Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Greenwood, Sarah L.
    et al.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Gyllencreutz, Richard
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Jakobsson, Martin
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Anderson, John B.
    Ice-flow switching and East/West Antarctic Ice Sheet roles in glaciation of the western Ross Sea2012In: Geological Society of America Bulletin, ISSN 0016-7606, E-ISSN 1943-2674, Vol. 124, no 11-12, p. 1736-1749Article in journal (Refereed)
    Abstract [en]

    The long-term behavior of the East and West Antarctic Ice Sheets, and their respective responses to forcing provide essential context for assessment of modern dynamic changes in ice-flow regimes and ice-sheet and shelf margins. The western Ross Sea discharges ice from both the East and West Antarctic Ice Sheets, and the paleoglacial record from this region is therefore valuable in unraveling their long-term behavior. New, high-resolution multibeam bathymetric data reveal snapshots of well-preserved glacial landforms on the seafloor around Ross Island and McMurdo Sound. Glacial lineations, grounding zone wedges, draped recessional moraines, and meltwater channels record a series of different ice-flow events in the region, contradictions between which require major phases of ice-flow reorganization. From the glacial geomorphology, we reconstruct a four-stage model of ice-flow evolution for the last glacial cycle, consisting of: (1) northeastward flow into the Ross Sea from McMurdo Sound; (2) westward flow from the Ross Sea, around Ross Island, and onto the Victoria Land coast and coastal seafloor trough; (3) a deglacial phase of ice-sheet thinning, minor shifts in flow, and grounding line retreat into McMurdo Sound; and (4) grounding line pinning on Ross Island during regional retreat, uncoupling of a remnant Ross Island ice cap, and local oscillation of Victoria Land outlet glaciers. We find that East Antarctic Ice Sheet ice discharge had a strong influence on ice-flow geometry in this part of the Ross Sea during the last glacial stage, but that it was not necessarily in phase with the behavior of the West Antarctic Ice Sheet. It is similarly evident that the ice streams that drained the Ross Sea over the continental shelf at the Last Glacial Maximum did not all operate synchronously, and exerted different drawdown power at different times. Finally, we conclude that Ross Island acts as an important pinning point in the Ross Sea ice-sheet-shelf system, stabilizing grounding line retreat and encouraging lasting ice-shelf development.

  • 2. O’Brien, Timothy M.
    et al.
    Miller, Elizabeth L.
    Pease, Victoria
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Hayden, Leslie A.
    Fisher, Christopher M.
    Hourigan, Jeremy K.
    Vervoort, Jeff D.
    Provenance, U-Pb detrital zircon geochronology, Hf isotopic analyses, and Cr-spinel geochemistry of the northeast Yukon-Koyukuk Basin: Implications for interior basin development and sedimentation in Alaska2017In: Geological Society of America Bulletin, ISSN 0016-7606, E-ISSN 1943-2674Article in journal (Refereed)
    Abstract [en]

    The Yukon-Koyukuk Basin is a large depression that covers ∼118,000 km2 in western interior Alaska and is divided into two subbasins by a volcanic arc assemblage. Interpretations of the depositional setting of the northern Kobuk Koyukuk subbasin vary from a syncollisional forearc basin to a postorogenic successor basin formed by lithospheric extension. New results from sandstones and conglomerates collected from the Kobuk Koyukuk subbasin provide evidence for the timing of basin development, insight into the provenance of coarse siliciclastic sediments, and understanding of the nature of Cretaceous paleogeography and paleodrainage of Arctic Alaska.

    Early sedimentary rocks of the Kobuk Koyukuk subbasin contain abundant mafic to ultramafic volcanic and plutonic lithic fragments and mafic heavy minerals (e.g., spinel, clinopyroxene, and amphibole). They also contain abundant Middle Triassic to early Late Jurassic zircons (240−160 Ma; peak maximum ca. 200 Ma) that yield highly juvenile Hf isotopic compositions. Geochemistry of chromium spinels (Cr# = 0.17−0.86) suggests crystallization in an immature arc setting that likely developed over mid-ocean-ridge basalt−type crust. These early sediments originated from the mafic and ultramafic rocks of the Angayucham terrane, which was once much more extensive. These results suggest that the Angayucham terrane consists of an obducted Middle Triassic to early Late Jurassic oceanic arc complex that was coeval with oceanic- to continental-margin mafic arc magmatism in the Canadian Cordillera.

    Our generalized stratigraphy, along with U-Pb ages and Lu-Hf isotope analyses of zircons from sedimentary rocks of the Kobuk Koyukuk subbasin, reflects the tectonic and/or erosional unroofing of the adjacent southern Brooks Range and Ruby terrane. U-Pb ages of detrital zircons collected from the stratigraphically lowest mafic- to ultramafic-rich strata yield maximum depositional ages (107 Ma) that reflect initial erosion of the structurally highest Angayucham terrane and initiation of basin formation and deposition in the late Early Cretaceous. Continued uplift and erosion exposed structurally deeper metamorphic rocks, as revealed by incorporation of low-grade phyllites and eventually higher-grade metamorphic schistose lithic detritus and intermediate-composition (e.g., biotite) to metamorphic (e.g., chloritoid and xenotime) heavy mineral suites into the basin sediments. Differences in detrital zircon signatures between similar-age strata in the Colville foreland basin to the north of the Brooks Range and the Kobuk Koyukuk subbasin indicate that the sediments within the two basins were derived from two different sources, and the Brooks Range orogen acted as a drainage divide during late Early Cretaceous deposition.

  • 3.
    Zhang, Xiaojing
    et al.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Pease, Victoria
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Skogseid, Jakob
    Wohlgemuth-Ueberwasser, Cora
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Reconstruction of tectonic events on the northern Eurasia margin of the Arctic, from U-Pb detrital zircon provenance investigations of late Paleozoic to Mesozoic sandstones in southern Taimyr Peninsula2016In: Geological Society of America Bulletin, ISSN 0016-7606, E-ISSN 1943-2674, Vol. 128, no 1-2, p. 29-46Article in journal (Refereed)
    Abstract [en]

    The Taimyr fold-and-thrust belt records late Paleozoic compression, presumably related to Uralian orogenesis, overprinted by Mesozoic dextral strike-slip faulting. U-Pb detrital zircon analyses of 38 sandstones from southern Taimyr were conducted using laser ablation-inductively coupled plasma-mass spectrometry to investigate late Paleo-zoic to Mesozoic sediment provenance and the tectonic evolution of Taimyr within a regional framework. The Pennsylvanian to Permian sandstones contain detrital zircon populations of 370-260 Ma, which are consistent with derivation from the late Paleozoic Uralian orogen in northern Taimyr and/or the polar Urals. Late Neoproterozoic through Silurian ages (688-420 Ma), most consistent with derivation from Timanian and Caledonian age sources, suggest an ultimate Baltica source. Southern Taimyr represents the proforeland basin of the bivergent Uralian orogen in the late Paleozoic. Triassic sedimentary rocks contain detrital zircon populations of Carboniferous-Permian (355-260 Ma), late Neoproterozoic to Early Devonian (650-410 Ma), and minor Neoproterozoic (1000-700 Ma) ages, which suggest a similar provenance as the Carboniferous to Permian strata. The addition of a Permian-Triassic (260-220 Ma) zircon population indicates derivation of detritus from Siberian Trap-related magmatism. Jurassic samples have a dominant age peak at 255 Ma and a distinct reduction in Carboniferous-Permian and late Neoproterozoic to Early Devonian input, suggesting that erosion and contributions from Uralian sources ceased while greater input from Siberian Trap-related rocks of Taimyr dominated. Comparison of these results to the published literature demonstrates that detritus from the Uralian orogen was deposited in Taimyr, Novaya Zemlya, and the New Siberian Islands in the Permian, but not in the Lisburne Hills or Wrangel Island. In the Triassic, Taimyr, Chukotka, Wrangel Island, the Kular-Dome in the northern Verkhoyansk of Siberia, Lisburne Hills, Franz Josef Land, and Svalbard shared sources from Taimyr, the Siberian Traps, and the polar Urals, indicating that there were no geographic barriers among these locations prior to opening of the Amerasia Basin. Detritus from the Uralian orogen in Taimyr was shed northward into the retroforeland basin and was then transported farther 20-30 m. y. after Uralian orogenesis. The widespread distribution of material eroded from Taimyr and the polar Urals during the Triassic is likely due to the arrival of, and sublithospheric spreading associated with, the Siberian mantle plume head at ca. 250 Ma. The subsequent motion of the lithosphere relative to the plume-swell likely caused a northwestward migration of the uplifted regions. Taimyr and the polar Urals were probably affected. In the Jurassic, detrital-zircon spectra from Taimyr, Chukotka, the Kular Dome, and Svalbard show great differences, suggesting that these locations no longer shared the same provenance from Taimyr and the Urals. The restricted distribution of detritus from Taimyr and the Urals indicates that erosion of the Uralian orogen was reduced. In the Late Jurassic, the depositional setting of southern Taimyr probably changed from a foreland to an intracratonic basin.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf