Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ahrens, Maryon
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Dumm, Jonathan P.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Flis, Samuel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Wolf, Michael
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zoll, Marcel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    PINGU: a vision for neutrino and particle physics at the South Pole2017In: Journal of Physics G: Nuclear and Particle Physics, ISSN 0954-3899, E-ISSN 1361-6471, Vol. 44, no 5, article id 054006Article in journal (Refereed)
    Abstract [en]

    The Precision IceCube Next Generation Upgrade (PINGU) is a proposed low-energy in-fill extension to the IceCube Neutrino Observatory. With detection technology modeled closely on the successful IceCube example, PINGU will provide a 6 Mton effective mass for neutrino detection with an energy threshold of a few GeV. With an unprecedented sample of over 60 000 atmospheric neutrinos per year in this energy range, PINGU will make highly competitive measurements of neutrino oscillation parameters in an energy range over an order of magnitude higher than long-baseline neutrino beam experiments. PINGU will measure the mixing parameters theta(23) and Delta m(32)(2), including the octant of theta(23) for a wide range of values, and determine the neutrino mass ordering at 3 sigma median significance within five years of operation. PINGU's high precision measurement of the rate of nu(T) appearance will provide essential tests of the unitarity of the 3 x 3 PMNS neutrino mixing matrix. PINGU will also improve the sensitivity of searches for low mass dark matter in the Sun, use neutrino tomography to directly probe the composition of the Earth's core, and improve IceCube's sensitivity to neutrinos from Galactic supernovae. Reoptimization of the PINGU design has permitted substantial reduction in both cost and logistical requirements while delivering performance nearly identical to configurations previously studied.

  • 2.
    Makonyi, Karoly
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Preston, Markus
    Stockholm University, Faculty of Science, Department of Physics.
    Tegnér, Per Erik
    Stockholm University, Faculty of Science, Department of Physics.
    Wölbing, Dirk
    Stockholm University, Faculty of Science, Department of Physics.
    Technical design report for the (P)over-barANDA Barrel DIRC detector2019In: Journal of Physics G: Nuclear and Particle Physics, ISSN 0954-3899, E-ISSN 1361-6471, Vol. 46, no 4, article id 045001Article in journal (Refereed)
    Abstract [en]

    The (P) over bar ANDA (anti-Proton ANnihiliation at DArmstadt) experiment will be one of the four flagship experiments at the new international accelerator complex FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. (P) over bar ANDA will address fundamental questions of hadron physics and quantum chromodynamics using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c and a design luminosity of up to 2 x 10(32) cm(-2) S-1. Excellent particle identification (PID) is crucial to the success of the (P) over bar ANDA physics program. Hadronic PID in the barrel region of the target spectrometer will be performed by a fast and compact Cherenkov counter using the detection of internally reflected Cherenkov light (DIRC) technology. It is designed to cover the polar angle range from 22 degrees to 140 degrees and will provide at least 3 standard deviations (s.d.) pi/K separation up to 3.5 GeV/c, matching the expected upper limit of the final state kaon momentum distribution from simulation. This documents describes the technical design and the expected performance of the (P) over bar ANDA Barrel DIRC detector. The design is based on the successful BaBar DIRC with several key improvements. The performance and system cost were optimized in detailed detector simulations and validated with full system prototypes using particle beams at GSI and CERN. The final design meets or exceeds the PID goal of clean pi/K separation with at least 3 s.d. over the entire phase space of charged kaons in the Barrel DIRC.

  • 3. Nakamura, K.
    et al.
    Hagiwara, K.
    Hikasa, K.
    Milstead, David
    Stockholm University, Faculty of Science, Department of Physics.
    Review of Particle Physics2010In: Journal of Physics G: Nuclear and Particle Physics, ISSN 0954-3899, E-ISSN 1361-6471, Vol. 37, no 7A, p. 075021-Article, review/survey (Refereed)
    Abstract [en]

    This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2158 new measurements from 551 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 108 reviews are many that are new or heavily revised including those on neutrino mass, mixing, and oscillations, QCD, top quark, CKM quark-mixing matrix, V-ud & V-us, V-cb & V-ub, fragmentation functions, particle detectors for accelerator and non-accelerator physics, magnetic monopoles, cosmological parameters, and big bang cosmology.

  • 4.
    O'Connor, Evan
    et al.
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). North Carolina State University, United States of America.
    Boilig, Robert
    Burrows, Adam
    Couch, Sean
    Fischer, Tobias
    Janka, Hans-Thomas
    Kotake, Kei
    Lentz, Eric J.
    Liebendörfer, Matthias
    Messer, O. E. Bronson
    Mezzacappa, Anthony
    Takiwaki, Tomoya
    Vartanyan, David
    Global comparison of core-collapse supernova simulations in spherical symmetry2018In: Journal of Physics G: Nuclear and Particle Physics, ISSN 0954-3899, E-ISSN 1361-6471, Vol. 45, no 10, article id 104001Article in journal (Refereed)
    Abstract [en]

    We present a comparison between several simulation codes designed to study the core-collapse supernova mechanism. We pay close attention to controlling the initial conditions and input physics in order to ensure a meaningful and informative comparison. Our goal is three-fold. First, we aim to demonstrate the current level of agreement between various groups studying the corecollapse supernova central engine. Second, we desire to form a strong basis for future simulation codes and methods to compare to. Lastly, we want this work to be a stepping stone for future work exploring more complex simulations of core-collapse supernovae, i.e., simulations in multiple dimensions and simulations with modern neutrino and nuclear physics. We compare the early (first similar to 500 ms after core bounce) spherically-symmetric evolution of a 20 M-circle dot progenitor star from six different core-collapse supernovae codes: 3DnSNeIDS A, AGILE-BOLTZTRAN, FLASH, FORNAX, GR1D, and PROMETHEUS-VERTEX. Given the diversity of neutrino transport and hydrodynamic methods employed, we find excellent agreement in many critical quantities, including the shock radius evolution and the amount of neutrino heating. Our results provide an excellent starting point from which to extend this comparison to higher dimensions and compare the development of hydrodynamic instabilities that are crucial to the supernova explosion mechanism, such as turbulence and convection.

  • 5. Pan, Kuo-Chuan
    et al.
    Mattes, Carlos
    O'Connor, Evan P.
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Couch, Sean M.
    Perego, Albino
    Arcones, Almudena
    The impact of different neutrino transport methods on multidimensional core-collapse supernova simulations2019In: Journal of Physics G: Nuclear and Particle Physics, ISSN 0954-3899, E-ISSN 1361-6471, Vol. 46, no 1, article id 014001Article in journal (Refereed)
    Abstract [en]

    Neutrinos play a crucial role in the core-collapse supernova (CCSN) explosion mechanism. The requirement of accurately calculating the transport of neutrinos makes simulations of the CCSN mechanism extremely challenging and computationally expensive. Historically, this stiff challenge has been met by making approximations to the full transport equation. In this work, we compare CCSN simulations in one- and two-dimensions with three approximate neutrino transport schemes, each implemented in the FLASH simulation framework. We compare a two-moment M1 scheme with an analytic closure (M1), the isotropic diffusion source approximation (IDSA), and the advanced spectral leakage method. We identify and discuss the advantages and disadvantages of each scheme. For each approximate transport scheme, we use identical grid setups, hydrodynamics, and gravity solvers to investigate the transport effects on supernova shock dynamics and neutrino quantities. We find that the transport scheme has a small effect on the evolution of protoneutron star (PNS) radius, PNS mass, and the mass accretion rate. The neutrino luminosities, mean energies, and shock radii have a -10%-20% quantitative difference but the overall qualitative trends are fairly consistent between all three approximations. We find larger differences in the gain region properties, including the gain region mass and the net heating rate in the gain region, as well as the strength of PNS convection in the core. We investigate the progenitor, nuclear equation of state, and stochastic perturbation dependence of our simulations and find similar magnitudes of impact on key quantities. We also compare the computational expense of the various approximations.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf