Change search
Refine search result
1 - 20 of 20
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abulaiti, Yabul
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Åsman, Barbro
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bendtz, Katarina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Eriksson, Daniel
    Stockholm University, Faculty of Science, Department of Physics.
    Gellerstedt, Karl
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Holmgren, Sven-Olof
    Stockholm University, Faculty of Science, Department of Physics.
    Johansen, M.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Johansson, K. E.
    Stockholm University, Faculty of Science, Department of Physics.
    Jon-And, Kerstin
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Khandanyan, Hovhannes
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Hyeon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Klimek, Pawel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lundberg, Johan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lundberg, Olle
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ohm, C. C.
    CERN.
    Papadelis, Aras
    Stockholm University, Faculty of Science, Department of Physics.
    Petridis, Andreas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Plucinski, Pawel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Tylmad, Maja
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Yang, Zhaoyu
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dynamics of isolated-photon plus jet production in pp collisions at root s=7 TeV with the ATLAS detector2013In: Nuclear Physics B, ISSN 0550-3213, E-ISSN 1873-1562, Vol. 875, no 3, p. 483-535Article in journal (Refereed)
    Abstract [en]

    The dynamics of isolated-photon plus jet production in pp collisions at a centre-of-mass energy of 7 TeV has been studied with the ATLAS detector at the LHC using an integrated luminosity of 37 pb(-1). Measurements of isolated-photon plus jet bin-averaged cross sections are presented as functions of photon transverse energy, jet transverse momentum and jet rapidity. In addition, the bin-averaged cross sections as functions of the difference between the azimuthal angles of the photon and the jet, the photon jet invariant mass and the scattering angle in the photon jet centre-of-mass frame have been measured. Next-to-leading-order QCD calculations are compared to the measurements and provide a good description of the data, except for the case of the azimuthal opening angle.

  • 2.
    Abulaiti, Yiming
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Åkerstedt, Henrik
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Åsman, Barbro
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bendtz, Katarina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bertoli, Gabriele
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bessidskaia Bylund, Olga
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Carney, Rebecca M. D.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Cribbs, Wayne A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Gellerstedt, Karl
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jon-And, Kerstin
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lundberg, Olof
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Molander, Simon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pani, Priscilla
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pöttgen, Ruth
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Rossetti, Valerio
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shcherbakova, Anna
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ughetto, Michaël
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdes Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Wallängen, Veronica
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    High-E-T isolated-photon plus jets production in pp collisions at root s=8 TeV with the ATLAS detector2017In: Nuclear Physics B, ISSN 0550-3213, E-ISSN 1873-1562, Vol. 918, p. 257-316Article in journal (Refereed)
    Abstract [en]

    The dynamics of isolated-photon plus one-, two- and three-jet production in pp collisions at a centre-of-mass energy of 8 TeV are studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 20.2 fb(-1). Measurements of isolated-photon plus jets cross sections are presented as functions of the photon and jet transverse momenta. The cross sections as functions of the azimuthal angle between the photon and the jets, the azimuthal angle between the jets, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass system are presented. The pattern of QCD radiation around the photon and the leading jet is investigated by measuring jet production in an annular region centred on each object; enhancements are observed around the leading jet with respect to the photon in the directions towards the beams. The experimental measurements are compared to several different theoretical calculations, and overall a good description of the data is found.

  • 3.
    Abulaiti, Yiming
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Åkerstedt, Henrik
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Åsman, Barbro
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bendtz, Katarina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bertoli, Gabriele
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bessidskaia Bylund, Olga
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Cribbs, Wayne A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jon-And, Kerstin
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Khandanyan, Hovhannes
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Hyeon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Klimek, Pawel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lundberg, Olof
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Molander, Simon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pani, Priscilla
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Petridis, Andreas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Plucinski, Pawel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pöttgen, Ruth
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Rossetti, Valerio
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shcherbakova, Anna
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Tylmad, Maja
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ughetto, Michaël
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Measurement of D-*+/-, D-+/- and D-S(+/-) meson production cross sections in pp collisions at root s=7 TeV with the ATLAS detector2016In: Nuclear Physics B, ISSN 0550-3213, E-ISSN 1873-1562, Vol. 907, p. 717-763Article in journal (Refereed)
    Abstract [en]

    The production of D*(+/-), D-+/- and D-S(+/-) charmed mesons has been measured with the ATLAS detector in pp collisions at,/7s = 7 TeV at the LHC, using data corresponding to an integrated luminosity of 280 nb(-)1(.) The charmed mesons have been reconstructed in the range of transverse momentum 3.5 < p(T)(D) < 100 GeV and pseudorapidity vertical bar eta(D)vertical bar < 2.1. The differential cross sections as a function of transverse momentum and pseudorapidity were measured for D*(+/-) and D-+/- production. The next-to-leading-order QCD predictions are consistent with the data in the visible kinematic region within the large theoretical uncertainties. Using the visible D cross sections and an extrapolation to the full kinematic phase space, the strangeness -suppression factor in charm fragmentation, the fraction of charged non -strange D mesons produced in a vector state, and the total cross section of charm production at root s = 7 TeV were derived.

  • 4.
    Abulaiti, Yiming
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Åkerstedt, Henrik
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Åsman, Barbro
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bendtz, Katarina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bertoli, Gabriele
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bessidskaia, Olga
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Cribbs, Wayne A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Eriksson, Daniel
    Stockholm University, Faculty of Science, Department of Physics.
    Gellerstedt, Karl
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Johansson, K. Erik
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jon-And, Kerstin
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Khandanyan, Hovhannes
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Hyeon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Klimek, Pawel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lundberg, Olof
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Molander, Simon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ohm, Christian C.
    CERN, Switzerland.
    Petridis, Andreas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Plucinski, Pavel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Rossetti, Valerio
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Tylmad, Maja
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Measurement of the total cross section from elastic scattering in pp collisions at root s=7 TeV with the ATLAS detector2014In: Nuclear Physics B, ISSN 0550-3213, E-ISSN 1873-1562, Vol. 889, p. 486-548Article in journal (Refereed)
    Abstract [en]

    A measurement of the total pp cross section at the LHC at root s = 7 TeV is presented. In a special run with high-beta* beam optics, an integrated luminosity of 80 mu b(-1) was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable t. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the vertical bar t vertical bar range from 0.01 GeV2 to 0.1 GeV2 to extrapolate to vertical bar t vertical bar --> 0, the total cross section, sigma(tot)(pp --> X), is measured via the optical theorem to be: sigma(tot)(pp --> X) = 95.35 +/- 0.38 (stat.) +/- 1.25 (exp.) +/- 0.37 (extr.) mb, where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to vertical bar t vertical bar --> 0. In addition, the slope of the elastic cross section at small vertical bar t vertical bar is determined to be B = 19.73 +/- 0.14 (stat.) +/- 0.26 (syst.) GeV-2.

  • 5.
    Ahrens, Maryon
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Dumm, Jonathan P.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Flis, Samuel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hulth, Per Olof
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Wolf, Martin
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zoll, Marcel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Neutrino oscillation studies with IceCube-DeepCore2016In: Nuclear Physics B, ISSN 0550-3213, E-ISSN 1873-1562, Vol. 908, p. 161-177Article in journal (Refereed)
    Abstract [en]

    IceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle and performance, the method used to make these calculations, as well as the results, is detailed. Finally, the future prospects of IceCube-DeepCore and the next generation of neutrino experiments at the South Pole (IceCube-Gen2, specifically the PINGU sub-detector) are briefly discussed.

  • 6.
    Anastasiou, Alexandros
    et al.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Borsten, L.
    Duff, M. J.
    Marrani, A.
    Nagy, S.
    Zoccali, M.
    Are all supergravity theories Yang-Mills squared?2018In: Nuclear Physics B, ISSN 0550-3213, E-ISSN 1873-1562, Vol. 934, p. 606-633Article in journal (Refereed)
    Abstract [en]

    Using simple symmetry arguments we classify the ungauged D = 4, N = 2 supergravity theories, coupled to both vector and hyper multiplets through homogeneous scalar manifolds, that can be built as the product of N = 2 and N= 0 matter-coupled Yang-Mills gauge theories. This includes all such supergravities with two isolated exceptions: pure supergravity and the T-3 model.

  • 7.
    Backenstoss, G.
    et al.
    Institute for Physics, University of Basle.
    Hasinoff, M.
    Institute for Physics, University of Basle.
    Pavlopoulos, P.
    Institute for Physics, University of Basle.
    Repond, J.
    Institute for Physics, University of Basle.
    Tauscher, L.
    Institute for Physics, University of Basle.
    Tröster, D.
    Institute for Physics, University of Basle.
    Blüm, P.
    Kernforschungszentrum, Universität Karlsruche.
    Guigas, R.
    Kernforschungszentrum, Universität Karlsruche.
    Koch, H.
    Kernforschungszentrum, Universität Karlsruche.
    Meyer, M.
    Kernforschungszentrum, Universität Karlsruche.
    Poth, H.
    Kernforschungszentrum, Universität Karlsruche.
    Raich, U.
    Kernforschungszentrum, Universität Karlsruche.
    Richter, B.
    Kernforschungszentrum, Universität Karlsruche.
    Adiels, L.
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Bergström, I.
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Fransson, K.
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Kerek, A.
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Suffert, M.
    Centre de recherches nucléaries and Université Louis Pasteur, Strabourg.
    Zioutas, K.
    Dept. of Nuclear Physics, Univerity of Tessaloniki.
    Proton-antiproton annihilations at rest into π0ω, π0η, π0γ, π0π0, and π0η’1983In: Nuclear Physics B, ISSN 0550-3213, E-ISSN 1873-1562, Vol. 228, no 3, p. 424-438Article in journal (Refereed)
  • 8.
    Borsato, Riccardo
    et al.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). KTH Royal Institute of Technology, Sweden.
    Torrielli, Alessandro
    q-Poincare supersymmetry in AdS(5)/CFT42018In: Nuclear Physics B, ISSN 0550-3213, E-ISSN 1873-1562, Vol. 928, p. 321-355Article in journal (Refereed)
    Abstract [en]

    We consider the exact S-matrix governing the planar spectral problem for strings on AdS(5) x S-5 and N = 4 super Yang-Mills, and we show that it is invariant under a novel boost symmetry, which acts as a differentiation with respect to the particle momentum. This generator leads us also to reinterpret the usual centrally extended psu(2 vertical bar 2) symmetry, and to conclude that the S-matrix is invariant under a q-Poincare supersymmetry algebra, where the deformation parameter is related to the 't Hooft coupling. We determine the two-particle action (coproduct) that turns out to be non-local, and study the property of the new symmetry under crossing transformations. We look at both the strong-coupling (large tension in the string theory) and weak-coupling (spin-chain description of the gauge theory) limits; in the former regime we calculate the cobracket utilising the universal classical r-matrix of Beisert and Spill. In the eventuality that the boost has higher partners, we also construct a quantum affine version of 2D Poincare symmetry, by contraction of the quantum affine algebra U-q((sl(2)) over cap) in Drinfeld's second realisation.

  • 9.
    Cagnazzo, Alessandra
    et al.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). DESY Hamburg, Germany.
    Schomerus, Volker
    Tlapak, Vaclav
    Spectra of sigma models on semi-symmetric spaces2016In: Nuclear Physics B, ISSN 0550-3213, E-ISSN 1873-1562, Vol. 906, p. 342-366Article in journal (Refereed)
    Abstract [en]

    Sigma models on semi-symmetric spaces provide the central building block for string theories on AdS backgrounds. Under certain conditions on the global supersymmetry group they can be made one-loop conformal by adding an appropriate fermionic Wess-Zumino term. We determine the full one-loop dilation operator of the theory. It involves an interesting new XXZ-like interaction term. Eigenvalues of our dilation operator, i.e. the one-loop anomalous dimensions, are computed for a few examples.

  • 10. Leurent, Sébastien
    et al.
    Volin, Dmytro
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Bogolyubov Institute for Theoretical Physics, Ukraine.
    Multiple zeta functions and double wrapping in planar N=4 SYM2013In: Nuclear Physics B, ISSN 0550-3213, E-ISSN 1873-1562, Vol. 875, no 3, p. 757-789Article in journal (Refereed)
    Abstract [en]

    Using the FiNLIE solution of the AdS/CFT Y-system, we compute the anomalous dimension of the Konishi operator in planar N = 4 SYM up to eight loops, i.e. up to the leading double wrapping order. At this order a non-reducible Euler Zagier sum, zeta(1,2.8), appears for the first time. We find that at all orders in perturbation, every spectral-dependent quantity of the Y-system is expressed through multiple Hurwitz zeta functions, hence we provide a Mathematica package to manipulate these functions, including the particular case of Euler-Zagier sums. Furthermore, we conjecture that only Euler Zagier sums can appear in the answer for the anomalous dimension at any order in perturbation theory. We also resum the leading transcendentality terms of the anomalous dimension at all orders, obtaining a simple result in terms of Bessel functions. Finally, we demonstrate that exact Bethe equations should be related to an absence of poles condition that becomes especially non-trivial at double wrapping.

  • 11.
    Mancarella, Francesco
    et al.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). KTH Royal Institute of Technology, Sweden.
    Mussardo, Giuseppe
    Trombettoni, Andrea
    Energy-pressure relation for low-dimensional gases2014In: Nuclear Physics B, ISSN 0550-3213, E-ISSN 1873-1562, Vol. 887, p. 216-245Article in journal (Refereed)
    Abstract [en]

    A particularly simple relation of proportionality between internal energy and pressure holds for scale-invariant thermodynamic systems (with Hamiltonians homogeneous functions of the coordinates), including classical and quantum - Bose and Fermi - ideal gases. One can quantify the deviation from such a relation by introducing the internal energy shift as the difference between the internal energy of the system and the corresponding value for scale-invariant (including ideal) gases. After discussing some general thermodynamic properties associated with the scale-invariance, we provide criteria for which the internal energy shift density of an imperfect (classical or quantum) gas is a bounded function of temperature. We then study the internal energy shift and deviations from the energy pressure proportionality in low-dimensional models of gases interpolating between the ideal Bose and the ideal Fermi gases, focusing on the Lieb-Liniger model in id and on the anyonic gas in 2d. In Id the internal energy shift is determined from the thermodynamic Bethe ansatz integral equations and an explicit relation for it is given at high temperature. Our results show that the internal energy shift is positive, it vanishes in the two limits of zero and infinite coupling (respectively the ideal Bose and the Tonks-Girardeau gas) and it has a maximum at a finite, temperature-depending, value of the coupling. Remarkably, at fixed coupling the energy shift density saturates to a finite value for infinite temperature. In 2d we consider systems of Abelian anyons and non-Abelian Chern-Simons particles: as it can be seen also directly from a study of the virial coefficients, in the usually considered hard-core limit the internal energy shift vanishes and the energy is just proportional to the pressure, with the proportionality constant being simply the area of the system. Soft-core boundary conditions at coincident points for the two-body wavefunction introduce a length scale, and induce a non-vanishing internal energy shift: the soft-core thermodynamics is considered in the dilute regime for both the families of anyonic models and in that limit we can show that the energy pressure ratio does not match the area of the system, opposed to what happens for hard-core (and in particular 2d Bose and Fermi) ideal anyonic gases.

  • 12. Marboe, Christian
    et al.
    Volin, Dmytro
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Trinity College Dublin, Ireland; Bogolyubov Institute for Theoretical Physics, Ukraine.
    Quantum spectral curve as a tool for a perturbative quantum field theory2015In: Nuclear Physics B, ISSN 0550-3213, E-ISSN 1873-1562, Vol. 899, p. 810-847Article in journal (Refereed)
    Abstract [en]

    An iterative procedure perturbatively solving the quantum spectral curve of planar N = 4 SYM for any operator in the sl(2) sector is presented. A mathematica notebook executing this procedure is enclosed. The obtained results include 10-loop computations of the conformal dimensions of more than ten different operators. We prove that the conformal dimensions are always expressed, at any loop order, in terms of multiple zeta-values with coefficients from an algebraic number field determined by the one-loop Baxter equation. We observe that all the perturbative results that were computed explicitly are given in terms of a smaller algebra: single-valued multiple zeta-values times the algebraic numbers.

  • 13. McInnes, Brett
    et al.
    Ong, Yen Chin
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    When is holography consistent?2015In: Nuclear Physics B, ISSN 0550-3213, E-ISSN 1873-1562, Vol. 898, p. 197-219Article in journal (Refereed)
    Abstract [en]

    Holographic duality relates two radically different kinds of theory: one with gravity, one without. The very existence of such an equivalence imposes strong consistency conditions which are, in the nature of the case, hard to satisfy. Recently a particularly deep condition of this kind, relating the minimum of a probe brane action to a gravitational bulk action (in a Euclidean formulation), has been recognized; and the question arises as to the circumstances under which it, and its Lorentzian counterpart, is satisfied. We discuss the fact that there are physically interesting situations in which one or both versions might, in principle, not be satisfied. These arise in two distinct circumstances: first, when the bulk is not an Einstein manifold and, second, in the presence of angular momentum. Focusing on the application of holography to the quark-gluon plasma (of the various forms arising in the early Universe and in heavy-ion collisions), we find that these potential violations never actually occur. This suggests that the consistency condition is a law of physics expressing a particular aspect of holography.

  • 14.
    Ong, Yen Chin
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Hawking evaporation time scale of topological black holes in anti-de Sitter spacetime2016In: Nuclear Physics B, ISSN 0550-3213, E-ISSN 1873-1562, Vol. 903, p. 387-399Article in journal (Refereed)
    Abstract [en]

    It was recently pointed out that if an absorbing boundary condition is imposed at infinity, an asymptotically anti-de Sitter Schwarzschild black hole with a spherical horizon takes only a finite amount of time to evaporate away even if its initial mass is arbitrarily large. We show that this is a rather generic property in AdS spacetimes: regardless of their horizon topologies, neutral AdS black holes in general relativity take about the same amount of time to evaporate down to the same size of order L, the AdS length scale. Our discussion focuses on the case in which the black hole has toral event horizon. A brief comment is made on the hyperbolic case, i.e. for black holes with negatively curved horizons.

  • 15.
    Ong, Yen Chin
    et al.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). National Taiwan University, Taiwan.
    McInnes, Brett
    Chen, Pisin
    Cold black holes in the Harlow-Hayden approach to firewalls2015In: Nuclear Physics B, ISSN 0550-3213, E-ISSN 1873-1562, Vol. 891, p. 627-654Article in journal (Refereed)
    Abstract [en]

    Firewalls are controversial principally because they seem to imply departures from general relativistic expectations in regions of spacetime where the curvature need not be particularly large. One of the virtues of the Harlow-Hayden approach to the firewall paradox, concerning the time available for decoding of Hawking radiation emanating from charged AdS black holes, is precisely that it operates in the context of cold black holes, which are not strongly curved outside the event horizon. Here we clarify this point. The approach is based on ideas borrowed from applications of the AdS/CFT correspondence to the quark-gluon plasma. Firewalls aside, our work presents a detailed analysis of the thermodynamics and evolution of evaporating charged AdS black holes with flat event horizons. We show that, in one way or another, these black holes are always eventually destroyed in a time which, while long by normal standards, is short relative to the decoding time of Hawking radiation.

  • 16. Schmidt, Daniel
    et al.
    Schwetz, Thomas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Max-Planck-Institut für Kernphysik, Germany.
    Zhang, He
    Status of the Zee-Babu model for neutrino mass and possible tests at a like-sign linear collider2014In: Nuclear Physics B, ISSN 0550-3213, E-ISSN 1873-1562, Vol. 885, p. 524-541Article in journal (Refereed)
    Abstract [en]

    We provide an updated scan of the allowed parameter space of the two-loop Zee Babu model for neutrino mass. Taking into account most recent experimental data on mu -> e gamma as well as the mixing angle 13 we obtain lower bounds on the masses of the singly and doubly charged scalars of between 1 and 2 TeV, with some dependence on perturbativity and fine-tuning requirements. This makes the scalars difficult to observe at LHC with 14 TeV even with optimistic assumptions on the luminosity, and would require a multi-TeV linear collider to see the scalar resonances. We point out, however, that a sub-TeV linear collider in the like-sign mode may be able to observe lepton flavor violating processes such as e e pc due to contact interactions induced by the doubly charged scalar with masses up to around 10 TeV. We investigate the possibility to distinguish the Zee Babu model from the Higgs triplet model using such processes.

  • 17.
    Zheltukhin, Aleksandr A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Kharkov Institute of Physics and Technology, Ukraine.
    Toroidal p-branes, anharmonic oscillators and (hyper)elliptic solutions2012In: Nuclear Physics B, ISSN 0550-3213, E-ISSN 1873-1562, Vol. 858, no 1, p. 142-154Article in journal (Refereed)
    Abstract [en]

    Exact solvability of brane equations is studied, and a new U(1) x U(I) x ... x U(1) invariant anzats for the solution of p-brane equations in D = (2p + 1)-dimensional Minkowski space is proposed. The reduction of the p-brane Hamiltonian to the Hamiltonian of p-dimensional relativistic anharmonic oscillator with the monomial potential of the degree equal to 2p is revealed. For the case of degenerate p-torus with equal radii it is shown that the p-brane equations are integrable and their solutions are expressed in terms of elliptic (p = 2) or hyperelliptic (p > 2) functions. The solution describes contracting p-brane with the contraction time depending on p and the brane energy density. The toroidal brane elasticity is found to break down linear Hooke law as it takes place for the anharmonic elasticity of smectic liquid crystals.

  • 18.
    Zheltukhin, Alexandr A.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Kharkov Institute of Physics and Technology, Ukraine.
    Laplace-Beltrami operator and exact solutions for branes2013In: Nuclear Physics B, ISSN 0550-3213, E-ISSN 1873-1562, Vol. 867, no 3, p. 763-778Article in journal (Refereed)
    Abstract [en]

    Proposed is a new approach to finding exact solutions of nonlinear p-brane equations in D-dimensional Minkowski space based on the use of various initial value constraints. It is shown that the constraints Delta((p))(x) over right arrow =0 and Delta((p))(x) over right arrow = -Lambda(t, sigma(r))(x) over right arrow give two sets of exact solutions.

  • 19.
    Åsman, Barbro
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bendtz, Katarina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Eriksson, Daniel
    Stockholm University, Faculty of Science, Department of Physics.
    Gellerstedt, Karl
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Holmgren, Sven-Olof
    Stockholm University, Faculty of Science, Department of Physics.
    Johansen, Marianne
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Johansson, K. E.
    Stockholm University, Faculty of Science, Department of Physics.
    Jon-And, Kerstin
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Hyeon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Klimek, Pawel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lundberg, Johan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lundberg, Olof
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ohm, Christian C.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Papadelis, Aras
    Stockholm University, Faculty of Science, Department of Physics.
    Sellden, Björn
    Stockholm University, Faculty of Science, Department of Physics.
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Tylmad, Maja
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Yang, Zhaoyu
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Measurement of the b-hadron production cross section using decays to D*(+)mu X- final states in pp collisions at root s=7 TeV with the ATLAS detector2012In: Nuclear Physics B, ISSN 0550-3213, E-ISSN 1873-1562, Vol. 864, no 3, p. 341-381Article in journal (Refereed)
    Abstract [en]

    The b-hadron production cross section is measured with the ATLAS detector in pp collisions at root s = 7 TeV, using 3.3 pb(-1) of integrated luminosity, collected during the 2010 LHC run. The b-hadrons are selected by partially reconstructing D*(+)mu X- final states. Differential cross sections are measured as functions of the transverse momentum and pseudorapidity. The measured production cross section for a b-hadron with p(T) > 9 GeV and vertical bar eta vertical bar < 2.5 is 32.7 +/- 0.8(stat.)(-6.8)(+4.5)(syst.) mu b, higher than the next-to-leading-order QCD predictions but consistent within the experimental and theoretical uncertainties.

  • 20.
    Åsman, Barbro
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Eriksson, Daniel
    Stockholm University, Faculty of Science, Department of Physics.
    Gellerstedt, Karl
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hidvégi, Attila
    Stockholm University, Faculty of Science, Department of Physics.
    Holmgren, Sven-Olof
    Stockholm University, Faculty of Science, Department of Physics.
    Johansen, Marianne
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Johansson, Erik
    Stockholm University, Faculty of Science, Department of Physics.
    Jon-And, Kerstin
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lesser, Jonas
    Stockholm University, Faculty of Science, Department of Physics.
    Lundberg, Johan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Nordkvist, Björn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ohm, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Papadelis, Aras
    Stockholm University, Faculty of Science, Department of Physics.
    Ramstedt, Magnus
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Selldén, Björn
    Stockholm University, Faculty of Science, Department of Physics.
    Silverstein, Samuel
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Tylmad, Maja
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Yang, Zhaoyu
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Measurement of the Differential Cross-Sections of Inclusive, Prompt and Non-Prompt $J/\psi$ Production in Proton-Proton Collisions at $\sqrt{s}=7$ TeV2011In: Nuclear Physics B, ISSN 0550-3213, E-ISSN 1873-1562, Vol. 850, no 3, p. 387-444Article in journal (Refereed)
1 - 20 of 20
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf