interacting with the lunar surface. The differential spectrum of the Moon is soft and can be described as a log-parabolic function with an effective cutoff at 2-3 GeV, while the average integral flux measured with the LAT from the beginning of observations in 2008 August to the end of 2010 August is F(> 100 MeV) = (1.04 +/- 0.01 [statistical error] +/- 0.1 [systematic error]) x 10(-6) cm(-2) s(-1). This flux is about a factor 2-3 higher than that observed between 1991 and 1994 by the EGRET experiment on board the Compton Gamma Ray Observatory, F(> 100 MeV) approximate to 5 x 10(-7) cm-2 s-1, when solar activity was relatively high. The higher gamma-ray flux measured by Fermi is consistent with the deep solar minimum conditions during the first 24 months of the mission, which reduced effects of heliospheric modulation, and thus increased the heliospheric flux of Galactic CRs. A detailed comparison of the light curve with McMurdo Neutron Monitor rates suggests a correlation of the trends. The Moon and the Sun are so far the only known bright emitters of gamma-rays with fast celestial motion. Their paths across the sky are projected onto the Galactic center and high Galactic latitudes as well as onto other areas crowded with high-energy gamma-ray sources. Analysis of the lunar and solar emission may thus be important for studies of weak and transient sources near the ecliptic.

  • 24. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Axelsson, M.
    Stockholm University, Faculty of Science, Department of Astronomy.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Baring, M. G.
    Bastieri, D.
    Baughman, B. M.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Caliandro, G. A.
    Cameron, R. A.
    Camilo, F.
    Caraveo, P. A.
    Casandjian, J. M.
    Cecchi, C.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cognard, I.
    Cohen-Tanugi, J.
    Conrad, J.
    Stockholm University, Faculty of Science, Department of Physics.
    de Angelis, A.
    de Palma, F.
    Dormody, M.
    Silva, E. do Couto e.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Frailis, M.
    Freire, P. C. C.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gehrels, N.
    Germani, S.
    Giebels, B.
    Giglietto, N.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grondin, M.-H.
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Halpern, J.
    Hanabata, Y.
    Harding, A. K.
    Hayashida, M.
    Hays, E.
    Hobbs, G.
    Hughes, R. E.
    Jóhannesson, G.
    Johnson, A. S.
    Johnson, R. P.
    Johnson, T. J.
    Johnson, W. N.
    Johnston, S.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kerr, M.
    Knödlseder, J.
    Kocian, M. L.
    Kramer, M.
    Kuehn, F.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lemoine-Goumard, M.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Lyne, A. G.
    Makeev, A.
    Manchester, R. N.
    Marelli, M.
    Mazziotta, M. N.
    McEnery, J. E.
    Meurer, C.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nolan, P. L.
    Norris, J. P.
    Noutsos, A.
    Nuss, E.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pepe, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Rainò, S.
    Rando, R.
    Ransom, S. M.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Rochester, L. S.
    Rodriguez, A. Y.
    Romani, R. W.
    Roth, M.
    Ryde, F.
    Sadrozinski, H. F.-W.
    Sanchez, D.
    Sander, A.
    Saz Parkinson, P. M.
    Scargle, J. D.
    Sgrò, C.
    Siskind, E. J.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Stappers, B. W.
    Strickman, M. S.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Theureau, G.
    Thompson, D. J.
    Thorsett, S. E.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Uchiyama, Y.
    Usher, T. L.
    Van Etten, A.
    Vilchez, N.
    Vitale, V.
    Waite, A. P.
    Wang, P.
    Wang, N.
    Watters, K.
    Weltevrede, P.
    Winer, B. L.
    Wood, K. S.
    Ylinen, T.
    Ziegler, M.
    Fermi Large Area Telescope Detection of Pulsed γ-rays from the Vela-like Pulsars PSR J1048–5832 and PSR J2229+61142009In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 706, no 2, p. 1331-1340Article in journal (Refereed)
    Abstract [en]

    We report the detection of γ-ray pulsations (>=0.1 GeV) from PSR J2229+6114 and PSR J1048–5832, the latter having been detected as a low-significance pulsar by EGRET. Data in the γ-ray band were acquired by the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope, while the radio rotational ephemerides used to fold the γ-ray light curves were obtained using the Green Bank Telescope, the Lovell telescope at Jodrell Bank, and the Parkes Telescope. The two young radio pulsars, located within the error circles of the previously unidentified EGRET sources 3EG J1048–5840 and 3EG J2227+6122, present spin-down characteristics similar to the Vela pulsar. PSR J1048–5832 shows two sharp peaks at phases 0.15 ± 0.01 and 0.57 ± 0.01 relative to the radio pulse confirming the EGRET light curve, while PSR J2229+6114 presents a very broad peak at phase 0.49 ± 0.01. The γ-ray spectra above 0.1 GeV of both pulsars are fit with power laws having exponential cutoffs near 3 GeV, leading to integral photon fluxes of (2.19 ± 0.22 ± 0.32) × 10–7 cm–2 s–1 for PSR J1048–5832 and (3.77 ± 0.22 ± 0.44) × 10–7 cm–2 s–1 for PSR J2229+6114. The first uncertainty is statistical and the second is systematic. PSR J1048–5832 is one of the two LAT sources which were entangled together as 3EG J1048–5840. These detections add to the growing number of young γ-ray pulsars that make up the dominant population of GeV γ-ray sources in the Galactic plane.

  • 25. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Axelsson, M.
    Stockholm University, Faculty of Science, Department of Astronomy.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Baring, M. G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Burnett, T. H.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Casandjian, J. M.
    Cavazzuti, E.
    Cecchi, C.
    Çelik, Ö.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Cominsky, L. R.
    Conrad, J.
    Stockholm University, Faculty of Science, Department of Physics.
    Cutini, S.
    de Angelis, A.
    de Palma, F.
    Di Bernardo, G.
    Silva, E. do Couto e.
    Drell, P. S.
    Drlica-Wagner, A.
    Dubois, R.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Finke, J.
    Focke, W. B.
    Fortin, P.
    Foschini, L.
    Frailis, M.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Giavitto, G.
    Giebels, B.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grondin, M.-H.
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Hanabata, Y.
    Hayashida, M.
    Hays, E.
    Horan, D.
    Hughes, R. E.
    Jackson, M. S.
    Jóhannesson, G.
    Johnson, A. S.
    Johnson, R. P.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kerr, M.
    Knödlseder, J.
    Kocian, M. L.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lemoine-Goumard, M.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Makeev, A.
    Mazziotta, M. N.
    McConville, W.
    McEnery, J. E.
    Meurer, C.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Rainò, S.
    Rando, R.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Reyes, L. C.
    Ritz, S.
    Rochester, L. S.
    Rodriguez, A. Y.
    Roth, M.
    Ryde, F.
    Sadrozinski, H. F.-W.
    Sanchez, D.
    Sander, A.
    Saz Parkinson, P. M.
    Scargle, J. D.
    Schalk, T. L.
    Sellerholm, A.
    Stockholm University, Faculty of Science, Department of Physics.
    Sgrò, C.
    Shaw, M. S.
    Siskind, E. J.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Strickman, M. S.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Tanaka, Y.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Uchiyama, Y.
    Usher, T. L.
    Vasileiou, V.
    Vilchez, N.
    Vitale, V.
    Waite, A. P.
    Wang, P.
    Winer, B. L.
    Wood, K. S.
    Ylinen, T.
    Ziegler, M.
    Fermi Observations of TeV-Selected Active Galactic Nuclei2009In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 707, no 2, p. 1310-1333Article in journal (Refereed)
    Abstract [en]

    We report on observations of TeV-selected active galactic nuclei (AGNs) made during the first 5.5 months of observations with the Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope (Fermi). In total, 96 AGNs were selected for study, each being either (1) a source detected at TeV energies (28 sources) or (2) an object that has been studied with TeV instruments and for which an upper limit has been reported (68 objects). The Fermi observations show clear detections of 38 of these TeV-selected objects, of which 21 are joint GeV-TeV sources, and 29 were not in the third EGRET catalog. For each of the 38 Fermi-detected sources, spectra and light curves are presented. Most can be described with a power law of spectral index harder than 2.0, with a spectral break generally required to accommodate the TeV measurements. Based on an extrapolation of the Fermi spectrum, we identify sources, not previously detected at TeV energies, which are promising targets for TeV instruments. Evidence for systematic evolution of the γ-ray spectrum with redshift is presented and discussed in the context of interaction with the extragalactic background light.

  • 26. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Axelsson, M.
    Stockholm University, Faculty of Science, Department of Astronomy.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Burnett, T. H.
    Caliandro, G. A.
    Cameron, R. A.
    Cannon, A.
    Caraveo, P. A.
    Casandjian, J. M.
    Cavazzuti, E.
    Cecchi, C.
    Çelik, Ö.
    Charles, E.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Colafrancesco, S.
    Conrad, J.
    Stockholm University, Faculty of Science, Department of Physics.
    Costamante, L.
    Cutini, S.
    Davis, D. S.
    Dermer, C. D.
    de Angelis, A.
    de Palma, F.
    Digel, S. W.
    Donato, D.
    Silva, E. do Couto e.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Edmonds, Y.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Finke, J.
    Focke, W. B.
    Fortin, P.
    Frailis, M.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Georganopoulos, M.
    Germani, S.
    Giebels, B.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grondin, M.-H.
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Hanabata, Y.
    Harding, A. K.
    Hayashida, M.
    Hays, E.
    Horan, D.
    Jóhannesson, G.
    Johnson, A. S.
    Johnson, R. P.
    Johnson, T. J.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kerr, M.
    Knödlseder, J.
    Kocian, M. L.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lemoine-Goumard, M.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Makeev, A.
    Mazziotta, M. N.
    McConville, W.
    McEnery, J. E.
    Meurer, C.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Rainò, S.
    Rando, R.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Ritz, S.
    Rochester, L. S.
    Rodriguez, A. Y.
    Romani, R. W.
    Roth, M.
    Ryde, F.
    Sadrozinski, H. F.-W.
    Sambruna, R.
    Sanchez, D.
    Sander, A.
    Saz Parkinson, P. M.
    Scargle, J. D.
    Sgrò, C.
    Shaw, M. S.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Strickman, M. S.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Tanaka, T.
    Taylor, G. B.
    Thayer, J. B.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Uchiyama, Y.
    Usher, T. L.
    Vasileiou, V.
    Vilchez, N.
    Waite, A. P.
    Wang, P.
    Winer, B. L.
    Wood, K. S.
    Ylinen, T.
    Ziegler, M.
    Harris, D. E.
    Massaro, F.
    Stawarz, Ł.
    Fermi Large Area Telescope Gamma-Ray Detection of the Radio Galaxy M872009In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 707, no 1, p. 55-60Article in journal (Refereed)
    Abstract [en]

    We report the Fermi Large Area Telescope (LAT) discovery of high-energy (MeV/GeV) γ-ray emission positionally consistent with the center of the radio galaxy M87, at a source significance of over 10σ in 10 months of all-sky survey data. Following the detections of Cen A and Per A, this makes M87 the third radio galaxy seen with the LAT. The faint point-like γ-ray source has a >100 MeV flux of 2.45 (±0.63) × 10–8 photons cm–2 s–1 (photon index = 2.26 ± 0.13) with no significant variability detected within the LAT observation. This flux is comparable with the previous EGRET upper limit (<2.18 × 10–8 photons cm–2 s–1, 2σ), thus there is no evidence for a significant MeV/GeV flare on decade timescales. Contemporaneous Chandra and Very Long Baseline Array data indicate low activity in the unresolved X-ray and radio core relative to previous observations, suggesting M87 is in a quiescent overall level over the first year of Fermi-LAT observations. The LAT γ-ray spectrum is modeled as synchrotron self-Compton (SSC) emission from the electron population producing the radio-to-X-ray emission in the core. The resultant SSC spectrum extrapolates smoothly from the LAT band to the historical-minimum TeV emission. Alternative models for the core and possible contributions from the kiloparsec-scale jet in M87 are considered, and cannot be excluded.

  • 27. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Axelsson, Magnus
    Stockholm University, Faculty of Science, Department of Astronomy.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bouvier, A.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Burnett, T. H.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Carrigan, S.
    Casandjian, J. M.
    Cavazzuti, E.
    Cecchi, C.
    Celik, Oe
    Charles, E.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics.
    Cutini, S.
    Dermer, C. D.
    de Angelis, A.
    de Palma, F.
    Digel, S. W.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Focke, W. B.
    Fortin, P.
    Frailis, M.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Giebels, B.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grondin, M. -H
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Harding, A. K.
    Hartman, R. C.
    Hayashida, M.
    Hays, E.
    Healey, S. E.
    Horan, D.
    Hughes, R. E.
    Jackson, M. S.
    Johannesson, G.
    Johnson, A. S.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kerr, M.
    Knoedlseder, J.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lemoine-Goumard, M.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Makeev, A.
    Mazziotta, M. N.
    McConville, W.
    McEnery, J. E.
    Meurer, C.
    Stockholm University, Faculty of Science, Department of Physics.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Persic, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Ritz, S.
    Rochester, L. S.
    Rodriguez, A. Y.
    Romani, R. W.
    Roth, M.
    Ryde, F.
    Sadrozinski, H. F. -W
    Sanchez, D.
    Sander, A.
    Parkinson, P. M. Saz
    Scargle, J. D.
    Sgro, C.
    Siskind, E. J.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Strickman, M. S.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Uchiyama, Y.
    Usher, T. L.
    Vasileiou, V.
    Vilchez, N.
    Villata, M.
    Vitale, V.
    Waite, A. P.
    Wang, P.
    Winer, B. L.
    Wood, K. S.
    Ylinen, T.
    Ziegler, M.
    SPECTRAL PROPERTIES OF BRIGHT FERMI-DETECTED BLAZARS IN THE GAMMA-RAY BAND2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 710, no 2, p. 1271-1285Article in journal (Refereed)
    Abstract [en]

    The gamma-ray energy spectra of bright blazars of the LAT Bright AGN Sample LBAS) are investigated using Fermi-LAT data. Spectral properties hardness, curvature, and variability) established using a data set accumulated over 6 months of operation are presented and discussed for different blazar classes and subclasses: flat spectrum radio quasars (FSRQs), low-synchrotron peaked BLLacs (LSP-BLLacs), intermediate-synchrotron peaked BLLacs (ISP-BLLacs), and high-synchrotron peaked BLLacs (HSP-BLLacs). The distribution of photon index G, obtained from a power-law fit above 100 MeV) is found to correlate strongly with blazar subclass. The change in spectral index from that averaged over the 6 months observing period is < 0.2-0.3 when the flux varies by about an order of magnitude, with a tendency toward harder spectra when the flux is brighter for FSRQs and LSP-BLLacs. A strong departure from a single power-law spectrum appears to be a common feature for FSRQs. This feature is also present for some high-luminosity LSP-BLLacs, and a small number of ISP-BLLacs. It is absent in all LBAS HSP-BLLacs. For 3C 454.3 and AO 0235+164, the two brightest FSRQ source and LSP-BLLac source, respectively, a broken power law (BPL) gives the most acceptable of power law, BPL, and curved forms. The consequences of these findings are discussed.

  • 28. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Axelsson, Magnus
    Stockholm University, Faculty of Science, Department of Astronomy.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Burnett, T. H.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Casandjian, J. M.
    Cavazzuti, E.
    Cecchi, C.
    Celik, Oe.
    Charles, E.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics.
    Cutini, S.
    Dermer, C. D.
    de Angelis, A.
    de Palma, F.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Focke, W. B.
    Fortin, P.
    Frailis, M.
    Fukazawa, Y.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Giebels, B.
    Giglietto, N.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grondin, M. -H
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Hanabata, Y.
    Harding, A. K.
    Hayashida, M.
    Hays, E.
    Horan, D.
    Hughes, R. E.
    Johannesson, G.
    Johnson, A. S.
    Johnson, R. P.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kerr, M.
    Knoedlseder, J.
    Kocian, M. L.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lemoine-Goumard, M.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Makeev, A.
    Mazziotta, M. N.
    McConville, W.
    McEnery, J. E.
    Meurer, C.
    Stockholm University, Faculty of Science, Department of Physics.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Piron, F.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Ritz, S.
    Rodriguez, A. Y.
    Romani, R. W.
    Roth, M.
    Ryde, F.
    Sadrozinski, H. F. -W
    Sanchez, D.
    Sander, A.
    Parkinson, P. M. Saz
    Scargle, J. D.
    Sgro, C.
    Shaw, M. S.
    Siskind, E. J.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Strickman, M. S.
    Suson, D. J.
    Takahashi, H.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Uchiyama, Y.
    Usher, T. L.
    Vasileiou, V.
    Vilchez, N.
    Vitale, V.
    Waite, A. P.
    Wang, P.
    Winer, B. L.
    Wood, K. S.
    Ylinen, T.
    Ziegler, M.
    FERMI OBSERVATIONS OF THE VERY HARD GAMMA-RAY BLAZAR PG 1553+1132010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 708, no 2, p. 1310-1320Article in journal (Refereed)
    Abstract [en]

    We report the observations of PG 1553+113 during the first similar to 200 days of Fermi Gamma-ray Space Telescope science operations, from 2008 August 4 to 2009 February 22 (MJD 54682.7-54884.2). This is the first detailed study of PG 1553+113 in the GeV gamma-ray regime and it allows us to fill a gap of three decades in energy in its spectral energy distribution (SED). We find PG 1553+113 to be a steady source with a hard spectrum that is best fit by a simple power law in the Fermi energy band. We combine the Fermi data with archival radio, optical, X-ray, and very high energy (VHE) gamma-ray data to model its broadband SED and find that a simple, one-zone synchrotron self-Compton model provides a reasonable fit. PG 1553+113 has the softest VHE spectrum of all sources detected in that regime and, out of those with significant detections across the Fermi energy bandpass so far, the hardest spectrum in that energy regime. Thus, it has the largest spectral break of any gamma-ray source studied to date, which could be due to the absorption of the intrinsic gamma-ray spectrum by the extragalactic background light (EBL). Assuming this to be the case, we selected a model with a low level of EBL and used it to absorb the power-law spectrum from PG 1553+113 measured with Fermi (200 MeV-157 GeV) to find the redshift, which gave the best fit to the measured VHE data (90 GeV-1.1 TeV) for this parameterization of the EBL. We show that this redshift can be considered an upper limit on the distance to PG 1553+113.

  • 29. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Burnett, T. H.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Casandjian, J. M.
    Cecchi, C.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics.
    de Angelis, A.
    de Palma, F.
    Digel, S. W.
    do Couto e Silva, E.
    Drell, P. S.
    Drlica-Wagner, A.
    Dubois, R.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Focke, W. B.
    Fortin, P.
    Frailis, M.
    Fukazawa, Y.
    Fusco, P.
    Gargano, F.
    Gehrels, N.
    Germani, S.
    Giebels, B.
    Giglietto, N.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Gustafsson, M.
    Harding, A. K.
    Hays, E.
    Horan, D.
    Hughes, R. E.
    Jackson, M. S.
    Stockholm University, Faculty of Science, Department of Physics.
    Jeltema, T. E.
    Johannesson, G.
    Johnson, A. S.
    Johnson, R. P.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kerr, M.
    Knoedlseder, J.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lemoine-Goumard, M.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Makeev, A.
    Mazziotta, M. N.
    McEnery, J. E.
    Meurer, C.
    Stockholm University, Faculty of Science, Department of Physics.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Moretti, E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Profumo, S.
    Raino, S.
    Rando, R.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Ritz, S.
    Rodriguez, A. Y.
    Roth, M.
    Sadrozinski, H. F. -W
    Sander, A.
    Parkinson, P. M. Saz
    Scargle, J. D.
    Schalk, T. L.
    Sellerholm, Alexander
    Stockholm University, Faculty of Science, Department of Physics.
    Sgro, C.
    Siskind, E. J.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Strickman, M. S.
    Suson, D. J.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Tramacere, A.
    Uchiyama, Y.
    Usher, T. L.
    Vasileiou, V.
    Vilchez, N.
    Vitale, V.
    Waite, A. P.
    Wang, P.
    Winer, B. L.
    Wood, K. S.
    Ylinen, T.
    Ziegler, M.
    Bullock, James S.
    Kaplinghat, Manoj
    Martinez, Gregory D.
    OBSERVATIONS OF MILKY WAY DWARF SPHEROIDAL GALAXIES WITH THE FERMI-LARGE AREA TELESCOPE DETECTOR AND CONSTRAINTS ON DARK MATTER MODELS2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 712, no 1, p. 147-158Article in journal (Refereed)
    Abstract [en]

    We report on the observations of 14 dwarf spheroidal galaxies (dSphs) with the Fermi Gamma-Ray Space Telescope taken during the first 11 months of survey mode operations. The Fermi telescope, which is conducting an all-sky gamma-ray survey in the 20 MeV to > 300 GeV energy range, provides a new opportunity to test particle dark matter models through the expected gamma-ray emission produced by pair annihilation of weakly interacting massive particles (WIMPs). Local Group dSphs, the largest galactic substructures predicted by the cold dark matter scenario, are attractive targets for such indirect searches for dark matter because they are nearby and among the most extreme dark matter dominated environments. No significant gamma-ray emission was detected above 100 MeV from the candidate dwarf galaxies. We determine upper limits to the gamma-ray flux assuming both power-law spectra and representative spectra from WIMP annihilation. The resulting integral flux above 100 MeV is constrained to be at a level below around 10(-9) photons cm(-2) s(-1). Using recent stellar kinematic data, the gamma-ray flux limits are combined with improved determinations of the dark matter density profile in eight of the 14 candidate dwarfs to place limits on the pair-annihilation cross section of WIMPs in several widely studied extensions of the standard model, including its supersymmetric extension and other models that received recent attention. With the present data, we are able to rule out large parts of the parameter space where the thermal relic density is below the observed cosmological dark matter density and WIMPs (neutralinos here) are dominantly produced non-thermally, e. g., in models where supersymmetry breaking occurs via anomaly mediation. The gamma-ray limits presented here also constrain some WIMP models proposed to explain the Fermi and PAMELA e(+)e(-) data, including low-mass wino-like neutralinos and models with TeV masses pair annihilating into muon-antimuon pairs.

  • 30. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Axelsson, M.
    Stockholm University, Faculty of Science, Department of Astronomy.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Baughman, B. M.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Burnett, T. H.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Casandjian, J. M.
    Cavazzuti, E.
    Cecchi, C.
    Çelik, Ö.
    Celotti, A.
    Chekhtman, A.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Collmar, W.
    Conrad, J.
    Stockholm University, Faculty of Science, Department of Physics.
    Costamante, L.
    Cutini, S.
    de Angelis, A.
    de Palma, F.
    Silva, E. Do Couto e.
    Drell, P. S.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Focke, W. B.
    Fortin, P.
    Foschini, L.
    Frailis, M.
    Fuhrmann, L.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gehrels, N.
    Germani, S.
    Giglietto, N.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Hanabata, Y.
    Hays, E.
    Hughes, R. E.
    Jackson, M. S.
    Jóhannesson, G.
    Johnson, A. S.
    Johnson, W. N.
    Kadler, M.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kerr, M.
    Knödlseder, J.
    Kocian, M. L.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Makeev, A.
    Max-Moerbeck, W.
    Mazziotta, M. N.
    McConville, W.
    McEnery, J. E.
    McGlynn, S.
    Meurer, C.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Nestoras, I.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Paneque, D.
    Parent, D.
    Pavlidou, V.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Rainò, S.
    Rando, R.
    Razzano, M.
    Readhead, A.
    Reimer, O.
    Reposeur, T.
    Richards, J. L.
    Rodriguez, A. Y.
    Roth, M.
    Ryde, F.
    Sadrozinski, H. F.-W.
    Sanchez, D.
    Sander, A.
    Saz Parkinson, P. M.
    Scargle, J. D.
    Sgrò, C.
    Shaw, M. S.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Strickman, M. S.
    Suson, D. J.
    Tagliaferri, G.
    Tajima, H.
    Takahashi, H.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Tibolla, O.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Uchiyama, Y.
    Usher, T. L.
    Vasileiou, V.
    Vilchez, N.
    Vitale, V.
    Waite, A. P.
    Wang, P.
    Wehrle, A. E.
    Winer, B. L.
    Wood, K. S.
    Ylinen, T.
    Zensus, J. A.
    Ziegler, M.
    The Fermi/LAT Collaboration,
    Angelakis, E.
    Bailyn, C.
    Bignall, H.
    Blanchard, J.
    Bonning, E. W.
    Buxton, M.
    Canterna, R.
    Carramiñana, A.
    Carrasco, L.
    Colomer, F.
    Doi, A.
    Ghisellini, G.
    Hauser, M.
    Hong, X.
    Isler, J.
    Kino, M.
    Kovalev, Y. Y.
    Kovalev, Yu. A.
    Krichbaum, T. P.
    Kutyrev, A.
    Lahteenmaki, A.
    van Langevelde, H. J.
    Lister, M. L.
    Macomb, D.
    Maraschi, L.
    Marchili, N.
    Nagai, H.
    Paragi, Z.
    Phillips, C.
    Pushkarev, A. B.
    Recillas, E.
    Roming, P.
    Sekido, M.
    Stark, M. A.
    Szomoru, A.
    Tammi, J.
    Tavecchio, F.
    Tornikoski, M.
    Tzioumis, A. K.
    Urry, C. M.
    Wagner, S.
    Multiwavelength Monitoring of the Enigmatic Narrow-Line Seyfert 1 PMN J0948+0022 in 2009 March-July2009In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 707, no 1, p. 727-737Article in journal (Refereed)
    Abstract [en]

    Following the recent discovery of γ rays from the radio-loud narrow-line Seyfert 1 galaxy PMN J0948+0022 (z = 0.5846), we started a multiwavelength campaign from radio to γ rays, which was carried out between the end of 2009 March and the beginning of July. The source displayed activity at all the observed wavelengths: a general decreasing trend from optical to γ-ray frequencies was followed by an increase of radio emission after less than two months from the peak of the γ-ray emission. The largest flux change, about a factor of about 4, occurred in the X-ray band. The smallest was at ultraviolet and near-infrared frequencies, where the rate of the detected photons dropped by a factor 1.6-1.9. At optical wavelengths, where the sampling rate was the highest, it was possible to observe day scale variability, with flux variations up to a factor of about 3. The behavior of PMN J0948+0022 observed in this campaign and the calculated power carried out by its jet in the form of protons, electrons, radiation, and magnetic field are quite similar to that of blazars, specifically of flat-spectrum radio quasars. These results confirm the idea that radio-loud narrow-line Seyfert 1 galaxies host relativistic jets with power similar to that of average blazars.

  • 31. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastier, D.
    Baughman, B. M.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Bignami, G. F.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Brueli, P.
    Burnett, T. H.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Casandjian, J. M.
    Cecchi, C.
    Celik, Oe.
    Charles, E.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics.
    Dermer, C. D.
    de Palma, F.
    Dormody, M.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Edmonds, Y.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Focke, W. B.
    Fortin, P.
    Frailis, M.
    Furazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Giavitto, G.
    Giglietto, N.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grondin, M. -H
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Hadasch, D.
    Hardino, A. K.
    Hays, E.
    Hughes, R. E.
    Johannesson, G.
    Johnson, A. S.
    Johnson, T. J.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kerr, M.
    Knoedlseder, J.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lemoine-Goumard, M.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Makeev, A.
    Marelli, M.
    Mazziotta, M. N.
    McEnery, J. E.
    Meurer, C.
    Stockholm University, Faculty of Science, Department of Physics.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenk, I. V.
    Murgia, S.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Rayi, P. S.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Rochester, L. S.
    Rodriguez, A. Y.
    Romani, R. W.
    Roth, M.
    Ryde, F.
    Sadrozinski, H. F. -W
    Sander, A.
    Parkinson, P. M. Saz
    Scargle, J. D.
    Sgro, C.
    Siskind, E. J.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Strickman, M. S.
    Suson, D. J.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Usher, T. L.
    Van Etten, A.
    Vasileiou, V.
    Venter, C.
    Vilchez, N.
    Vitale, V.
    Waite, A. P.
    Wang, P.
    Watters, K.
    Winer, B. L.
    Wood, K. S.
    Ylinen, T.
    Ziegler, M.
    FERMI-LAT OBSERVATIONS OF THE GEMINGA PULSAR2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 720, no 1, p. 272-283Article in journal (Refereed)
    Abstract [en]

    We report on the Fermi-LAT observations of the Geminga pulsar, the second brightest non-variable GeV source in the gamma-ray sky and the first example of a radio-quiet gamma-ray pulsar. The observations cover one year, from the launch of the Fermi satellite through 2009 June 15. A data sample of over 60,000 photons enabled us to build a timing solution based solely on gamma-rays. Timing analysis shows two prominent peaks, separated by Delta phi = 0.497 +/- 0.004 in phase, which narrow with increasing energy. Pulsed gamma-rays are observed beyond 18 GeV, precluding emission below 2.7 stellar radii because of magnetic absorption. The phase-averaged spectrum was fitted with a power law with exponential cutoff of spectral index Gamma = (1.30 +/- 0.01 +/- 0.04), cutoff energy E-0 = (2.46 +/- 0.04 +/- 0.17) GeV, and an integral photon flux above 0.1 GeV of (4.14 +/- 0.02 +/- 0.32) x 10(-6) cm(-2) s(-1). The first uncertainties are statistical and the second ones are systematic. The phase-resolved spectroscopy shows a clear evolution of the spectral parameters, with the spectral index reaching a minimum value just before the leading peak and the cutoff energy having maxima around the peaks. The phase-resolved spectroscopy reveals that pulsar emission is present at all rotational phases. The spectral shape, broad pulse profile, and maximum photon energy favor the outer magnetospheric emission scenarios.

  • 32. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Baughman, B. M.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Burnett, T. H.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Casandjian, J. M.
    Cecchi, C.
    Celik, Oe
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Cillis, A. N.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Cominsky, L. R.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics.
    Cutini, S.
    Dermer, C. D.
    de Angelis, A.
    de Palma, F.
    do Couto e Silva, E.
    Drell, P. S.
    Drlica-Wagner, A.
    Dubois, R.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Focke, W. B.
    Fortin, P.
    Frailis, M.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Giavitto, G.
    Giebels, B.
    Giglietto, N.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grondin, M-H
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Hanabata, Y.
    Harding, A. K.
    Hayashida, M.
    Hughes, R. E.
    Jackson, M. S.
    Stockholm University, Faculty of Science, Department of Physics.
    Johannesson, G.
    Johnson, A. S.
    Johnson, T. J.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kerr, M.
    Knoedlseder, J.
    Kocian, M. L.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lee, S-H
    Lemoine-Goumard, M.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Makeev, A.
    Mazziotta, M. N.
    Meurer, C.
    Stockholm University, Faculty of Science, Department of Physics.
    Michelson, P. F.
    Mitthumsiri, W.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nakamori, T.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohsugi, T.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Rochester, L. S.
    Rodriguez, A. Y.
    Romani, R. W.
    Roth, M.
    Ryde, F.
    Sadrozinski, H. F-W
    Sanchez, D.
    Sander, A.
    Parkinson, P. M. Saz
    Scargle, J. D.
    Sgro, C.
    Siskind, E. J.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Strickman, M. S.
    Strong, A. W.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Uchiyama, Y.
    Usher, T. L.
    Van Etten, A.
    Vasileiou, V.
    Venter, C.
    Vilchez, N.
    Vitale, V.
    Waite, A. P.
    Wang, P.
    Winer, B. L.
    Wood, K. S.
    Ylinen, T.
    Ziegler, M.
    OBSERVATION OF SUPERNOVA REMNANT IC 443 WITH THE FERMI LARGE AREA TELESCOPE2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 712, no 1, p. 459-468Article in journal (Refereed)
    Abstract [en]

    We report observation of the supernova remnant (SNR) IC 443 (G189.1+3.0) with the Fermi Gamma-ray Space Telescope Large Area Telescope (LAT) in the energy band between 200 MeV and 50 GeV. IC 443 is a shell-type SNR with mixed morphology located off the outer Galactic plane where high-energy emission has been detected in the X-ray, GeV and TeV gamma-ray bands. Past observations suggest IC 443 has been interacting with surrounding interstellar matter. Proximity between dense shocked molecular clouds and GeV-TeV gamma-ray emission regions detected by EGRET, MAGIC, and VERITAS suggests an interpretation that cosmic-ray (CR) particles are accelerated by the SNR. With the high gamma-ray statistics and broad energy coverage provided by the LAT, we accurately characterize the gamma-ray emission produced by the CRs accelerated at IC 443. The emission region is extended in the energy band with theta(68) = 0 degrees.27 +/- 0 degrees.01(stat) +/- 0 degrees.03(sys) for an assumed two-dimensional Gaussian profile and overlaps almost completely with the extended source region of VERITAS. Its centroid is displaced significantly from the known pulsar wind nebula (PWN) which suggests the PWN is not the major contributor in the present energy band. The observed spectrum changes its power-law slope continuously and continues smoothly to the MAGIC and VERITAS data points. The combined gamma-ray spectrum (200 MeV < E < 2 TeV) is reproduced well by decays of neutral pions produced by a broken power-law proton spectrum with a break around 70 GeV.

  • 33. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Baughman, B. M.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Burnett, T. H.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Casandjian, J. M.
    Cecchi, C.
    Celik, Oe.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Cominsky, L. R.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics.
    Dermer, C. D.
    de Palma, F.
    Digel, S. W.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Focke, W. B.
    Fortin, P.
    Frailis, M.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gehrels, N.
    Germani, S.
    Giavitto, G.
    Giebels, B.
    Giglietto, N.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grondin, M. -H
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Harding, A. K.
    Hayashida, M.
    Horan, D.
    Hughes, R. E.
    Jackson, M. S.
    Johannesson, G.
    Johnson, A. S.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kerr, M.
    Knoedlseder, J.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lemoine-Goumard, M.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Makeev, A.
    Mazziotta, M. N.
    McEnery, J. E.
    Meurer, C.
    Stockholm University, Faculty of Science, Department of Physics.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohsugi, T.
    Okumura, A.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Paneque, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Rodriguez, A. Y.
    Ryde, F.
    Sadrozinski, H. F. -W
    Sanchez, D.
    Sander, A.
    Parkinson, P. M. Saz
    Sgro, C.
    Siskind, E. J.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Starck, J. -L
    Strickman, M. S.
    Strong, A. W.
    Suson, D. J.
    Takahashi, H.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Uchiyama, Y.
    Usher, T. L.
    Vasileiou, V.
    Vilchez, N.
    Vitale, V.
    Waite, A. P.
    Wang, P.
    Winer, B. L.
    Wood, K. S.
    Ylinen, T.
    Ziegler, M.
    FERMI OBSERVATIONS OF CASSIOPEIA AND CEPHEUS: DIFFUSE GAMMA-RAY EMISSION IN THE OUTER GALAXY2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 710, no 1, p. 133-149Article in journal (Refereed)
    Abstract [en]

    We present the analysis of the interstellar gamma-ray emission measured by the Fermi Large Area Telescope toward a region in the second Galactic quadrant at 100 degrees <= l <= 145 degrees and -15 degrees <= b <= +30 degrees. This region encompasses the prominent Gould Belt clouds of Cassiopeia, Cepheus, and the Polaris flare, as well as atomic and molecular complexes at larger distances, like that associated with NGC 7538 in the Perseus arm. The good kinematic separation in velocity between the local, Perseus, and outer arms, and the presence of massive complexes in each of them, make this region well suited to probe cosmic rays (CRs) and the interstellar medium beyond the solar circle. The gamma-ray emissivity spectrum of the gas in the Gould Belt is consistent with expectations based on the locally measured CR spectra. The gamma-ray emissivity decreases from the Gould Belt to the Perseus arm, but the measured gradient is flatter than expectations for CR sources peaking in the inner Galaxy as suggested by pulsars. The X-CO = N(H-2)/W-CO conversion factor is found to increase from (0.87 +/- 0.05) x 10(20) cm(-2) (K km s(-1))(-1) in the Gould Belt to (1.9 +/- 0.2) x 10(20) cm(-2) (K km s(-1))(-1) in the Perseus arm. We derive masses for the molecular clouds under study. Dark gas, not properly traced by radio and microwave surveys, is detected in the Gould Belt through a correlated excess of dust and gamma-ray emission: its mass amounts to similar to 50% of the CO-traced mass.

  • 34. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bouvier, A.
    Brandt, T. J.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Buehler, R.
    Burnett, T. H.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Cannon, A.
    Caraveo, P. A.
    Carrigan, S.
    Casandjian, J. M.
    Cavazzuti, E.
    Cecchi, C.
    Celik, Oe
    Celotti, A.
    Charles, E.
    Chekhtman, A.
    Chen, A. W.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Colafrancesco, S.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics.
    Davis, D. S.
    Dermer, C. D.
    de Angelis, A.
    de Palma, F.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Favuzzi, C.
    Fegan, S. J.
    Ferrara, E. C.
    Fortin, P.
    Frailis, M.
    Fukazawa, Y.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Godfrey, G.
    Grandi, P.
    Grenier, I. A.
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Hadasch, D.
    Hayashida, M.
    Hays, E.
    Horan, D.
    Hughes, R. E.
    Jackson, M. S.
    Johannesson, G.
    Johnson, A. S.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Knoedlseder, J.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lee, S-H
    Lemoine-Goumard, M.
    Garde, Maja Llena
    Stockholm University, Faculty of Science, Department of Physics.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Makeev, A.
    Malaguti, G.
    Mazziotta, M. N.
    McConville, W.
    McEnery, J. E.
    Michelson, P. F.
    Migliori, G.
    Mitthumsiri, W.
    Mizuno, T.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Naumann-Godo, M.
    Nestoras, I.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohsugi, T.
    Okumura, A.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Persic, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Reyes, L. C.
    Roth, M.
    Sadrozinski, H. F-W
    Sanchez, D.
    Sander, A.
    Scargle, J. D.
    Sgro, C.
    Siskind, E. J.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Stawarz, L.
    Stecker, F. W.
    Strickman, M. S.
    Suson, D. J.
    Takahashi, H.
    Tanaka, T.
    Thayer, J. B.
    Thaver, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Torresi, E.
    Tosti, G.
    Tramacere, A.
    Uchiyama, Y.
    Usher, T. L.
    Vandenbroucke, J.
    Vasileiou, V.
    Vilchez, N.
    Villata, M.
    Vitale, V.
    Waite, A. P.
    Wang, P.
    Winer, B. L.
    Wood, K. S.
    Yang, Zhaoyu
    Stockholm University, Faculty of Science, Department of Physics.
    Ylinen, T.
    Ziegler, M.
    FERMI LARGE AREA TELESCOPE OBSERVATIONS OF MISALIGNED ACTIVE GALACTIC NUCLEI2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 720, no 1, p. 912-922Article in journal (Refereed)
    Abstract [en]

    Analysis is presented for 15 months of data taken with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope for 11 non-blazar active galactic nuclei (AGNs), including seven FRI radio galaxies and four FRII radio sources consisting of two FRII radio galaxies and two steep spectrum radio quasars. The broad line FRI radio galaxy 3C 120 is reported here as a gamma-ray source for the first time. The analysis is based on directional associations of LAT sources with radio sources in the 3CR, 3CRR, and MS4 (collectively referred to as 3C-MS) catalogs. Seven of the eleven LAT sources associated with 3C-MS radio sources have spectral indices larger than 2.3 and, except for the FRI radio galaxy NGC 1275 that shows possible spectral curvature, are well described by a power law. No evidence for time variability is found for any sources other than NGC 1275. The gamma-ray luminosities of FRI radio galaxies are significantly smaller than those of the BL Lac objects detected by the LAT, whereas the gamma-ray luminosities of the FRII sources are quite similar to those of FSRQs, which could reflect different beaming factors for the gamma-ray emission. A core dominance (CD) study of the 3CRR sample indicates that sources closer to the jet axis are preferentially detected with the Fermi LAT, insofar as the gamma-ray-detected misaligned AGNs have larger CD at a given average radio flux. The results are discussed in view of the AGN unification scenario.

  • 35. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Bonamente, E.
    Borgland, A. W.
    Bouvier, A.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Buehler, R.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Casandjian, J. M.
    Cecchi, C.
    Charles, E.
    Chekhtman, A.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Cutini, S.
    de Angelis, A.
    de Palma, F.
    Dermer, C. D.
    Digel, S. W.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Favuzzi, C.
    Fegan, S. J.
    Focke, W. B.
    Fortin, P.
    Frailis, M.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Giglietto, N.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grillo, L.
    Guiriec, S.
    Hadasch, D.
    Hays, E.
    Hughes, R. E.
    Iafrate, G.
    Johannesson, G.
    Johnson, A. S.
    Johnson, T. J.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Knoedlseder, J.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lee, S. -H
    Lionetto, A. M.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Makeev, A.
    Mazziotta, M. N.
    McEnery, J. E.
    Mehault, J.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nakamori, T.
    Naumann-Godo, M.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohsugi, T.
    Okumura, A.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paneque, D.
    Pelassa, V.
    Pesce-Rollins, M.
    Pierbattista, M.
    Piron, F.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Ritz, S.
    Sadrozinski, H. F. -W
    Schalk, T. L.
    Sgro, C.
    Share, G. H.
    Siskind, E. J.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Strickman, M. S.
    Strong, A. W.
    Takahashi, H.
    Tanaka, T.
    Thayer, J. G.
    Thayer, J. B.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Troja, E.
    Uchiyama, Y.
    Usher, T. L.
    Vandenbroucke, J.
    Vasileiou, V.
    Vianello, G.
    Vilchez, N.
    Vitale, V.
    Vladimirov, A. E.
    Waite, A. P.
    Wang, P.
    Winer, B. L.
    Wood, K. S.
    Yang, Zhaoyu
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ziegler, M.
    FERMI LARGE AREA TELESCOPE OBSERVATIONS OF TWO GAMMA-RAY EMISSION COMPONENTS FROM THE QUIESCENT SUN2011In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 734, no 2, p. 116-Article in journal (Refereed)
    Abstract [en]

    We report the detection of high-energy gamma-rays from the quiescent Sun with the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope (Fermi) during the first 18 months of the mission. These observations correspond to the recent period of low solar activity when the emission induced by cosmic rays (CRs) is brightest. For the first time, the high statistical significance of the observations allows clear separation of the two components: the point-like emission from the solar disk due to CR cascades in the solar atmosphere and extended emission from the inverse Compton (IC) scattering of CR electrons on solar photons in the heliosphere. The observed integral flux (>= 100 MeV) from the solar disk is (4.6 +/- 0.2inverted right perpendicularstatistical errorinverted left perpendicular(-0.08)(+1.0)inverted right perpendicularsystematic errorinverted left perpendicular) x 10(-7) cm(-2) s(-1), which is similar to 7 times higher than predicted by the nominal model of Seckel et al. In contrast, the observed integral flux (>= 100 MeV) of the extended emission from a region of 20 degrees radius centered on the Sun, but excluding the disk itself, (6.8 +/- 0.7[stat.](-0.4)(+0.5)[syst.]) x 10(-7) cm(-2) s(-1), along with the observed spectrum and the angular profile, is in good agreement with the theoretical predictions for the IC emission.

  • 36. Abdo, A. A.
    et al.
    Ackermann, M.
    Asano, K.
    Atwood, W. B.
    Axelsson, M.
    Stockholm University, Faculty of Science, Department of Astronomy.
    Baldini, L.
    Ballet, J.
    Band, D. L.
    Barbiellini, G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Bhat, P. N.
    Bissaldi, E.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bouvier, A.
    Bregeon, J.
    Brez, A.
    Briggs, M. S.
    Brigida, M.
    Bruel, P.
    Burnett, T. H.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Casandjian, J. M.
    Cecchi, C.
    Chaplin, V.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Cominsky, L. R.
    Connaughton, V.
    Conrad, J.
    Stockholm University, Faculty of Science, Department of Physics.
    Cutini, S.
    Dermer, C. D.
    de Angelis, A.
    de Palma, F.
    Digel, S. W.
    Silva, E. do Couto e.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Focke, W. B.
    Frailis, M.
    Fukazawa, Y.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Gibby, L.
    Giebels, B.
    Giglietto, N.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Goldstein, A.
    Granot, J.
    Grenier, I. A.
    Grondin, M.-H.
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Hanabata, Y.
    Harding, A. K.
    Hayashida, M.
    Hays, E.
    Hughes, R. E.
    Jóhannesson, G.
    Johnson, A. S.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kerr, M.
    Knödlseder, J.
    Kocevski, D.
    Komin, N.
    Kouveliotou, C.
    Kuehn, F.
    Kuss, M.
    Latronico, L.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Makeev, A.
    Mazziotta, M. N.
    McBreen, S.
    McEnery, J. E.
    McGlynn, S.
    Meegan, C.
    Meurer, C.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Monte, C.
    Monzani, M. E.
    Moretti, E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nakamori, T.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohno, M.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paciesas, W. S.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Preece, R.
    Rainò, S.
    Rando, R.
    Razzano, M.
    Razzaque, S.
    Reimer, O.
    Reposeur, T.
    Ritz, S.
    Rochester, L. S.
    Rodriguez, A. Y.
    Roth, M.
    Ryde, F.
    Sadrozinski, H. F.-W.
    Sanchez, D.
    Sander, A.
    Saz Parkinson, P. M.
    Scargle, J. D.
    Sgrò, C.
    Siskind, E. J.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Stamatikos, M.
    Strickman, M. S.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Uchiyama, Y.
    Usher, T. L.
    van der Horst, A. J.
    Vasileiou, V.
    Vilchez, N.
    Vitale, V.
    von Kienlin, A.
    Waite, A. P.
    Wang, P.
    Wilson-Hodge, C.
    Winer, B. L.
    Wood, K. S.
    Ylinen, T.
    Ziegler, M.
    Fermi Observations of High-energy Gamma-ray Emission from GRB 080825C2009In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 707, no 1, p. 580-592Article in journal (Refereed)
    Abstract [en]

    The Fermi Gamma-ray Space Telescope has opened a new high-energy window in the study of gamma-ray bursts (GRBs). Here we present a thorough analysis of GRB 080825C, which triggered the Fermi Gamma-ray Burst Monitor (GBM), and was the first firm detection of a GRB by the Fermi Large Area Telescope (LAT). We discuss the LAT event selections, background estimation, significance calculations, and localization for Fermi GRBs in general and GRB 080825C in particular. We show the results of temporal and time-resolved spectral analysis of the GBM and LAT data. We also present some theoretical interpretation of GRB 080825C observations as well as some common features observed in other LAT GRBs.

  • 37. Abdo, A., et al
    et al.
    Axelsson, Magnus
    Stockholm University, Faculty of Science, Department of Astronomy.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics.
    Meurer, Christine
    Stockholm University, Faculty of Science, Department of Physics.
    Sellerholm, Alexander
    Stockholm University, Faculty of Science, Department of Physics.
    The Fermi/LAT Collaboration,
    Bright Active Galactic Nuclei Source List from the First Three Months of the Fermi Large Area Telescope All-Sky Survey2009In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 700, no 1, p. 597-622Article in journal (Refereed)
    Abstract [en]

    The first three months of sky-survey operation with the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope reveal 132 bright sources at |b|>10° with test statistic greater than 100 (corresponding to about 10σ). Two methods, based on the CGRaBS, CRATES, and BZCat catalogs, indicate high-confidence associations of 106 of these sources with known active galactic nuclei (AGNs). This sample is referred to as the LAT Bright AGN Sample (LBAS). It contains two radio galaxies, namely, Centaurus A and NGC 1275, and 104 blazars consisting of 58 flat spectrum radio quasars (FSRQs), 42 BL Lac objects, and 4 blazars with unknown classification. Four new blazars were discovered on the basis of the LAT detections. Remarkably, the LBAS includes 10 high-energy-peaked BL Lacs (HBLs), sources which were previously difficult to detect in the GeV range. Another 10 lower-confidence associations are found. Only 33 of the sources, plus two at |b| < 10°, were previously detected with Energetic Gamma-Ray Experiment Telescope(EGRET), probably due to variability. The analysis of the γ-ray properties of the LBAS sources reveals that the average GeV spectra of BL Lac objects are significantly harder than the spectra of FSRQs. No significant correlation between radio and peak γ-ray fluxes is observed. Blazar log N-log S distributions and luminosity functions are constructed to investigate the evolution of the different blazar classes, with positive evolution indicated for FSRQs but none for BL Lacs. The contribution of LAT blazars to the total extragalactic γ-ray intensity is estimated.

  • 38. Abdo, A., et al
    et al.
    Axelsson, Magnus
    Stockholm University, Faculty of Science, Department of Astronomy.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics.
    Meurer, Christine
    Stockholm University, Faculty of Science, Department of Physics.
    The Fermi/LAT Collaboration,
    Discovery of Pulsations from the Pulsar J0205+6449 in SNR 3C 58 with the Fermi Gamma-Ray Space Telescope2009In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 699, no 2, p. L102-L107Article in journal (Refereed)
    Abstract [en]

    We report the discovery of γ-ray pulsations (>=0.1 GeV) from the young radio and X-ray pulsar PSR J0205 + 6449 located in the Galactic supernova remnant 3C 58. Data in the γ-ray band were acquired by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope (formerly GLAST), while the radio rotational ephemeris used to fold γ-rays was obtained using both the Green Bank Telescope and the Lovell telescope at Jodrell Bank. The light curve consists of two peaks separated by 0.49 ± 0.01 ± 0.01 cycles which are aligned with the X-ray peaks. The first γ-ray peak trails the radio pulse by 0.08 ± 0.01 ± 0.01, while its amplitude decreases with increasing energy as for the other γ-ray pulsars. Spectral analysis of the pulsed γ-ray emission suggests a simple power law of index –2.1 ± 0.1 ± 0.2 with an exponential cutoff at 3.0+1.1 –0.7 ± 0.4 GeV. The first uncertainty is statistical and the second is systematic. The integral γ-ray photon flux above 0.1 GeV is (13.7 ± 1.4 ± 3.0) × 10–8 cm–2 s–1, which implies for a distance of 3.2 kpc and assuming a broad fan-like beam a luminosity of 8.3 × 1034 erg s–1 and an efficiency η of 0.3%. Finally, we report a 95% upper limit on the flux of 1.7 × 10–8 cm–2 s–1 for off-pulse emission from the object.

  • 39. Abdo, A., et al
    et al.
    Axelsson, Magnus
    Stockholm University, Faculty of Science, Department of Astronomy.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics.
    Meurer, Christine
    Stockholm University, Faculty of Science, Department of Physics.
    The Fermi/LAT Collaboration,
    Early Fermi Gamma-ray Space Telescope Observations of the Quasar 3C 454.32009In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 699, no 1, p. 817-823Article in journal (Refereed)
    Abstract [en]

    This is the first report of Fermi Gamma-Ray Space Telescope observations of the quasar 3C 454.3, which has been undergoing pronounced long-term outbursts since 2000. The data from the Large Area Telescope, covering 2008 July 7-October 6, indicate strong, highly variable γ-ray emission with an average flux of ~3 × 10–6 photons cm–2 s–1, for energies >100 MeV. The γ-ray flux is variable, with strong, distinct, symmetrically shaped flares for which the flux increases by a factor of several on a timescale of about 3 days. This variability indicates a compact emission region, and the requirement that the source is optically thin to pair production implies relativistic beaming with Doppler factor δ>8, consistent with the values inferred from Very Long Baseline Interferometry observations of superluminal expansion (δ ~ 25). The observed γ-ray spectrum is not consistent with a simple power law, but instead steepens strongly above ~2 GeV, and is well described by a broken power law with photon indices of ~2.3 and ~3.5 below and above the break, respectively. This is the first direct observation of a break in the spectrum of a high-luminosity blazar above 100 MeV, and it is likely direct evidence for an intrinsic break in the energy distribution of the radiating particles. Alternatively, the spectral softening above 2 GeV could be due to γ-ray absorption via photon-photon pair production on the soft X-ray photon field of the host active galactic nucleus, but such an interpretation would require the dissipation region to be located very close (lsim100 gravitational radii) to the black hole, which would be inconsistent with the X-ray spectrum of the source.

  • 40. Abdo, A., et al
    et al.
    Axelsson, Magnus
    Stockholm University, Faculty of Science, Department of Astronomy.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics.
    Meurer, Christine
    Stockholm University, Faculty of Science, Department of Physics.
    The Fermi/LAT Collaboration,
    Fermi/Large Area Telescope Discovery of Gamma-Ray Emission from a Relativistic Jet in the Narrow-Line Quasar PMN J0948+00222009In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 699, no 2, p. 976-984Article in journal (Refereed)
    Abstract [en]

    We report the discovery by the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope of high-energy γ-ray emission from the peculiar quasar PMN J0948+0022 (z = 0.5846). The optical spectrum of this object exhibits rather narrow Hβ (FWHM(Hβ) ~1500 km s–1), weak forbidden lines, and is therefore classified as a narrow-line type I quasar. This class of objects is thought to have relatively small black hole mass and to accrete at a high Eddington ratio. The radio loudness and variability of the compact radio core indicate the presence of a relativistic jet. Quasi-simultaneous radio/optical/X-ray and γ-ray observations are presented. Both radio and γ-ray emissions (observed over five months) are strongly variable. The simultaneous optical and X-ray data from Swift show a blue continuum attributed to the accretion disk and a hard X-ray spectrum attributed to the jet. The resulting broadband spectral energy distribution (SED) and, in particular, the γ-ray spectrum measured by Fermi are similar to those of more powerful Flat-Spectrum Radio Quasars (FSRQs). A comparison of the radio and γ-ray characteristics of PMN J0948+0022 with the other blazars detected by LAT shows that this source has a relatively low radio and γ-ray power with respect to other FSRQs. The physical parameters obtained from modeling the SED also fall at the low power end of the FSRQ parameter region discussed in Celotti & Ghisellini. We suggest that the similarity of the SED of PMN J0948+0022 to that of more massive and more powerful quasars can be understood in a scenario in which the SED properties depend on the Eddington ratio rather than on the absolute power.

  • 41. Abdo, A., et al
    et al.
    Axelsson, Magnus
    Stockholm University, Faculty of Science, Department of Astronomy.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics.
    Meurer, Christine
    Stockholm University, Faculty of Science, Department of Physics.
    The Fermi/LAT Collaboration,
    Fermi/Large Area Telescope Discovery of Gamma-Ray Emission from the Flat-Spectrum Radio Quasar PKS 1454–3542009In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 697, no 1, p. 934-941Article in journal (Refereed)
    Abstract [en]

    We report the discovery by the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope of high-energy γ-ray (GeV) emission from the flat-spectrum radio quasar PKS 1454–354 (z = 1.424). On 2008 September 4, the source rose to a peak flux of (3.5 ± 0.7) × 10–6 ph cm–2 s–1 (E > 100 MeV) on a timescale of hours and then slowly dropped over the following 2 days. No significant spectral changes occurred during the flare. Fermi/LAT observations also showed that PKS 1454–354 is the most probable counterpart of the unidentified EGRET source 3EG J1500–3509. Multiwavelength measurements performed during the following days (7 September with Swift; 6-7 September with the ground-based optical telescope Automated Telescope for Optical Monitoring; 13 September with the Australia Telescope Compact Array) resulted in radio, optical, UV, and X-ray fluxes greater than archival data, confirming the activity of PKS 1454–354.

  • 42. Abdo, A., et al
    et al.
    Axelsson, Magnus
    Stockholm University, Faculty of Science, Department of Astronomy.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics.
    Meurer, Christine
    Stockholm University, Faculty of Science, Department of Physics.
    The Fermi/LAT Collaboration,
    Pulsed Gamma Rays from the Millisecond Pulsar J0030+0451 with the Fermi Large Area Telescope2009In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 699, no 2, p. 1171-1177Article in journal (Refereed)
    Abstract [en]

    We report the discovery of gamma-ray pulsations from the nearby isolated millisecond pulsar (MSP) PSR J0030+0451 with the Large Area Telescope on the Fermi Gamma-ray Space Telescope (formerly GLAST). This discovery makes PSR J0030+0451 the second MSP to be detected in gamma rays after PSR J0218+4232, observed by the EGRET instrument on the Compton Gamma-Ray Observatory. The spin-down power \dot{E} = 3.5 \times 10^{33} erg s–1 is an order of magnitude lower than the empirical lower bound of previously known gamma-ray pulsars. The emission profile is characterized by two narrow peaks, 0.07 ± 0.01 and 0.08 ± 0.02 wide, respectively, separated by 0.44 ± 0.02 in phase. The first gamma-ray peak falls 0.15 ± 0.01 after the main radio peak. The pulse shape is similar to that of the "normal" gamma-ray pulsars. An exponentially cutoff power-law fit of the emission spectrum leads to an integral photon flux above 100 MeV of (6.76 ± 1.05 ± 1.35) × 10–8 cm–2 s–1 with cutoff energy (1.7 ± 0.4 ± 0.5) GeV. Based on its parallax distance of (300 ± 90) pc, we obtain a gamma-ray efficiency L_\gamma / \dot{E} \simeq 15% for the conversion of spin-down energy rate into gamma-ray radiation, assuming isotropic emission.

  • 43. Abdollahi, S.
    et al.
    Acero, F.
    Ackermann, M.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bellazzini, R.
    Berenji, B.
    Berretta, A.
    Bissaldi, E.
    Blandford, R. D.
    Bonino, R.
    Bruel, P.
    Buson, S.
    Cameron, R. A.
    Caputo, R.
    Caraveo, P. A.
    Castro, D.
    Chiaro, G.
    Cibrario, N.
    Ciprini, S.
    Coronado-Blázquez, J.
    Crnogorcevic, M.
    Cutini, S.
    D'Ammando, F.
    De Gaetano, S.
    Di Lalla, N.
    Dirirsa, F.
    Di Venere, L.
    Domínguez, A.
    Fegan, S. J.
    Fiori, A.
    Fleischhack, H.
    Franckowiak, A.
    Fukazawa, Y.
    Fusco, P.
    Gammaldi, V
    Gargano, F.
    Gasparrini, D.
    Giacchino, F.
    Giglietto, N.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Green, D.
    Grenier, I. A.
    Grondin, M.-H.
    Guiriec, S.
    Gustafsson, M.
    Harding, A. K.
    Hays, E.
    Hewitt, J. W.
    Horan, D.
    Hou, X.
    Jóhannesson, Guðlaugur
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). University of Iceland, Iceland.
    Kayanoki, T.
    Kerr, M.
    Kuss, M.
    Larsson, S.
    Latronico, L.
    Lemoine-Goumard, M.
    Li, J.
    Longo, F.
    Loparco, F.
    Lubrano, P.
    Maldera, S.
    Malyshev, D.
    Manfreda, A.
    Martí-Devesa, G.
    Mazziotta, M. N.
    Mereu, I
    Michelson, P. F.
    Mirabal, N.
    Mitthumsiri, W.
    Mizuno, T.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Nuss, E.
    Omodei, N.
    Orienti, M.
    Orlando, E.
    Ormes, J. F.
    Paneque, D.
    Pei, Z.
    Persic, M.
    Pesce-Rollins, M.
    Pillera, R.
    Poon, H.
    Porter, T. A.
    Principe, G.
    Rainò, S.
    Rando, R.
    Rani, B.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Sánchez-Conde, M.
    Parkinson, P. M. Saz
    Scotton, L.
    Serini, D.
    Sgrò, C.
    Siskind, E. J.
    Spandre, G.
    Spinelli, P.
    Sueoka, K.
    Suson, D. J.
    Tajima, H.
    Tak, D.
    Thayer, J. B.
    Torres, D. F.
    Troja, E.
    Valverde, J.
    Wadiasingh, Z.
    Wood, K.
    Zaharijas, G.
    Search for New Cosmic-Ray Acceleration Sites within the 4FGL Catalog Galactic Plane Sources2022In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 933, no 2, article id 204Article in journal (Refereed)
    Abstract [en]

    Cosmic rays are mostly composed of protons accelerated to relativistic speeds. When those protons encounter interstellar material, they produce neutral pions, which in turn decay into gamma-rays. This offers a compelling way to identify the acceleration sites of protons. A characteristic hadronic spectrum, with a low-energy break around 200 MeV, was detected in the gamma-ray spectra of four supernova remnants (SNRs), IC 443, W44, W49B, and W51C, with the Fermi Large Area Telescope. This detection provided direct evidence that cosmic-ray protons are (re-)accelerated in SNRs. Here, we present a comprehensive search for low-energy spectral breaks among 311 4FGL catalog sources located within 5° from the Galactic plane. Using 8 yr of data from the Fermi Large Area Telescope between 50 MeV and 1 GeV, we find and present the spectral characteristics of 56 sources with a spectral break confirmed by a thorough study of systematic uncertainty. Our population of sources includes 13 SNRs for which the proton–proton interaction is enhanced by the dense target material; the high-mass gamma-ray binary LS I+61 303; the colliding wind binary η Carinae; and the Cygnus star-forming region. This analysis better constrains the origin of the gamma-ray emission and enlarges our view to potential new cosmic-ray acceleration sites.

  • 44. Abdollahi, S.
    et al.
    Ackermann, M.
    Ajello, M.
    Albert, A.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Becerra Gonzalez, J.
    Bellazzini, R.
    Bissaldi, E.
    Blandford, R. D.
    Bloom, E. D.
    Bonino, R.
    Bottacini, E.
    Bregeon, J.
    Bruel, P.
    Buehler, R.
    Buson, S.
    Cameron, R. A.
    Caragiulo, M.
    Caraveo, P. A.
    Cavazzuti, E.
    Cecchi, C.
    Chekhtman, A.
    Cheung, C. C.
    Chiaro, G.
    Ciprini, S.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Costantin, D.
    Costanza, F.
    Cutini, S.
    D'Ammando, F.
    de Palma, F.
    Desai, A.
    Desiante, R.
    Digel, S. W.
    Di Lalla, N.
    Di Mauro, M.
    Di Venere, L.
    Donaggio, B.
    Drell, P. S.
    Favuzzi, C.
    Fegan, S. J.
    Ferrara, E. C.
    Focke, W. B.
    Franckowiak, A.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Giglietto, N.
    Giomi, M.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Green, D.
    Grenier, I. A.
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Hays, E.
    Horan, D.
    Jogler, T.
    Johannesson, G.
    Johnson, A. S.
    Kocevski, D.
    Kuss, M.
    La Mura, G.
    Larsson, S.
    Latronico, L.
    Li, J.
    Longo, F.
    Loparco, F.
    Lovellette, M. N.
    Lubrano, P.
    Magill, J. D.
    Maldera, S.
    Manfreda, A.
    Mayer, M.
    Mazziotta, M. N.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Negro, M.
    Nuss, E.
    Ohsugi, T.
    Omodei, N.
    Orienti, M.
    Orlando, E.
    Paliya, V. S.
    Paneque, D.
    Perkins, J. S.
    Persic, M.
    Pesce-Rollins, M.
    Petrosian, V.
    Piron, F.
    Porter, T. A.
    Principe, G.
    Raino, S.
    Rando, R.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Sgro, C.
    Simone, D.
    Siskind, E. J.
    Spada, F.
    Spandre, G.
    Spinelli, P.
    Stawarz, L.
    Suson, D. J.
    Takahashi, M.
    Tanaka, K.
    Thayer, J. B.
    Thompson, D. J.
    Torres, D. F.
    Torresi, E.
    Tosti, G.
    Troja, E.
    Vianello, G.
    Wood, K. S.
    The Second Catalog of Flaring Gamma-Ray Sources from the Fermi All-sky Variability Analysis2017In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 846, no 1, article id 34Article in journal (Refereed)
    Abstract [en]

    We present the second catalog of flaring gamma-ray sources (2FAV) detected with the Fermi All-sky Variability Analysis (FAVA), a tool that blindly searches for transients over the entire sky observed by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. With respect to the first FAVA catalog, this catalog benefits from a larger data set, the latest LAT data release (Pass 8), as well as from an improved analysis that includes likelihood techniques for a more precise localization of the transients. Applying this analysis to the first 7.4 years of Fermi observations, and in two separate energy bands 0.1-0.8 GeV and 0.8-300 GeV, a total of 4547 flares were detected with significance greater than 6s (before trials), on the timescale of one week. Through spatial clustering of these flares, 518 variable gamma-ray sources were identified. Based on positional coincidence, likely counterparts have been found for 441 sources, mostly among the blazar class of active galactic nuclei. For 77 2FAV sources, no likely gamma-ray counterpart has been found. For each source in the catalog, we provide the time, location, and spectrum of each flaring episode. Studying the spectra of the flares, we observe a harder-when-brighter behavior for flares associated with blazars, with the exception of BL Lac flares detected in the low-energy band. The photon indexes of the flares are never significantly smaller than 1.5. For a leptonic model, and under the assumption of isotropy, this limit suggests that the spectrum of freshly accelerated electrons is never harder than p similar to 2.

  • 45. Abdurro'uf,
    et al.
    Coe, Dan
    Jung, Intae
    Ferguson, Henry C.
    Brammer, Gabriel
    Iyer, Kartheik G.
    Bradley, Larry D.
    Dayal, Pratika
    Windhorst, Rogier A.
    Zitrin, Adi
    Meena, Ashish Kumar
    Oguri, Masamune
    Diego, Jose M.
    Kokorev, Vasily
    Dimauro, Paola
    Adamo, Angela
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Conselice, Christopher J.
    Welch, Brian
    Vanzella, Eros
    Hsiao, Tiger Yu-Yang
    Xu, Xinfeng
    Roy, Namrata
    Mulcahey, Celia R.
    Spatially Resolved Stellar Populations of 0.3 < z < 6.0 Galaxies in WHL 0137–08 and MACS 0647+70 Clusters as Revealed by JWST: How Do Galaxies Grow and Quench over Cosmic Time?2023In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 945, no 2, article id 117Article in journal (Refereed)
    Abstract [en]

    We study the spatially resolved stellar populations of 444 galaxies at 0.3 < z < 6.0 in two clusters (WHL 0137–08 and MACS 0647+70) and a blank field, combining imaging data from the Hubble Space Telescope and JWST to perform spatially resolved spectral energy distribution (SED) modeling using ᴘɪXᴇᴅꜰɪᴛ. The high spatial resolution of the imaging data combined with magnification from gravitational lensing in the cluster fields allows us to resolve a large fraction of our galaxies (109) to subkiloparsec scales. At redshifts around cosmic noon and higher (2.5 ≲ z ≲ 6.0), we find mass-doubling times to be independent of radius, inferred from flat specific star formation rate (sSFR) radial profiles and similarities between the half-mass and half-SFR radii. At lower redshifts (1.5 ≲ z ≲ 2.5), a significant fraction of our star-forming galaxies shows evidence for nuclear starbursts, inferred from a centrally elevated sSFR and a much smaller half-SFR radius compared to the half-mass radius. At later epochs, we find more galaxies suppress star formation in their centers but are still actively forming stars in the disk. Overall, these trends point toward a picture of inside-out galaxy growth consistent with theoretical models and simulations. We also observe a tight relationship between the central mass surface density and global stellar mass with ∼0.38 dex scatter. Our analysis demonstrates the potential of spatially resolved SED analysis with JWST data. Future analysis with larger samples will be able to further explore the assembly of galaxy mass and the growth of their structures.

  • 46. Abramowski, A.
    et al.
    Acero, F.
    Aharonian, F.
    Akhperjanian, A. G.
    Anton, G.
    Balzer, A.
    Barnacka, A.
    Becherini, Y.
    Becker, J.
    Bernloehr, K.
    Birsin, E.
    Biteau, J.
    Bochow, A.
    Boisson, C.
    Bolmont, J.
    Bordas, P.
    Brucker, J.
    Brun, F.
    Brun, P.
    Bulik, T.
    Buesching, I.
    Carrigan, S.
    Casanova, S.
    Cerruti, M.
    Chadwick, P. M.
    Charbonnier, A.
    Chaves, R. C. G.
    Cheesebrough, A.
    Cologna, G.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Couturier, C.
    Dalton, M.
    Daniel, M. K.
    Davids, I. D.
    Degrange, B.
    Deil, C.
    Dickinson, Hugh J.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Djannati-Atai, A.
    Domainko, W.
    Drury, L. O 'C.
    Dubus, G.
    Dutson, K.
    Dyks, J.
    Dyrda, M.
    Egberts, K.
    Eger, P.
    Espigat, P.
    Fallon, L.
    Fegan, S.
    Feinstein, F.
    Fernandes, M. V.
    Fiasson, A.
    Fontaine, G.
    Foerster, A.
    Fuessling, M.
    Gajdus, M.
    Gallant, Y. A.
    Garrigoux, T.
    Gast, H.
    Gerard, L.
    Giebels, B.
    Glicenstein, J. F.
    Glueck, B.
    Goering, D.
    Grondin, M. -H
    Haeffner, S.
    Hague, J. D.
    Hahn, J.
    Hampf, D.
    Harris, J.
    Hauser, M.
    Heinz, S.
    Heinzelmann, G.
    Henri, G.
    Hermann, G.
    Hillert, A.
    Hinton, J. A.
    Hofmann, W.
    Hofverberg, P.
    Holler, M.
    Horns, D.
    Jacholkowska, A.
    Jahn, C.
    Jamrozy, M.
    Jung, I.
    Kastendieck, M. A.
    Katarzynski, K.
    Katz, U.
    Kaufmann, S.
    Khelifi, B.
    Klochkov, D.
    Kluzniak, W.
    Kneiske, T.
    Komin, Nu
    Kosack, K.
    Kossakowski, R.
    Krayzel, F.
    Laffon, H.
    Lamanna, G.
    Lenain, J. -P
    Lennarz, D.
    Lohse, T.
    Lopatin, A.
    Lu, C. -C
    Marandon, V.
    Marcowith, A.
    Masbou, J.
    Maurin, G.
    Maxted, N.
    Mayer, M.
    McComb, T. J. L.
    Medina, M. C.
    Mehault, J.
    Moderski, R.
    Mohamed, M.
    Moulin, E.
    Naumann, C. L.
    Naumann-Godo, M.
    de Naurois, M.
    Nedbal, D.
    Nekrassov, D.
    Nguyen, N.
    Nicholas, B.
    Niemiec, J.
    Nolan, S. J.
    Ohm, S.
    Wilhelmi, E. de Ona
    Opitz, B.
    Ostrowski, M.
    Oya, I.
    Panter, M.
    Arribas, M. Paz
    Pekeur, N. W.
    Pelletier, G.
    Perez, J.
    Petrucci, P. -O
    Peyaud, B.
    Pita, S.
    Puehlhofer, G.
    Punch, M.
    Quirrenbach, A.
    Raue, M.
    Reimer, A.
    Reimer, O.
    Renaud, M.
    de los Reyes, R.
    Rieger, F.
    Ripken, Joachim
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Rob, L.
    Rosier-Lees, S.
    Rowell, G.
    Rudak, B.
    Rulten, C. B.
    Sahakian, V.
    Sanchez, D. A.
    Santangelo, A.
    Schlickeiser, R.
    Schulz, A.
    Schwanke, U.
    Schwarzburg, S.
    Schwemmer, S.
    Sheidaei, F.
    Skilton, J. L.
    Sol, H.
    Spengler, G.
    Stawarz, L.
    Steenkamp, R.
    Stegmann, C.
    Stinzing, F.
    Stycz, K.
    Sushch, I.
    Szostek, A.
    Tavernet, J. -P
    Terrier, R.
    Tluczykont, M.
    Valerius, K.
    van Eldik, C.
    Vasileiadis, G.
    Venter, C.
    Viana, A.
    Vincent, P.
    Voelk, H. J.
    Volpe, F.
    Vorobiov, S.
    Vorster, M.
    Wagner, S. J.
    Ward, M.
    White, R.
    Wierzcholska, A.
    Zacharias, M.
    Zajczyk, A.
    Zdziarski, A. A.
    Zech, A.
    Zechlin, H. -S
    SPECTRAL ANALYSIS AND INTERPRETATION OF THE gamma-RAY EMISSION FROM THE STARBURST GALAXY NGC 2532012In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 757, no 2, p. 158-Article in journal (Refereed)
    Abstract [en]

    Very high energy (VHE; E >= 100 GeV) and high-energy (HE; 100 MeV <= E <= 100 GeV) data from gamma-ray observations performed with the H. E. S. S. telescope array and the Fermi-LAT instrument, respectively, are analyzed in order to investigate the non-thermal processes in the starburst galaxy NGC 253. The VHE gamma-ray data can be described by a power law in energy with differential photon index Gamma = 2.14 +/- 0.18(stat) +/- 0.30(sys) and differential flux normalization at 1 TeV of F-0 = (9.6 +/- 1.5(stat)(+5.7, -2.9)(sys)) x 10(-14) TeV-1 cm(-2) s(-1). A power-law fit to the differential HE gamma-ray spectrum reveals a photon index of Gamma = 2.24 +/- 0.14(stat) +/- 0.03(sys) and an integral flux between 200 MeV and 200 GeV of F(0.2-200 GeV) = (4.9 +/- 1.0(stat) +/- 0.3(sys)) x 10(-9) cm(-2) s(-1). No evidence for a spectral break or turnover is found over the dynamic range of both the LAT instrument and the H.E.S.S. experiment: a combined fit of a power law to the HE and VHE gamma-ray data results in a differential photon index Gamma = 2.34 +/- 0.03 with a p-value of 30%. The gamma-ray observations indicate that at least about 20% of the energy of the cosmic rays (CRs) capable of producing hadronic interactions is channeled into pion production. The smooth alignment between the spectra in the HE and VHE gamma-ray domain suggests that the same transport processes dominate in the entire energy range. Advection is most likely responsible for charged particle removal from the starburst nucleus from GeV to multiple TeV energies. In a hadronic scenario for the gamma-ray production, the single overall power-law spectrum observed would therefore correspond to the mean energy spectrum produced by the ensemble of CR sources in the starburst region.

  • 47. Abramowski, A.
    et al.
    Acero, F.
    Aharonian, F.
    Akhperjanian, A. G.
    Anton, G.
    Balzer, A.
    Barnacka, A.
    de Almeida, U. Barres
    Bazer-Bachi, A. R.
    Becherini, Y.
    Becker, J.
    Behera, B.
    Bernloehr, K.
    Bochow, A.
    Boisson, C.
    Bolmont, J.
    Bordas, P.
    Borrel, V.
    Brucker, J.
    Brun, F.
    Brun, P.
    Bulik, T.
    Buesching, I.
    Carrigan, S.
    Casanova, S.
    Cerruti, M.
    Chadwick, P. M.
    Charbonnier, A.
    Chaves, R. C. G.
    Cheesebrough, A.
    Chounet, L-M
    Clapson, A. C.
    Coignet, G.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dalton, M.
    Daniel, M. K.
    Davids, I. D.
    Degrange, B.
    Deil, C.
    Dickinson, Hugh J.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Djannati-Atai, A.
    Domainko, W.
    Drury, L. O ' C
    Dubois, F.
    Dubus, G.
    Dyks, J.
    Dyrda, M.
    Egberts, K.
    Eger, P.
    Espigat, P.
    Fallon, L.
    Farnier, C.
    Fegan, S.
    Feinstein, F.
    Fernandes, M. V.
    Fiasson, A.
    Fontaine, G.
    Foerster, A.
    Fuessling, M.
    Gallant, Y. A.
    Gast, H.
    Gerard, L.
    Gerbig, D.
    Giebels, B.
    Glicenstein, J. F.
    Glueck, B.
    Goret, P.
    Goering, D.
    Haeffner, S.
    Hague, J. D.
    Hampf, D.
    Hauser, M.
    Heinz, S.
    Heinzelmann, G.
    Henri, G.
    Hermann, G.
    Hinton, J. A.
    Hoffmann, A.
    Hofmann, W.
    Hofverberg, P.
    Holler, M.
    Horns, D.
    Jacholkowska, A.
    de Jager, O. C.
    Jahn, C.
    Jamrozy, M.
    Jung, I.
    Kastendieck, M. A.
    Katarzynski, K.
    Katz, U.
    Kaufmann, S.
    Keogh, D.
    Khangulyan, D.
    Khelifi, B.
    Klochkov, D.
    Kluzniak, W.
    Kneiske, T.
    Komin, Nu
    Kosack, K.
    Kossakowski, R.
    Laffon, H.
    Lamanna, G.
    Lennarz, D.
    Lohse, T.
    Lopatin, A.
    Lu, C-C
    Marandon, V.
    Marcowith, A.
    Masbou, J.
    Maurin, D.
    Maxted, N.
    McComb, T. J. L.
    Medina, M. C.
    Mehault, J.
    Moderski, R.
    Moulin, E.
    Naumann, C. L.
    Naumann-Godo, M.
    de Naurois, M.
    Nedbal, D.
    Nekrassov, D.
    Nguyen, N.
    Nicholas, B.
    Niemiec, J.
    Nolan, S. J.
    Ohm, S.
    Olive, J-P
    Wilhelmi, E. de Ona
    Opitz, B.
    Ostrowski, M.
    Panter, M.
    Arribas, M. Paz
    Pedaletti, G.
    Pelletier, G.
    Petrucci, P-O
    Pita, S.
    Puehlhofer, G.
    Punch, M.
    Quirrenbach, A.
    Raue, M.
    Rayner, S. M.
    Reimer, A.
    Reimer, O.
    Renaud, M.
    de los Reyes, R.
    Rieger, F.
    Ripken, Joachim
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Rob, L.
    Rosier-Lees, S.
    Rowell, G.
    Rudak, B.
    Rulten, C. B.
    Ruppel, J.
    Ryde, F.
    Sahakian, V.
    Santangelo, A.
    Schlickeiser, R.
    Schoeck, F. M.
    Schulz, A.
    Schwanke, U.
    Schwarzburg, S.
    Schwemmer, S.
    Sikora, M.
    Skilton, J. L.
    Sol, H.
    Spengler, G.
    Stawarz, L.
    Steenkamp, R.
    Stegmann, C.
    Stinzing, F.
    Stycz, K.
    Sushch, I.
    Szostek, A.
    Tavernet, J-P
    Terrier, R.
    Tibolla, O.
    Tluczykont, M.
    Valerius, K.
    van Eldik, C.
    Vasileiadis, G.
    Venter, C.
    Vialle, J. P.
    Viana, A.
    Vincent, P.
    Vivier, M.
    Voelk, H. J.
    Volpe, F.
    Vorobiov, S.
    Vorster, M.
    Wagner, S. J.
    Ward, M.
    Wierzcholska, A.
    Zacharias, M.
    Zajczyk, A.
    Zdziarski, A. A.
    Zech, A.
    Zechlin, H-S
    HESS OBSERVATIONS OF THE GLOBULAR CLUSTERS NGC 6388 AND M15 AND SEARCH FOR A DARK MATTER SIGNAL2011In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 735, no 1, article id 12Article in journal (Refereed)
    Abstract [en]

    Observations of the globular clusters (GCs) NGC 6388 and M15 were carried out by the High Energy Stereoscopic System array of Cherenkov telescopes for a live time of 27.2 and 15.2 hr, respectively. No gamma-ray signal is found at the nominal target position of NGC 6388 and M15. In the primordial formation scenario, GCs are formed in a dark matter (DM) halo and DM could still be present in the baryon-dominated environment of GCs. This opens the possibility of observing a DM self-annihilation signal. The DM content of the GCs NGC 6388 and M15 is modeled taking into account the astrophysical processes that can be expected to influence the DM distribution during the evolution of the GC: the adiabatic contraction of DM by baryons, the adiabatic growth of a black hole in the DM halo, and the kinetic heating of DM by stars. Ninety-five percent confidence level exclusion limits on the DM particle velocity-weighted annihilation cross section are derived for these DM halos. In the TeV range, the limits on the velocity-weighted annihilation cross section are derived at the 10(-25) cm(3) s(-1) level and a few 10(-24) cm(3) s(-1) for NGC 6388 and M15, respectively.

  • 48. Abramowski, A.
    et al.
    Aharonian, F.
    Benkhali, F. Ait
    Akhperjanian, A. G.
    Anguener, E. O.
    Backes, M.
    Balenderan, S.
    Balzer, A.
    Barnacka, A.
    Becherini, Y.
    Tjus, J. Becker
    Berge, D.
    Bernhard, S.
    Bernloehr, K.
    Birsin, E.
    Biteau, J.
    Boettcher, M.
    Boisson, C.
    Bolmont, J.
    Bordas, P.
    Bregeon, J.
    Brun, F.
    Brun, P.
    Bryan, M.
    Bulik, T.
    Carrigan, S.
    Casanova, S.
    Chadwick, P. M.
    Chakraborty, N.
    Chalme-Calvet, R.
    Chaves, R. C. G.
    Chretien, M.
    Colafrancesco, S.
    Cologna, G.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Couturier, C.
    Cui, Y.
    Dalton, M.
    Davids, I. D.
    Degrange, B.
    Deil, C.
    deWilt, P.
    Djannati-Atai, A.
    Domainko, W.
    Donath, A.
    Drury, L. O 'C.
    Dubus, G.
    Dutson, K.
    Dyks, J.
    Dyrda, M.
    Edwards, T.
    Egberts, K.
    Eger, P.
    Espigat, P.
    EGENFarnier, C.
    Fegan, S.
    Feinstein, F.
    Fernandes, M. V.
    Fernandez, D.
    Fiaon, A.
    Fontaine, G.
    Foerster, A.
    Fuessling, M.
    Gabici, S.
    Gajdus, M.
    Gallant, Y. A.
    Garrigoux, T.
    Giavitto, G.
    Giebels, B.
    Glicenstein, J. F.
    Gottschall, D.
    Grondin, M. -H
    Grudzinska, M.
    Hadsch, D.
    Haeffner, S.
    Hahn, J.
    Harris, J.
    Heinzelmann, G.
    Henri, G.
    Hermann, G.
    Hervet, O.
    Hillert, A.
    Hinton, J. A.
    Hofmann, W.
    Hofverberg, P.
    Holler, M.
    Horns, D.
    Ivascenko, A.
    Jacholkowska, A.
    Jahn, C.
    Jamrozy, M.
    Janiak, M.
    Jankowsky, F.
    Jung, I.
    Kastendieck, M. A.
    Katarzynski, K.
    Katz, U.
    Kaufmann, S.
    Khelifi, B.
    Kieffer, M.
    Klepser, S.
    Klochkov, D.
    Kluzniak, W.
    Kolitzus, D.
    Komin, Nu.
    Kosack, K.
    Krakau, S.
    Krayzel, F.
    Krueger, P. P.
    Laffon, H.
    Lamanna, G.
    Lefaucheur, J.
    Lefranc, V.
    Lemiere, A.
    Lemoine-Goumard, M.
    Lenain, J. -P
    Lohse, T.
    Lopatin, A.
    Lu, C-C
    Marandon, V.
    Marcowith, A.
    Marx, R.
    Maurin, G.
    Maxted, N.
    Mayer, M.
    McComb, T. J. L.
    Mehault, J.
    Meintjes, P. J.
    Menzler, U.
    Meyer, Manuel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Mitchell, A. M. W.
    Moderski, R.
    Mohamed, M.
    Morå, Knut
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moulin, E.
    Murach, T.
    de Naurois, M.
    Niemiec, J.
    Nolan, S. J.
    Oakes, L.
    Odaka, H.
    Ohm, S.
    Opitz, B.
    Ostrowski, M.
    Oya, I.
    Panter, M.
    Parsons, R. D.
    Arribas, M. Paz
    Pekeur, N. W.
    Pelletier, G.
    Perez, J.
    Petrucci, P. -O
    Peyaud, B.
    Pita, S.
    Poon, H.
    Puehlhofer, G.
    Punch, M.
    Quirrenbach, A.
    Raab, S.
    Reichardt, I.
    Reimer, A.
    Reimer, O.
    Renaud, M.
    Reyes, R. de Los
    Rieger, F.
    Rob, L.
    Romoli, C.
    Rosier-Lees, S.
    Rowell, G.
    Rudak, B.
    Rulten, C. B.
    Sahakian, V.
    Salek, D.
    Sanchez, D. A.
    Santangelo, A.
    Schlickeiser, R.
    Schuessler, F.
    Schulz, A.
    Schwanke, U.
    Schwarzburg, S.
    Schwemmer, S.
    Sol, H.
    Spanier, F.
    Spengler, Gerrit
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Spies, F.
    Stawarz, L.
    Steenkamp, R.
    Stegmann, C.
    Stinzing, F.
    Stycz, K.
    Sushch, I.
    Tavernet, J. -P
    Tavernier, T.
    Taylor, A. M.
    Terrier, R.
    Tluczykont, M.
    Trichard, C.
    Valerius, K.
    van Eldik, C.
    van Soelen, B.
    Vasileiadis, G.
    Veh, J.
    Venter, C.
    Viana, A.
    Vincent, P.
    Vink, J.
    Voelk, H. J.
    Volpe, F.
    Vorster, M.
    Vuillaume, T.
    Wagner, P.
    Wagner, Robert M.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ward, M.
    Weidinger, M.
    Weitzel, Q.
    White, R.
    Wierzcholska, A.
    Willmann, P.
    Woernlein, A.
    Wouters, D.
    Yang, R.
    Zabalza, V.
    Zaborov, D.
    Zacharias, M.
    Zdziarski, A. A.
    Zech, A.
    Zechlin, H. -S
    THE 2012 FLARE OF PG 1553+113 SEEN WITH HESS AND FERMI-LAT2015In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 802, no 1, article id 65Article in journal (Refereed)
    Abstract [en]

    Very high energy (VHE, E > 100 GeV)gamma-ray flaring activity of the high-frequency peaked BL Lac object PG 1553 + 113 has been detected by the H.E.S.S. telescopes. The flux of the source increased by a factor of 3 during the nights of 2012 April 26 and 27 with respect to the archival measurements with a hint of intra-night variability. No counterpart of this event has been detected in the Fermi-Large Area Telescope data. This pattern is consistent with VHE gamma(-)ray flaring being caused by the injection of ultrarelativistic particles, emitting.-rays at the highest energies. The dataset offers a unique opportunity to constrain the redshift of this source at z = 0.49 +/- 0.04 using a novel method based on Bayesian statistics. The indication of intra-night variability is used to introduce a novel method to probe for a possible Lorentz invariance violation (LIV), and to set limits on the energy scale at which Quantum Gravity (QG) effects causing LIV may arise. For the subluminal case, the derived limits are E-QG,E- 1 > 4.10 x 10(17) GeV and E-QG,E- 2 > 2.10 x 10(10) GeV for linear and quadratic LIV effects, respectively.

  • 49. Acero, F.
    et al.
    Ackermann, M.
    Ajello, M.
    Allafort, A.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Bottacini, E.
    Brandt, T. J.
    Bregeon, J.
    Brigida, M.
    Bruel, P.
    Buehler, R.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Cecchi, C.
    Charles, E.
    Chaves, R. C. G.
    Chekhtman, A.
    Chiang, J.
    Chiaro, G.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Cutini, S.
    Dalton, M.
    D'Ammando, F.
    de Palma, F.
    Dermer, C. D.
    Di Venere, L.
    do Couto e Silva, E.
    Drell, P. S.
    Drlica-Wagner, A.
    Falletti, L.
    Favuzzi, C.
    Fegan, S. J.
    Ferrara, E. C.
    Focke, W. B.
    Franckowiak, A.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Giglietto, N.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Godfrey, G.
    Gregoire, T.
    Grenier, I. A.
    Grondin, M. -H
    Grove, J. E.
    Guiriec, S.
    Hadasch, D.
    Hanabata, Y.
    Harding, A. K.
    Hayashida, M.
    Hayashi, K.
    Hays, E.
    Hewitt, J.
    Hill, A. B.
    Horan, D.
    Hou, X.
    Hughes, R. E.
    Inoue, Y.
    SUBJackson, M. S.
    Jogler, T.
    Johannesson, G.
    Johnson, A. S.
    Kamae, T.
    Kawano, T.
    Kerr, M.
    Knoedlseder, J.
    Kuss, M.
    Lande, J.
    Larsson, Stefan
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Faculty of Science, Department of Physics.
    Latronico, L.
    Lemoine-Goumard, M.
    Longo, F.
    Loparco, F.
    Lovellette, M. N.
    Lubrano, P.
    Marelli, M.
    Massaro, F.
    Mayer, M.
    Mazziotta, M. N.
    McEnery, J. E.
    Mehault, J.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nakamori, T.
    Nemmen, R.
    Nuss, E.
    Ohsugi, T.
    Okumura, A.
    Orienti, M.
    Orlando, E.
    Ormes, J. F.
    Paneque, D.
    Panetta, J. H.
    Perkins, J. S.
    Pesce-Rollins, M.
    Piron, F.
    Pivato, G.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Ritz, S.
    Roth, M.
    Rousseau, R.
    Parkinson, P. M. Saz
    Schulz, A.
    Sgro, C.
    Siskind, E. J.
    Smith, D. A.
    Spandre, G.
    Spinelli, P.
    Suson, D. J.
    Takahashi, H.
    Takeuchi, Y.
    Thayer, J. G.
    Thayer, J. B.
    Thompson, D. J.
    Tibaldo, L.
    Tibolla, O.
    Tinivella, M.
    Torres, D. F.
    Tosti, G.
    Troja, E.
    Uchiyama, Y.
    Vandenbroucke, J.
    Vasileiou, V.
    Vianello, G.
    Vitale, V.
    Werner, M.
    Winer, B. L.
    Wood, K. S.
    Yang, Zhaoyu
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    CONSTRAINTS ON THE GALACTIC POPULATION OF TeV PULSAR WIND NEBULAE USING FERMI LARGE AREA TELESCOPE OBSERVATIONS2013In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 773, no 1, p. 77-Article in journal (Refereed)
    Abstract [en]

    Pulsar wind nebulae (PWNe) have been established as the most populous class of TeV gamma-ray emitters. Since launch, the Fermi Large Area Telescope (LAT) has identified five high-energy (100 MeV < E < 100 GeV) gamma-ray sources as PWNe and detected a large number of PWN candidates, all powered by young and energetic pulsars. The wealth of multi-wavelength data available and the new results provided by Fermi-LAT give us an opportunity to find new PWNe and to explore the radiative processes taking place in known ones. The TeV gamma-ray unidentified (UNID) sources are the best candidates for finding new PWNe. Using 45 months of Fermi-LAT data for energies above 10 GeV, an analysis was performed near the position of 58 TeV PWNe and UNIDs within 5. of the Galactic plane to establish new constraints on PWN properties and find new clues on the nature of UNIDs. Of the 58 sources, 30 were detected, and this work provides their gamma-ray fluxes for energies above 10 GeV. The spectral energy distributions and upper limits, in the multi-wavelength context, also provide new information on the source nature and can help distinguish between emission scenarios, i.e., between classification as a pulsar candidate or as a PWN candidate. Six new GeV PWN candidates are described in detail and compared with existing models. A population study of GeV PWN candidates as a function of the pulsar/PWN system characteristics is presented.

  • 50. Acero, F.
    et al.
    Wagner, Robert
    Stockholm University, Faculty of Science, Department of Physics. Max-Planck-Institut für Physik, Germany.
    Zorn, J.
    Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7-39462017In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 840, no 2, article id 74Article in journal (Refereed)
    Abstract [en]

    We perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7-3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti) correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H I emission. We present a series of simulated images of RX J1713.7-3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emission observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H I observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.

1234567 1 - 50 of 825
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf