Change search
Refine search result
12 1 - 50 of 65
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Abbasi, Alireza
    et al.
    Geranmayeh, Shokoofeh
    Skripkin, Mikhail Y.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Potassium ion-mediated non-covalent bonded coordination polymers2012In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 41, no 3, p. 850-859Article in journal (Refereed)
    Abstract [en]

    Crystal structures and vibrational spectra of three related network-forming coordination complexes have been studied. Two novel thermodynamically stable pseudo-polymorphic solvated rhodium chloro compounds, [cis-RhCl4(DMSO-kappa S)(2)K](n), 1, and [cis-RhCl4(DMSO-kappa S)(2)K center dot 3H(2)O](n), 2, and one metastable compound [trans-RhCl4(DMSO-kappa S)(2)K center dot 0.25H(2)O](n), 3, crystallize at ambient temperature in the orthorhombic space group P2(1)2(1)2(1) for 1, and the monoclinic space groups P2(1)/n and P2(1)/c for 2 and 3, respectively. All three structures contain [RhCl4(DMSO-kappa S)(2)]-complexes in which the rhodium(III) ions bind to two dimethyl sulfoxide (DMSO) sulfur atoms and four chloride ions in distorted octahedral coordination geometries. The complexes are connected in networks via potassium ions interacting with the Cl- and the DMSO oxygen atoms. As the sum of Shannon ionic radii of K+ and Cl- exceeds the K-Cl distances in compounds under study, these compounds can be described as Rh-Cl-K coordination polymers with non-covalent bonding, which is not common in these systems, forming 1- and 2-D networks for 1/2 and 3, respectively. The 2-D network with nano-layered sheets for compound 3 was also confirmed by TEM images. Further evaluation of the bonding in the cis- and trans-[RhCl4(DMSO-kappa S)(2)](-) entities was obtained by recording Raman and FT-IR absorption spectra and assigning the vibrational frequencies with the support of force-field calculations. The force field study of complexes reveals the strong domination of trans-effect (DMSO-kappa S > Cl) over the effect of non-covalent bonding in coordination polymeric structures. The comparison of calculated RhCl, RhS and SO stretching force constants showed evidence of K+-ligand interactions whereas direct experimental evidences of K+-Cl- interaction were not obtained because of strong overlap of the corresponding spectral region with that where lattice modes and Rh-ligand bendings appear.

  • 2. Abbasi, Alireza
    et al.
    Skripkin, Mikhail Yu.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Torapava, Natallia
    Ambidentate coordination of dimethyl sulfoxide in rhodium(III) complexes2011In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 40, no 5, p. 1111-1118Article in journal (Refereed)
    Abstract [en]

    The two dimethyl sulfoxide solvated rhodium(III) compounds, [Rh(dmso-kappa O)(5)(dmso-kappa S)](CF(3)SO(3))(3) (1 & 1* at 298 K and 100 K, respectively) and [Rh(dmso-kappa O)(3)(dmso-kappa S)(2)Cl](CF(3)SO(3))(2) (2), crystallize with orthorhombic unit cells in the space group Pna2(1) (No. 33), Z = 4. In the [Rh(dmso)(6)](3+) complex with slightly distorted octahedral coordination geometry, the Rh-O bond distance is significantly longer with O trans to S, 2.143(6) angstrom (1) and 2.100(6) angstrom (1*), than the mean Rh-O bond distance with O trans to O, 2.019 angstrom (1) and 2.043 angstrom (1*). In the [RhCl(dmso)(5)](3+) complex, the mean Rh-O bond distance with O trans to S, 2.083 angstrom, is slightly longer than that for O trans to Cl, 2.067(4) angstrom, which is consistent with the trans influence DMSO-kappa S > Cl > DMSO-kappa O of the opposite ligands. Raman and IR absorption spectra were recorded and analyzed and a complete assignment of the vibrational bands was achieved with support by force field calculations. An increase in the Rh-O stretching vibrational frequency corresponded to a decreasing trans-influence from the opposite ligand. The Rh-O force constants obtained were correlated with the Rh-O bond lengths, also including previously obtained values for other M(dmso)(6)(3+) complexes with trivalent metal ions. An almost linear correlation was obtained for the MO stretching force constants vs. the reciprocal square of the MO bond lengths. The results show that the metal ion-oxygen bonding of dimethyl sulfoxide ligands is electrostatically dominated in those complexes and that the stretching force constants provide a useful measure of the relative trans-influence of the opposite ligands in hexa-coordinated Rh(III)-complexes.

  • 3.
    Abdelhamid, Hani Nasser
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Assiut University, Egypt; The British University in Egypt, Egypt.
    Dye encapsulation and one-pot synthesis of microporous–mesoporous zeolitic imidazolate frameworks for CO2 sorption and adenosine triphosphate biosensing2023In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 52, no 8, p. 2506-2517Article in journal (Refereed)
    Abstract [en]

    One-pot co-precipitation of target molecules e.g. organic dyes and the synthesis of a crystal containing microporous–mesoporous regimes of zeolitic imidazolate frameworks-8 (ZIF-8) are reported. The synthesis method can be used for cationic (rhodamine B (RhB), methylene blue (MB)), and anionic (methyl blue (MeB)) dyes. The crystal growth of the ZIF-8 crystals takes place via an intermediate phase of zinc hydroxyl nitrate (Zn5(OH)8(NO3)2) nanosheets that enabled the adsorption of the target molecules i.e., RhB, MB, and MeB into their layers. The dye molecules play a role during crystal formation. The successful encapsulation of the dye molecules was proved via diffuse reflectance spectroscopy (DRS) and electrochemical measurements e.g., cyclic voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS). The materials were investigated for carbon dioxide (CO2) adsorption and adenosine triphosphate (ATP) biosensing. ZIF-8, RhB@ZIF-8, MB@ZIF-8, and MeB@ZIF-8 offered CO2 adsorption capacities of 0.80, 0.84, 0.85, and 0.53 mmol g−1, respectively. The encapsulated cationic molecules improved the adsorption performance compared to anionic molecules inside the crystal. The materials were also tested as a fluorescent probe for ATP biosensing. The simple synthesis procedure offered new materials with tunable surface properties and the potential for multi-functional applications.

  • 4.
    Abdelhamid, Hani Nasser
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Assiut University, Egypt; The British University in Egypt (BUE), Egypt.
    Sultan, Sahar
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Mathew, Aji P.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    3D printing of cellulose/leaf-like zeolitic imidazolate frameworks (CelloZIF-L) for adsorption of carbon dioxide (CO2) and heavy metal ions2023In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 52, no 10, p. 2988-2998Article in journal (Refereed)
    Abstract [en]

    Metal–organic frameworks (MOFs) have advanced several technologies. However, it is difficult to market MOFs without processing them into a commercialized structure, causing an unnecessary delay in the material's use. Herein, three-dimensional (3D) printing of cellulose/leaf-like zeolitic imidazolate frameworks (ZIF-L), denoted as CelloZIF-L, is reported via direct ink writing (DIW, robocasting). Formulating CelloZIF-L into 3D objects can dramatically affect the material's properties and, consequently, its adsorption efficiency. The 3D printing process of CelloZIF-L is simple and can be applied via direct printing into a solution of calcium chloride. The synthesis procedure enables the formation of CelloZIF-L with a ZIF content of 84%. 3D printing enables the integration of macroscopic assembly with microscopic properties, i.e., the formation of the hierarchical structure of CelloZIF-L with different shapes, such as cubes and filaments, with 84% loading of ZIF-L. The materials adsorb carbon dioxide (CO2) and heavy metals. 3D CelloZIF-L exhibited a CO2 adsorption capacity of 0.64–1.15 mmol g−1 at 1 bar (0 °C). The materials showed Cu2+ adsorption capacities of 389.8 ± 14–554.8 ± 15 mg g−1. They displayed selectivities of 86.8%, 6.7%, 2.4%, 0.93%, 0.61%, and 0.19% toward Fe3+, Al3+, Co2+, Cu2+, Na+, and Ca2+, respectively. The simple 3D printing procedure and the high adsorption efficiencies reveal the promising potential of our materials for industrial applications.

  • 5.
    Adranno, Brando
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Paterlini, Veronica
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Smetana, Volodymyr
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Aarhus University, Denmark.
    Bousrez, Guillaume
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Aarhus University, Denmark.
    Ovchinnikov, Alexander
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Mudring, Anja-Verena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Aarhus University, Denmark.
    Enhanced stability and complex phase behaviour of organic-inorganic green-emitting ionic manganese halides2023In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 52, no 19, p. 6515-6526Article in journal (Refereed)
    Abstract [en]

    Light-emitting materials based on earth-abundant metals, such as manganese hold great promise as emitters for organic lighting devices. In order to apply such emitter materials and, in particular, to overcome the problem of self-quenching due to cross-relaxation, we investigated a series of tetrabromidomanganate ([MnBr4]2−) salts with bulky tetraalkylphosphonium counter cations [Pnnn]+, namely [Pnnnn]2[MnBr4] (n = 4 (1), 6 (2) and 8 (3)), which can be obtained by a straightforward reaction of the respective phosphonium bromide and MnBr2. Variation of the cation size allows control of the properties of the resulting ionic materials. 1 and 3 qualify as ionic liquids (ILs), where 1 features a melting point of 68 °C, and 3 is liquid at room temperature and even at very low temperatures. Furthermore, 1 and 2 show the formation of higher-ordered thermotropic mesophases. For 1 a transition to a thermodynamically metastable smectic liquid crystalline phase can be observed at room temperature upon reheating from the metastable glassy state; 2 appears to form a plastic crystalline phase at ∼63 °C, which persists up to the melting point of 235 °C. The photoemission is greatly affected by phase behaviour and ion dynamics. A photoluminescence quantum yield of 61% could be achieved, by balancing the increase in Mn2+-Mn2+ separation and reducing self-quenching through increasingly large organic cations which leads to adverse increased vibrational quenching. Compared to analogous ammonium compounds, which have been promoted as @#x0308;inorganic hybrid perovskite, the phosphonium salts show superior performance, with respect to photoluminescent quantum yield and thermal and air/humidity stability. As the presented compounds are not sensitive to the atmosphere, in particular moisture, and show strong visible electroluminescence in the green region of light, they are important emitter materials for use in organic light-emitting devices.

  • 6.
    Ahlsten, Nanna
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bartoszewicz, Agnieszka
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Allylic alcohols as synthetic enolate equivalents: Isomerisation and tandem reactions catalysed by transition metal complexes2012In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 41, no 6, p. 1660-1670Article in journal (Refereed)
    Abstract [en]

    Allylic alcohols can be isomerised into carbonyl compounds by transition metal complexes. In the last few years, catalyst design and development have resulted in highly efficient isomerisations under mild reaction conditions, including enantioselective versions. In addition, the isomerisation of allylic alcohols has been combined with C-C bond forming reactions when electrophiles such as aldehydes or imines were present in the reaction mixture. Also, C-F bonds can be formed when electrophilic fluorinating reagents are used. Thus, allylic alcohols can be treated as latent enol(ate)s. In this article, we highlight the latest developments concerning the isomerisation of allylic alcohols into carbonyl compounds, focusing in particular on tandem isomerisation/C-C or C-heteroatom bond formation processes. Significant attention is given to the mechanistic aspects of the reactions.

    Download full text (pdf)
    fulltext
  • 7. Alammar, Tarek
    et al.
    Hlova, Ihor Z.
    Gupta, Shalabh
    Balema, Viktor
    Pecharsky, Vitalij K.
    Mudring, Anja-Verena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Iowa State University, USA.
    Luminescence properties of mechanochemically synthesized lanthanide containing MIL-78 MOFs2018In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 47, no 22, p. 7594-7601Article in journal (Refereed)
    Abstract [en]

    Three metal-organic framework (MOF) compounds, Ln(0.6) Gd-0.(6) {C6H (COO)(3)); Ln = Eu, Tb, and Dy with a MIL-78 structure, have been synthesized by a solvent-free mechanochemical method from stoichiometric mixtures of benzene 1,3,5-tricarboxylic acid, C6H3 (COOH)(3), also known as trimesic acid, and the respective lanthanide carbonates, Ln(2)(CO3)(3)center dot xH(2)O, Ln = Eu, Gd, Tb and Dy. MIL-78 (Ln(0.5)Gd(0.)(6)) shows the characteristic red, green, and yellow luminescence of Eu3+, Tb3+, and Dy3+, respectively. Efficient intramolecular energy transfer from the ligand triplet state to the excited states of Ln(3+) ions can be observed. The lifetimes and quantum yields of these compounds are studied and discussed in detail. Among the three compounds, the Tb3+ containing compound shows the longest lifetime and highest quantum yield due to a smaller contribution from non-radiative decay pathways and better matching of the lowest triplet energy level of the benzenetricarboxylate ligand and the resonance level of Tb3+.

  • 8.
    Ali, Sk Imran
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Johnsson, Mats
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Antimony oxofluorides - a synthesis concept that yields phase pure samples and single crystals2016In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 45, no 30, p. 12167-12173Article in journal (Refereed)
    Abstract [en]

    The single crystals of the new isostructural compounds Sb3O4F and Y0.5Sb2.5O4F and the two previously known compounds M-SbOF and alpha-Sb3O2F5 were successfully grown by a hydrothermal technique at 230 degrees C. The new compound Sb3O4F crystallizes in the monoclinic space group P2(1)/c: a = 5.6107(5) angstrom, b = 4.6847(5) angstrom, c = 20.2256(18) angstrom, p = 94.145(8)degrees, z = 4. The replacing part of Sb with Y means a slight increase in the unit cell dimensions. The compounds M-SbOF and alpha-Sb3O2F5 have not been grown as single crystals before and it can be concluded that hydrothermal synthesis has proved to be a suitable technique for growing single crystals of antimony oxofluorides because of the relatively low solubility of such compounds compared to other antimony oxohalides that most often have been synthesised at high temperatures by solid state reactions or gas-solid reactions.

  • 9. Berggren, Gustav
    et al.
    Huang, Ping
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Styring, Stenbjorn
    Anderlund, Magnus F.
    Thapper, Anders
    Synthesis and characterisation of low valent Mn-complexes as models for Mn-catalases2010In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 39, no 45, p. 11035-11044Article in journal (Refereed)
    Abstract [en]

    In this work we report the synthesis of two novel manganese complexes, [L1(3)Mn(6)(II)](ClO4)(6) (1 center dot(ClO4)(6)) and [L2Mn(2)(II)(mu-OAc)(mu-Cl)](ClO4)(2) (2 center dot(ClO4)(2)), where L1(2-) is the 2,2'-(1,3-phenylenebis(methylene))bis-((2-(bis(pyridin-2-ylmethyl)amino)ethyl)azanediyl)diacetic acid anion and L2 is N1,N1'-(1,3-phenylenebis(methylene))bis(N2,N2'-bis(pyridin-2-ylmethyl)ethane-1,2-diamine). The ligands Na(2)L1 and L2 are built on the same backbone, L2 only contains nitrogen donors, while two carboxylate arms have been introduced in Na(2)L1. The two complexes have been characterized by single-crystal X-ray diffraction, magnetic susceptibility, EPR spectroscopy, and electrochemistry. X-Ray crystallography revealed that 1 is a manganese(II) hexamer and 2 is a manganese(II) dimer featuring an unprecedented mono-mu-acetato, mono-mu-chlorido bridging motif. The ability of the complexes to catalyse H2O2 disproportionation, thereby acting as models for manganese catalases, has been investigated and compared to the activity of two other related manganese complexes. The introduction of carboxylate donors in the ligands, leading to increased denticity, resulted in a drop in H2O2 disproportionation activity.

  • 10. Berggren, Gustav
    et al.
    Thapper, Anders
    Anderlund, Magnus
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
    Two tetranuclear Mn-complexes as biomimetic models of the oxygen evolving complex in Photosystem II - A synthesis, characterisation and reactivity study2009In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 45, p. 10044-10054Article in journal (Refereed)
    Abstract [en]

    In this work we report the preparation of two metallamacrocyclic tetranuclear manganese(II) complexes, [L1(4)Mn(4)](ClO4)(4) and [L2(4)Mn(4)](ClO4)(4) where L1 and L2 are the anions of the heptadentate ligands 2-((2-(bis(pyridin-2-ylmethyl) amino) ethyl)(methyl) amino) acetic acid and 2-(benzyl(2-(bis(pyridin-2-ylmethyl) amino) ethyl) amino) acetic acid), respectively. The complexes have been fully characterized by ESI-MS, elemental analysis, single-crystal X-ray diffraction, magnetic susceptibility, and EPR spectroscopy. Electrochemical reactions as well as reactions with different chemical redox reagents have been performed and a reversible two electron oxidation per manganese ion has been identified. The reaction of [L1(4)Mn(4)](ClO4)(4) with oxone or cerium(IV) results in the evolution of oxygen which makes this system interesting for future studies in the search for a functional mimic of the oxygen evolving complex in Photosystem II.

  • 11. Bilgic, Mehmet B.
    et al.
    Kocaarslan, Azra
    Kaya, Kerem
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Istanbul Technical University, Turkey.
    Atsay, Armagan
    Svensson Grape, Erik
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Chen, Jianhong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Yagci, Yusuf
    An unusual zig-zag 2D copper(i) coordination polymer as an outstanding catalyst for azide–alkyne “click” chemistry at room temperature2022In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 51, no 46, p. 17543-17546Article in journal (Refereed)
    Abstract [en]

    A straightforward method for the synthesis of a two-dimensional (2D) new copper(I) coordination polymer, namely Cu(bzpdc), containing the ligand benzophenone 4,4′-dicarboxylate, and its effective use as catalyst for the azide–alkyne click chemistry at room temperature is reported. Zig-zag formation caused by cuprophilic interactions resulted in an unprecedented crystal structure with a very high copper content (45.5% by weight). The catalyst was stable up until 300 °C and tolerant to various solvents, including water. Cu(bzpdc) showed excellent catalytic activity for click reactions of several organic azides and alkynes having different functional groups at room temperature and is comparable to its homogenous analogues. The recyclability of Cu(bzpdc) was also tested and proven to be effective.

  • 12. Cadu, Alban
    et al.
    Andersson, Pher G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Council for Scientific & Industrial Research (CSIR) - South Africa .
    Iridium catalysis: application of asymmetric reductive hydrogenation2013In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 42, no 40, p. 14345-14356Article in journal (Refereed)
    Abstract [en]

    Iridium, despite being one of the least abundant transition metals, has found several uses. N,P-ligated iridium catalysts are used to perform many highly selective reactions. These methodologies have been developed extensively over the past 15 years. More recently, the application of iridium N,P catalysts in asymmetric hydrogenation has been a focus of research to find novel applications and to expand on their current synthetic utility. The aim of this perspective is to highlight the advances made by the Andersson group.

    Download full text (pdf)
    fulltext
  • 13.
    Chen, Hong
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). China University of Geosciences - Wuhan, People's Republic of China.
    Zhang, Yunfeng
    Yu, Zhengbao
    Sun, Junliang
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Peking University, People's Republic of China.
    Layered V-B-O Polyoxometalate Nets Linked by Diethylenetriamine Complexes with Dangling Amine Groups2014In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 43, no 41, p. 15283-15286Article in journal (Refereed)
    Abstract [en]

    Two layered V-B-O contained polyoxometalate (POM) net structures, denoted as SUT-12 and SUT-13, are reported here. SUT-12 was synthesized by the boric acid flux method, and it represents the first 2D structure constructed from the V6B20 vanadoborate cluster. SUT-13 was synthesized through the hydrothermal method and constructed from V12B6P12 vanadium borophosphate clusters. In both structures, the vanadoborate or vanadium borophosphate clusters were linked through in-situ formed Zn(DETA)2 or Cu(DETA)2 complexes. Surprisingly, for all DETA molecules in the two metal complexes, there is one dangling amine group when it coordinated to the metal. The phenomena of the dangling amine group feature is abnormal and the Cu(DETA)2 complexes in SUT-13 was taken as an example and studied by density function theory (DFT) calculation in order to understand this unusual feature.

  • 14.
    Chen, Zheng
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). RWTH Aachen University, Germany.
    Jaworski, Aleksander
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Chen, Jianhong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Budnyak, Tetyana M.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Szewczyk, Ireneusz
    Rokicińska, Anna
    Dronskowski, Richard
    Hedin, Niklas
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Kuśtrowski, Piotr
    Slabon, Adam
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Graphitic nitrogen in carbon catalysts is important for the reduction of nitrite as revealed by naturally abundant N-15 NMR spectroscopy2021In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, no 20Article in journal (Refereed)
    Abstract [en]

    Metal-free nitrogen-doped carbon is considered as a green functional material, but the structural determination of the atomic positions of nitrogen remains challenging. We recently demonstrated that directly-excited solid state N-15 NMR (ssNMR) spectroscopy is a powerful tool for the determination of such positions in N-doped carbon at natural N-15 isotope abundance. Here we report a green chemistry approach for the synthesis of N-doped carbon using cellulose as a precursor, and a study of the catalytic properties and atomic structures of the related catalyst. N-doped carbon (NH3) was obtained by the oxidation of cellulose with HNO3 followed by ammonolysis at 800 degrees C. It had a N content of 6.5 wt% and a surface area of 557 m(2) g(-1), and N-15 ssNMR spectroscopy provided evidence for graphitic nitrogen besides regular pyrrolic and pyridinic nitrogen. This structural determination allowed probing the role of graphitic nitrogen in electrocatalytic reactions, such as the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and nitrite reduction reaction. The N-doped carbon catalyst (NH3) showed higher electrocatalytic activities in the OER and HER under alkaline conditions and higher activity for nitrite reduction, as compared with a catalyst prepared by the carbonization of HNO3-treated cellulose in N-2. The electrocatalytic selectivity for nitrite reduction of the N-doped carbon catalyst (NH3) was directly related to the graphitic nitrogen functions. Complementary structural analyses by means of C-13 and H-1 ssNMR, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and low-temperature N-2 adsorption were performed and provided support to the findings. The results show that directly-excited N-15 ssNMR spectroscopy at natural N-15 abundance is generally capable of providing information on N-doped carbon materials if relaxation properties are favorable. It is expected that this approach can be applied to a wide range of solids with an intermediate concentration of N atoms.

  • 15. Chen, Zheng
    et al.
    Loeber, Manuel
    Rokicinska, Anna
    Ma, Zili
    Chen, Jianhong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Kustrowski, Piotr
    Meyer, Hans-Juergen
    Dronskowski, Richard
    Slabon, Adam
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Increased photocurrent of CuWO4 photoanodes by modification with the oxide carbodiimide Sn2O(NCN)2020In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 49, no 11, p. 3450-3456Article in journal (Refereed)
    Abstract [en]

    Tin(ii) oxide carbodiimide is a novel prospective semiconductor material with a band gap of 2.1 eV and lies chemically between metal oxides and metal carbodiimides. We report on the photochemical properties of this oxide carbodiimide and apply the material to form a heterojunction with CuWO4 thin films for photoelectrochemical (PEC) water oxidation. Mott-Schottky experiments reveal that the title compound is an n-type semiconductor with a flat-band potential of -0.03 V and, as such, the position of the valence band edge would be suitable for photochemical water oxidation. Sn2O(NCN) increases the photocurrent of CuWO4 thin films from 32 mu A cm(-2) to 59 mu A cm(-2) at 1.23 V vs. reversible hydrogen electrode (RHE) in 0.1 M phosphate buffer (pH 7.0) under backlight AM 1.5G illumination. This upsurge in photocurrent originates in a synergistic effect between the oxide and oxide carbodiimide, because the heterojunction photoanode displays a higher current density than the sum of its individual components. Structural analysis by powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) reveals that Sn2O(NCN) forms a core-shell structure Sn2O(NCN)@SnPOx during the PEC water oxidation in phosphate buffer. The electrochemical activation is similar to the behavior of Mn(NCN) but different from Co(NCN).

  • 16.
    Damian, Emiliana
    et al.
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
    Jalilehvand, Farideh
    Leung, Bonnie
    Pettersson, Lars G. M.
    Stockholm University, Faculty of Science, Department of Physics.
    Sandström, Magnus
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
    Theoretical and experimental sulfur K-edge X-ray absorption spectroscopic (XANES) study of cysteine, cystine, methionine and methionine sulfoxide2009In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 18, p. 3542-3558Article in journal (Refereed)
    Abstract [en]

    The experimental sulfur K-edge x-ray absorption near edge structure (XANES) spectra of the amino acids cysteine, homocysteine, penicillamine, methionine, the oxidation products methionine sulfoxide and the disulfide cystine, have been analyzed by transition potential DFT calculations. The absolute energies and intensities of the main pre-edge sulfur 1s electron transitions have been computed to determine the character of the receiving low energy unoccupied molecular orbitals (MO), and to investigate the influence of external interactions, especially by introducing water molecules hydrogen bonded to the ionic species present in different pH ranges. When the thiol group deprotonates for the three amino acids cysteine, homocysteine and penicillamine the energy of the main transition, to an MO with antibonding σ*(S-H) character, reduces by ~1.1 eV and the receiving MO obtains σ*(S-C) character. The energy shifts due to hydrogen bonding were in most cases found to be relatively small, although the transition intensities could vary significantly due to the changes induced in the molecular charge distribution, thereby affecting the shapes of the spectral features. For the cysteine and penicillamine zwitterions deconvolution of the experimental spectra allowed the microscopic acid dissociation constants to be extracted separately for the thiol and the protonated amine groups, pKaT = 8.5 ± 0.1 and 8.2 ± 0.1, and pKaN = 8.9 ± 0.1 and 8.8 ± 0.1, respectively, in both cases with the thiol group the more acidic. Coordination of cysteine to nickel(II) or mercury(II) introduced a new low energy transition involving metal ion orbitals in the receiving LUMO. The small experimentally observed energy differences between the similar main absorption features of the cysteine and methionine zwitterions, 0.2-0.3 eV in comparable surrounding, as well as a minor difference in their intensity ratio, are reflected in the calculated transitions. The S K-edge XANES spectrum of the disulfide cystine displays a characteristic double peak with the lower energy transition (2469.9 eV) into the antibonding σ*(S-S) MO. The second peak, at 2471.5 eV in aqueous solution, contains several transitions into MO:s with σ*(S-C) character involving also charge transfer to the water molecules hydrating the protonated amine groups (NH3+) of cystine. The experimental energy difference between the two peaks increases by 0.2 eV for solid cystine, while no such increase occurs for the –S-S- bond between the cysteine residues in the oxidized disulfide of glutathione, where the amine groups are engaged in peptide bonds. This study shows that externally induced changes in the intramolecular bonding, e.g. by coordination, conformation geometry or hydrogen bonding, can significantly influence the S K-edge spectra, and emphasizes the importance of a similar chemical surrounding of the model compounds for standard spectra of sulfur functional groups, used to deconvolute composite experimental spectra.

  • 17. Das, Biswanath
    et al.
    Lee, Bao-Lin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Karlsson, Erik A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shatskiy, Andrey
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Demeshko, Serhiy
    Liao, Rong-Zhen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Laine, Tanja M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Haukka, Matti
    Zeglio, Erica
    Abdel-Magied, Ahmed F.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Nuclear Materials Authority, Egypt.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Meyer, Franc
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nordlander, Ebbe
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Water oxidation catalyzed by molecular di- and nonanuclear Fe complexes: importance of a proper ligand framework2016In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 45, no 34, p. 13289-13293Article in journal (Refereed)
    Abstract [en]

    The synthesis of two molecular iron complexes, a dinuclear iron(III,III) complex and a nonanuclear iron complex, based on the di-nucleating ligand 2,2'-(2-hydroxy-5-methyl-1,3-phenylene)bis(1H-benzo[d]imidazole-4-carboxylic acid) is described. The two iron complexes were found to drive the oxidation of water by the one-electron oxidant [Ru(bpy)(3)](3+).

  • 18.
    Guo, Peng
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Liu, Leifeng
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Yun, Yifeng
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Su, Jie
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Wan, Wei
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Gies, Hermann
    Zhang, Haiyan
    Xiao, Feng-Shou
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Ab initio structure determination of interlayer expanded zeolites by single crystal rotation electron diffraction2014In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 43, no 27, p. 10593-10601Article in journal (Refereed)
    Abstract [en]

    Layered solids often form thin plate-like crystals that are too small to be studied by single-crystal X-ray diffraction. Although powder X-ray diffraction (PXRD) is the conventional method for studying such solids, it has limitations because of peak broadening and peak overlapping. We have recently developed a software-based rotation electron diffraction (RED) method for automated collection and processing of 3D electron diffraction data. Here we demonstrate the ab initio structure determination of two interlayer expanded zeolites, the microporous silicates COE-3 and COE-4 (COE-n stands for International Network of Centers of Excellence-n), from submicron-sized crystals by the RED method. COE-3 and COE-4 are built of ferrierite-type layers pillared by (-O-Si(CH3)(2)-O-) and (-O-Si(OH)(2)-O-) linker groups, respectively. The structures contain 2D intersecting 10-ring channels running parallel to the ferrierite layers. Because both COE-3 and COE-4 are electron-beam sensitive, a combination of RED datasets from 2 to 3 different crystals was needed for the structure solution and subsequent structure refinement. The structures were further refined by Rietveld refinement against the PXRD data. The structure models obtained from RED and PXRD were compared.

  • 19.
    Hu, Shichao
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Johnsson, Mats
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Synthesis and crystal structure of Fe6Ca2(SeO3)(9)Cl-4 - a porous oxohalide2013In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 42, no 22, p. 7859-7862Article in journal (Refereed)
    Abstract [en]

    A porous oxohalide, Fe6Ca2(SeO3)(9)Cl-4, has been synthesized by solid state reactions using concentrated HCl as the Cl-source. It crystallizes in the hexagonal space group P6(3)/m with unit cell parameters a = 12.118(2) angstrom, c = 12.703(4) angstrom, Z = 2. The crystal structure is an open framework having one-dimensional channels extending along [001] that the chlorine atoms and lone pairs on Se4+ are facing. The channels in this framework structure are unusually large compared to other oxohalide compounds and also accessible to guest molecules. Water vapor sorption measurements show an uptake of 9 wt% at 293 K.

  • 20.
    Hu, Shichao
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Johnsson, Mats
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Synthesis and crystal structure of two synthetic oxofluoride framework compounds - Co2TeO3F2 and Co2SeO3F22012In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 41, no 41, p. 12786-12789Article in journal (Refereed)
    Abstract [en]

    Two new isostructural Co2+ containing tellurium and selenium oxofluoride compounds Co2TeO3F2 and Co2SeO3F2 are synthesized and their structures determined by single crystal X-ray diffraction. They crystallize in the orthorhombic space group Pnma with the unit cell parameters a = 7.3810(5) angstrom, b = 10.1936(7) angstrom, c = 5.3013(3) angstrom and a = 7.2655(8) angstrom, b = 10.0013(13) angstrom, c = 5.3564(6) angstrom, respectively. The Co(II) ion has octahedral coordination [CoO3F3] and builds up a 3D framework by corner- and edge sharing. The Se(IV) and the Te(IV) ions have the coordinations [SeO3E] and [TeO3E] respectively where E is the lone-pair electrons. The Se(IV) and Te(IV) ions are isolated from each other and bond only to the [CoO3F3] polyhedra. The electronegative element fluorine takes the role of a network builder like oxygen and helps to form the 3D framework structure. This is a difference compared to many oxohalide compounds containing Cl and Br where the halide ions are terminating ions preventing a 3D network from being formed. Long range antiferromagnetic interactions dominate at temperatures < 20 K. The magnetic susceptibility follows the Curie-Weiss law above 25 K with the Curie constant C = 5.62 emu K mol(-1), the Weiss temperature theta = -56 K and the effective magnetic moment mu(eff) = 4.74 mu(B) per cobalt atom.

  • 21. Huang, Jing
    et al.
    Gatty, Melina Gilbert
    Xu, Bo
    Pati, Palas Baran
    Etman, Ahmed S.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Tian, Lei
    Sun, Junliang
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Hammarström, Leif
    Tian, Haining
    Covalently linking CuInS2 quantum dots with a Re catalyst by click reaction for photocatalytic CO2 reduction2018In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 47, no 31, p. 10775-10783Article in journal (Refereed)
    Abstract [en]

    Covalently linking photosensitizers and catalysts in an inorganic-organic hybrid photocatalytic system is beneficial for efficient electron transfer between these components. However, general and straightforward methods to covalently attach molecular catalysts on the surface of inorganic semiconductors are rare. In this work, a classic rhenium bipyridine complex (Re catalyst) has been successfully covalently linked to the low toxicity CuInS2 quantum dots (QDs) by click reaction for photocatalytic CO2 reduction. Covalent bonding between the CuInS2 QDs and the Re catalyst in the QD-Re hybrid system is confirmed by UV-visible absorption spectroscopy, Fourier-transform infrared spectroscopy and energy-dispersive X-ray measurements. Time-correlated single photon counting and ultrafast time-resolved infrared spectroscopy provide evidence for rapid photo-induced electron transfer from the QDs to the Re catalyst. Upon photo-excitation of the QDs, the singly reduced Re catalyst is formed within 300 fs. Notably, the amount of reduced Re in the linked hybrid system is more than that in a sample where the QDs and the Re catalyst are simply mixed, suggesting that the covalent linkage between the CuInS2 QDs and the Re catalyst indeed facilitates electron transfer from the QDs to the Re catalyst. Such an ultrafast electron transfer in the covalently linked CuInS2 QD-Re hybrid system leads to enhanced photocatalytic activity for CO2 reduction, as compared to the conventional mixture of the QDs and the Re catalyst.

  • 22.
    Huang, Shiliang
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Inge, A. Ken
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Yang, Sihai
    Christensen, Kirsten E.
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Sun, Junliang
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    SU-75: a disordered Ge-10 germanate with pcu topology2012In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 41, no 40, p. 12358-12364Article in journal (Refereed)
    Abstract [en]

    A disordered open-framework germanate, denoted as SU-75, was synthesized under hydrothermal conditions using diethylenetriamine (dien) or alternatively 1,4-diaminobutane (dab) as the structure directing agent (SDA). SU-75 crystallizes in a tetragonal space group I-42d(No. 122) with a= 18.145(3) Å and c= 41.701(9) Å. The three-dimensional (3D) framework is built from Ge10(O,OH)28(Ge10) clusters that are connected following the pcu ( primitive cubic) net topology. SU-75 has 10-, 11- and 12-ring channels along the a- and b-axes and channels with alternating 8-, 10-, 12-, 10-ring openings along the c-axis. The framework exhibits a serious disorder, resulted from two possible connectivities between the units of four Ge 10clusters (4Ge10 unit). The chemical formula of SU-75 is |(H2SDA)2(H2O)n|[Ge10O21(OH)2] (SDA = dien or dab,n= 5–6), determined by combining single crystalsynchrotron X-ray diffraction, thermogravimetric analysis (TGA) and CHN elemental analysis. A superoctahedron is introduced to simplify the description of the connectivity of the Ge10 clusters and to illustrate the disorder. This is also used to compare the structure of SU-75 with those of related Ge10 germanates.

  • 23.
    Johansson, Adam Johannes
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Noack, Holger
    Stockholm University, Faculty of Science, Department of Physics.
    Xue, Gengianq
    Que Jr, Larry
    Observed enhancement of the reactivity of a biomimetic diiron complex by the addition of water - mechanistic insights from theoretical modeling2009In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 34, p. 6741-6750Article in journal (Refereed)
    Abstract [en]

    The biomimetic diiron complex [FeIIIFeIV(m-O)2(5-Me3-TPA)2](ClO4)3 (TPA = tris(2- pyridylmethyl)amine) has been found to be capable of oxidizing 9,10-dihydroanthracene in a solution of acetonitrile. Addition of water up to 1 M makes the reaction 200 times faster, suggesting that the water molecule in some way activates the catalyst for more efficient substrate oxidation. It is proposed that the enhanced reactivity results from the coordination of a water molecule to the iron(III) half of the complex, converting the bis-m-oxo structure of the diiron complex to a ring-opened form where one of the bridging oxo groups is transformed into a terminal oxo group on iron(IV). The suggested mechanism is supported by DFT (B3LYP) calculations and transition state theory. Two different computational models of the diiron complex are used to model the hydroxylation of cyclohexane to cyclohexanol. Model 1 has a bis-m-oxo diiron core (diamond core) while model 2 represents the “open core” analogue with one bridging m-oxo group, a terminal oxo ligand on iron(IV), and a water molecule coordinated to iron(III). The computational results clearly suggest that the terminal oxo group is more reactive than the bridging oxo group. The free energy of activation is 7.0 kcal mol-1 lower for the rate limiting step when the oxidant has a terminal oxo group than when both oxo groups are bridging the irons.

  • 24.
    Kärkäs, Markus D.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Water oxidation using earth-abundant transition metal catalysts: opportunities and challenges2016In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 45, no 37, p. 14421-14461Article in journal (Refereed)
    Abstract [en]

    Catalysts for the oxidation of H2O are an integral component of solar energy to fuel conversion technologies. Although catalysts based on scarce and precious metals have been recognized as efficient catalysts for H2O oxidation, catalysts composed of inexpensive and earth-abundant element(s) are essential for realizing economically viable energy conversion technologies. This Perspective summarizes recent advances in the field of designing homogeneous water oxidation catalysts (WOCs) based on Mn, Fe, Co and Cu. It reviews the state of the art catalysts, provides insight into their catalytic mechanisms and discusses future challenges in designing bioinspired catalysts based on earth-abundant metals for the oxidation of H2O.

  • 25. Leubner, S.
    et al.
    Bengtsson, Viktor E. G.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Inge, Andrew Kentaro
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Wahiduzzaman, M.
    Steinke, F.
    Jaworski, Aleksander
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Xu, Hongyi
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Halis, S.
    Rönfeldt, P.
    Reinsch, H.
    Maurin, G.
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Stock, N.
    Hexahydroxytriphenylene for the synthesis of group 13 MOFs - a new inorganic building unit in a beta-cristobalite type structure2020In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 49, no 10, p. 3088-3092Article in journal (Refereed)
    Abstract [en]

    Two new, microporous MOFs of framework composition ((CH3)(2)NH2)(2)[M3O(HHTP)(HHTP center dot)], M = Al3+, Ga3+, H6HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene, are described. Electron diffraction combined with molecular simulations show that these compounds crystallize in the beta-cristobalite structure, containing a new type of trinuclear inorganic building unit for MOFs and radical anions.

  • 26.
    Li, Lin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Shanghai Tech University, China.
    Das, Biswanath
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rahaman, Ahibur
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shatskiy, Andrey
    Ye, Fei
    Cheng, Peihong
    Yuan, Chunze
    Yang, Zhiqi
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Dutta, Joydeep
    Weng, Tsu-Chien
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ruthenium containing molecular electrocatalyst on glassy carbon for electrochemical water splitting2022In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 51, no 20, p. 7957-7965Article in journal (Refereed)
    Abstract [en]

    Electrochemical water splitting constitutes one of the most promising strategies for converting water into hydrogen-based fuels, and this technology is predicted to play a key role in the transition towards a carbon-neutral energy economy. To enable the design of cost-effective electrolysis cells based on this technology, new and more efficient anodes with augmented water splitting activity and stability will be required. Herein, we report an active molecular Ru-based catalyst for electrochemically-driven water oxidation (overpotential of ∼395 mV at pH 7 phosphate buffer) and two simple methods for preparing anodes by attaching this catalyst onto glassy carbon through multi-walled carbon nanotubes to improve stability as well as reactivity. The anodes modified with the molecular catalyst were characterized by a broad toolbox of microscopy and spectroscopy techniques, and interestingly no RuO2 formation was detected during electrocatalysis over 4 h. These results demonstrate that the herein presented strategy can be used to prepare anodes that rival the performance of state-of-the-art metal oxide anodes.

  • 27. Li, Wenjie
    et al.
    Li, Duan
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Gao, Xin
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Gurlo, Aleksander
    Zander, Stefan
    Jones, Philip
    Navrotsky, Alexandra
    Shen, Zhijian
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Riedel, Ralf
    Ionescu, Emanuel
    A study on the thermal conversion of scheelite-type ABO(4) into perovskite-type AB(O,N)(3)2015In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 44, no 17, p. 8238-8246Article in journal (Refereed)
    Abstract [en]

    Phase-pure scheelite AMoO(4) and AWO(4) (A = Ba, Sr, Ca) were thermally treated under an ammonia atmosphere at 400 to 900 degrees C. SrMoO4 and SrWO4 were shown to convert into cubic perovskite SrMoO2N and SrWO1.5N1.5, at 700 degrees C and 900 degrees C respectively, and to form metastable intermediate phases (scheelite SrMoO4-xNx and SrWO4-xNx), as revealed by X-ray diffraction (XRD), elemental analysis and FTIR spectroscopy. High-temperature oxide melt solution calorimetry reveals that the enthalpy of formation for SrM(O,N)(3) (M = Mo, W) perovskites is less negative than that of the corresponding scheelite oxides, though the conversion of the scheelite oxides into perovskite oxynitrides is thermodynamically favorable at moderate temperatures. The reaction of BaMO4 with ammonia leads to the formation of rhombohedral Ba3M2(O,N)(8) and the corresponding binary metal nitrides Mo3N2 and W4.6N4; similar behavior was observed for CaMO4, which converted upon ammonolysis into individual oxides and nitrides. Thus, BaMO4 and CaMO4 were shown to not provide access to perovskite oxynitrides. The influence of the starting scheelite oxide precursor, the structure distortion and the degree of covalency of the B-site-N bond are discussed within the context of the formability of perovskite oxynitrides.

  • 28.
    Li, Xichen
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Chen, Guangju
    Schinzel, Sandra
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    A comparison between artificial and natural water oxidation2011In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 40, no 42, p. 11296-11307Article in journal (Refereed)
    Abstract [en]

    Two artificial water oxidation catalysts, the blue dimer and the Llobet catalyst, have been studied using hybrid DFT methods. The results are compared to those for water oxidation in the natural photosystem II enzyme. Studies on the latter system have now reached a high level of understanding, at present much higher than the one for the artificial systems. A recent high resolution X-ray structural investigation of PSII has confirmed the main features of the structure of the oxygen evolving complex (OEC) suggested by previous DFT cluster studies. The O-O bond formation mechanism suggested is of direct coupling (DC) type between an oxygen radical and a bridging oxo ligand. A similar DC mechanism is found for the Llobet catalyst, while an acid-base (AB) mechanism is preferred for the blue dimer. All of them require at least one oxygen radical. Full energy diagrams, including both redox and chemical steps, have been constructed illustrating similarities and differences to the natural system. Unlike previous DFT studies, the results of the present study suggest that the blue dimer is rate-limited by the initial redox steps, and the Llobet catalyst by O(2) release. The results could be useful for further improvement of the artificial systems.

  • 29. Liang, Jie
    et al.
    Su, Jie
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Chen, Yanping
    Li, Zhaofei
    Li, Kuo
    Zhang, Hao
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Liao, Fuhui
    Wang, Yingxia
    Lin, Jianhua
    Syntheses, structure solutions, and catalytic performance of two novel layered silicates2015In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 44, no 35, p. 15567-15575Article in journal (Refereed)
    Abstract [en]

    Two novel layered silicates, PKU-13 and PKU-13a, were hydrothermally synthesized by using trimethyl-propylammonium hydroxide as the structure directing agent (SDA). Their structures were solved by using powder X-ray diffraction data in combination with electron diffraction technique and NMR spectroscopy. These two silicates are built from the same r52 layer in different stacking modes: the adjacent r52 layers in PKU-13a have a 0.5b + 0.68c shift compared with those in PKU-13. The difference is due to the SDA cations located between the layers. The SDA cations exist as a monolayer in the structure of PKU-13, and link the adjacent layers by Coulomb actions in combination with strong hydrogen bonds. In PKU-13a, the SDA cations present in the bi-layer expend the distance between layers and destroy the inter-layer hydrogen bonds. PKU-13a can transform to PKU-13 after treatment with acetic acid solution. The co-existence of intra-layer hydrogen bonds in PKU-13 interfere in its condensation to an ordered crystalline microporous framework. Both PKU-13 and PKU-13a exhibit good catalytic activities as base catalysts in the Knoevenagel condensation reaction.

  • 30. Liao, Rong-Zhen
    et al.
    Wang, Mei
    Sun, Licheng
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    The mechanism of hydrogen evolution in Cu(bztpen)-catalysed water reduction: a DFT study2015In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 44, no 21, p. 9736-9739Article in journal (Refereed)
    Abstract [en]

    The mechanism of water reduction catalysed by a mononuclear copper complex Cu(bztpen) (bztpen = N-benzyl-N, N', N'-tris(pyridine-2-ylmethyl) ethylenediamine) has been elucidated by DFT calculations, revealing that hydrogen evolution proceeds via coupling of a Cu(II)-hydride and a pendant pyridinium, and providing important implications for the future design of new catalytic systems for water reduction.

  • 31. Lundberg, Daniel
    et al.
    Lindqvist-Reis, Patric
    Lyczko, Krzysztof
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Persson, Ingmar
    Coordination chemistry effects of the space-demanding solvent molecule N,N′-dimethylpropyleneurea2024In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 53, no 4, p. 1817-1832Article in journal (Refereed)
    Abstract [en]

    Crystallographic investigations of eight homoleptic N,N '-dimethylpropyleneurea (dmpu) coordinated metal ions in the solid state, [Mg(dmpu)(5)]I-2 (1), [Ca(dmpu)(6)]I-2 (2), [Ca(dmpu)(6)](ClO4)(2) (3), [Ca(dmpu)(6)](CF3SO3)(2) (4), [Sr(dmpu)(6)](CF3SO3)(2) (5), [Ba(dmpu)(6)](CF3SO3)(2) (6), [Sc(dmpu)(6)]I-3 (7), and [Pr(dmpu)(6)]I(I-3)(2) (8), and the complex [CoBr2(dmpu)(2)] (9) as well as the structures of the dmpu coordinated calcium, strontium, barium, scandium(III) and cobalt(II) ions and the cobalt(II) bromide complex in dmpu solution as determined by EXAFS are reported. The methyl groups in the dmpu molecule are close to the oxygen donor atom, causing steric restrictions, and making dmpu space-demanding at coordination to metal ions. The large volume required by the dmpu ligand at coordination contributes to crowdedness around the metal ion with often lower coordination numbers than for oxygen donor ligands without such steric restrictions. The crowdedness is seen in M & ctdot;H distances equal to or close to the sum of the van der Waals radii. To counteract the space-demand at coordination, the dmpu molecule has an unusual ability to increase the M-O-C bond angle to facilitate as large coordination numbers as possible. M-O-C bond angles in the range of 125-170 degrees are reported depending on the crowdedness caused by the coordination figure and the M-O bond distance. All reported structures of dmpu coordinated metal ions in both the solid state and dmpu solution are summarized to study the relationship between the M-O-C bond angle and the crowdedness around the metal ion. However, highly symmetric complexes seem to be favoured in the solid state due to favourable lattice energies. As a result, the dmpu coordinated lanthanoid(III) ions are octahedral in the solid state, while they, except lutetium, are seven-coordinate in the dmpu solution.

  • 32. Mishra, Manish Kumar
    et al.
    Smetana, Volodymyr
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Hiti, Ethan A.
    Wineinger, Hannah B.
    Qu, Fengrui
    Mudring, Anja-Verena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Aarhus University, Denmark.
    Rogers, Robin D.
    CO2 capture from ambient air via crystallization with tetraalkylammonium hydroxides2022In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 51, no 46, p. 17724-17732Article in journal (Refereed)
    Abstract [en]

    Aqueous solutions of a series of short carbon chain tetra(n-alkyl)ammonium hydroxides, [Nnnnn][OH] with n = 2: n-ethyl, 3: n-propyl, 4: n-butyl, have been serendipitously found to be potential candidates for direct air carbon capture (DAC) when being used as reagents in more complicated reactions. Aqueous solutions of [N3333][OH], [N2222][OH], or [N3333][OH] with UO2SO4·3H2O and 1,4-diamidoximylbenzene, and [N4444][OH] with cytosine (HCyt) directly absorb CO2 from the atmosphere upon mild heating in the open atmosphere crystallizing in complexes reaching up to 2 : 1 CO2/[Nnnnn]OH ratio. [N2222][HCO3]·3H2O (1), [N2222]2[H(HCO3)3]·5H2O (2), [N3333][HCO3]·0.5H2O (3), [N3333][H(HCO3)2] (4), [N3333]2[(tpa)(H2CO3)2] (5; tpa = terephthalate), [N4444][H(Cyt)(HCO3)]·H2O (6) and [N4444][H2(Cyt)2(HCO3)]·H2O (7) have been isolated in crystalline form and structurally characterized by single crystal X-ray diffraction. The compounds are characterized by complex polyanionic formations from bicarbonate dimers ([(HCO3)2·(H2O)]24−) or chains ([H(HCO3)2]nn or [H2(tpa)(HCO3)2]n2n) to water-bicarbonate associates ([(HCO3)2·6H2O]2− and [(H2CO3·(HCO3)2)2·6H2O·2H2O]2−) and three-component anionic layers ([H(Cyt)(HCO3)·H2O]nn and [H2(Cyt)2(HCO3)·H2O]nn) frequently showing proton sharing. While some hydroxides themselves can maintain a high CO2/[Nnnnn][OH] ratio, particularly 2 and 4, the presence of secondary hydrogen bond donors/acceptors may increase the sorption efficiency through decreased solubility and enhanced crystallization.

  • 33.
    Nyhlén, Jonas
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Privalov, Timofei
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    On the possibility of catalytic reduction of carbonyl moieties with tris(pentafluorophenyl)borane and H2: a computational study2009In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, no 29, p. 5780-5786Article in journal (Refereed)
    Abstract [en]

    The study thoroughly examines the Gibbs free energy surfaces of a new mechanism for redn. of ketones/aldehydes by tris(pentafluorophenyl)borane (1) and H2. Key elements of the proposed mechanism are the proton and the hydride transfer steps similar to Stephan's catalytic redn. of imines by 1. The proton is transferred to the ketone/aldehyde in the process of H2 cleavage by the carbonyl-borane couple and the hydride is transferred in a nucleophilic attack on the carbonyl carbon by the hydridoborate in the ionic pair, [HOCRR']+[HB(C6F5)3]-. The in solvent Gibbs free energy barriers of H2 splitting by adducts of B(C6F5)3 with acetone, acetophenone and benzaldehyde are predicted to be in the range of 24.5 ± 2.5 kcal mol-1, which corresponds to potential energy barriers in the range of 17.0 ± 2.0 kcal mol-1. Significantly lower barrier of H2 activation is predicted in cases of bulky ketones such as 2,2,4,4-tetramethylpentan-3-one. With respect to the hydridoborate intermediate, the nucleophilic attack on the activated carbon is predicted to have a relatively low barrier for the sterically unhindered substrates, while this barrier is considerably higher for the sterically encumbered substrates. Since the formation of the hydridoborate intermediates is found to be endothermic, the transition state of the nucleophilic attack is the highest point of the computed energy profile for all tested substrates. Overall, according to in solvent d. function calcns. the proposed redn. of "compact" ketones/aldehydes by 1 and H2 is allowed both thermodynamically and kinetically at elevated temp., but it is expected to be slower and more substrate specific than the corresponding redn. of imines. [on SciFinder(R)]

  • 34.
    Ovchinnikov, Alexander
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). University of Delaware, USA.
    Bobev, Svilen
    Multifaceted Sn-Sn bonding in the solid state. Synthesis and structural characterization of four new Ca-Li-Sn compounds2019In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 48, no 38, p. 14398-14407Article in journal (Refereed)
    Abstract [en]

    Four novel ternary phases have been prepared in the system Ca-Li-Sn using both the metal flux method and conventional high-temperature synthesis. Each of the obtained compositions represents its own (new) structure type, and the structures feature distinct polyanionic Sn units. Ca4LiSn6 (space group Pbcm, Pearson symbol oP44) accommodates infinite chains, made up of cyclopentane-like [Sn-5]-rings, which are bridged by Sn atoms. The Sn atoms in this structure are two- and three-bonded. The anionic substructure of Ca9Li6+xSn13-x (x approximate to 0.28, space group C2/m, Pearson symbol mS56) displays extensive mixing of Li and Sn and combination of single-bonded and hypervalent interactions between the Sn atoms. Hypervalent bonding is also pronounced in the structure of the third compound, Ca2LiSn3 (space group Pmm2, Pearson symbol oP18) with quasi-two-dimensional polyanionic subunits and a variety of coordination environments of the Sn atoms. One-dimensional [Sn-10]-chains with an intricate topology of cis- and trans-Sn-Sn bonds exist in the structure of Ca9-xLi2Sn10 (x approximate to 0.16, space group C2/m, Pearson symbol mS42), and the Sn-Sn bonding in this case demonstrates the characteristics of an intermediate between single- and double- bond-order. The peculiarities of the bonding are discussed in the context of the Zintl approach, which captures the essence of the main chemical interactions. The electronic structures of all four compounds have also been analyzed in full detail using first-principles calculations.

  • 35.
    Privalov, Timofei
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hydrogenation of imines by phosphonium borate zwitterions: a theoretical study2009In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. -, no 8, p. 1321-1327Article in journal (Refereed)
  • 36. Qiao, Xianji
    et al.
    Ma, Zili
    Luo, Dongbao
    Corkett, Alex J.
    Slabon, Adam
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Rokicinska, Anna
    Kuśtrowski, Piotr
    Dronskowski, Richard
    Metathetic synthesis of lead cyanamide as a p-type semiconductor2020In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 49, no 40, p. 14061-14067Article in journal (Refereed)
    Abstract [en]

    Lead cyanamide PbNCN was synthesized by solid-state metathesis between PbCl2 and Na2NCN in a 1 : 1 molar ratio, and its structure was confirmed from Rietveld refinement of X-ray data. Electronic-structure calculations of HSE06 density-functional type reveal PbNCN to be an indirect semiconductor with a band gap of 2.4 eV, in remarkable quantitative agreement with the measured value. Mott-Schottky experiments demonstrate PbNCN to be a p-type semiconductor with a flat-band potential of 2.3 eV vs. the reversible hydrogen electrode (RHE) which is commonly used to estimate the value of the valence band edge position. Moreover, thin films of powderous PbNCN were assembled into a photoelectrode for photoelectrochemical water splitting. On the example of p-type PbNCN, this study provides the first experimental evidence that MNCN compounds can be applied as photocathodes for reductive reactions in photoelectrochemical cells.

  • 37.
    Rabbani, Faiz
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Svengren, Henrik
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Zimmermann, Iwan
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Hu, Shichao
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Laine, Tanja
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hao, Wenming
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnsson, Mats
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Cobalt selenium oxohalides: catalysts for water oxidation2014In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 43, no 10, p. 3984-33989Article in journal (Refereed)
    Abstract [en]

    Two new oxohalides Co4Se3O9Cl2 and Co3Se4O10Cl2 have been synthesized by solid state reactions. They crystallize in the orthorhombic space group Pnma and the monoclinic space group C2/m respectively. The crystal structure of the two compounds are made up of similar building blocks; Co4Se3O9Cl2 is made up of [CoO4Cl2], [CoO5Cl] and [SeO3] polyhedra and Co3Se4O10Cl2 is made up of [CoO4Cl2] and [SeO3] polyhedra. As several Co-containing compounds have proved to be good catalysts for water oxidation, the activities of the two new compounds were compared with the previously found oxohalide Co5Se4O12Cl2 in reference to CoO and CoCl2. The one electron oxidant Ru(bpy)33+ was used as oxidizing species in a phosphate buffer and it was found that the activities of the oxohalide species were in between CoO and CoCl2. The roles of Cl and PO43− ions are discussed.

  • 38. Rabe, Timo
    et al.
    Pewe, Harm
    Reinsch, Helge
    Willhammar, Tom
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Svensson Grape, Erik
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Stock, Norbert
    Influence of the substitution pattern of four naphthalenedicarboxylic acids on the structures and properties of group 13 metal-organic frameworks and coordination polymers2020In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 49, no 15, p. 4861-4868Article in journal (Refereed)
    Abstract [en]

    Metal-organic frameworks containing Ga3+ ions and four differently substituted naphthalenedicarboxylates (ndc(2-)) have been synthesized and characterized. The Ga3+ ions are six-fold coordinated by oxygen atoms in all title compounds, but two different inorganic building units, i.e. trans corner-sharing and cis,trans edge-sharing octahedra are observed. Crystal structures were validated by Rietveld refinements against powder X-ray diffraction data. [Ga(OH)(1,4-ndc)]2H(2)O crystallizes in a non-breathing MIL-53 type structure with two different pore sizes (5.5 x 5.5 angstrom and 9 x 9 angstrom). It is non-porous with respect to nitrogen but has a water adsorption capacity of about 155 mg g(-1) and a thermal stability of up to 240 degrees C. The dense compound [Ga(OH)(1,8-ndc)] crystallizes in a new layered structure motif, which is related to the crystal structure of MIL-122 ([Al(OH)((O2C)(4)C6H2)]). The third and fourth compounds [Ga-2(OH)(4)(2,3-ndc)]H2O and [Ga(OH)(2,6-ndc)]H2O are isoreticular to CAU-15 ([Al-2(OH)(4)(2,3-bdc)]H2O) and MIL-69 ([Al(OH)(2,6-ndc)]H2O), respectively. The last two compounds are non-porous toward nitrogen but reversible dehydration was demonstrated. For comparison, the two new compounds [Al(OH)(1,8-ndc)] and [Al-2(OH)(4)(2,3-ndc)]H2O, which are isostructural to the newly described gallium compounds, were also synthesized and fully characterized. The Al-containing coordination polymers exhibit higher temperature stabilities compared to their isostructural Ga compounds.

  • 39.
    Rabten, Wangchuk
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chen, Hong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). China University of Geosciences, China.
    Sun, Junliang
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Peking University, China.
    Andersson, Pher G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    A ruthenium water oxidation catalyst based on a carboxamide ligand2016In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 45, no 8, p. 3272-3276Article in journal (Refereed)
    Abstract [en]

    Herein is presented a single-site Ru complex bearing a carboxamide-based ligand that efficiently manages to carry out the fourelectron oxidation of H2O. The incorporation of the negatively charged ligand framework significantly lowered the redox potentials of the Ru complex, allowing H2O oxidation to be driven by the mild oxidant [Ru(bpy)(3)](3+). This work highlights that the inclusion of amide moieties into metal complexes thus offers access to highly active H2O oxidation catalysts.

  • 40. Rahman, Seikh M. H.
    et al.
    Norberg, Stefan T.
    Knee, Christopher S.
    Biendicho, Jordi J.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). STFC Rutherford Appleton Laboratory, England.
    Hull, Stephen
    Eriksson, Sten G.
    Proton conductivity of hexagonal and cubic BaTi1-XScxO3-delta (0.1 <= x <= 0.8)2014In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 43, no 40, p. 15055-15064Article in journal (Refereed)
    Abstract [en]

    BaTi1-xScxO3-delta (X = 0.1-0.8) was prepared via solid state reaction. High resolution X-ray powder diffraction was used to characterise the synthesised materials. It was found that low substitution (x = 0.1 and 0.2) of Ti4+ for Sc3+ gives a hexagonal perovskite structure, whereas high substitution (x = 0.5-0.7) results in a cubic perovskite structure. Thermogravimetric analysis revealed significant levels of protons in both as-prepared and hydrated samples. Electrical conductivity was measured by AC impedance methods under oxygen, argon and under dry and humid, both H(2)0 and D2O, conditions for BaTi1-xScXO3-delta,(x = 0.2, 0.6 and 0.7). In the temperature range of 150-600 C-circle, under humid conditions, the conductivity is significantly higher than that under the dry conditions. The increase in conductivity is especially prominent for the cubic phases, indicating that protons are the dominant charge carriers. The proton conductivity of hexagonal BaTi0.8,Sc0.2O3-delta is approx. two orders of magnitude lower than that of the more heavily substituted cubic phases. Conductivity is also found to be higher in dry O-2 than in Ar in the whole temperature range of 150-1000 C-circle, characteristic of a significant contribution from p-type charge carriers under oxidising atmospheres. Greater Sc3+ substitution leads to a higher proton concentration and the highest proton conductivity (sigma similar to 2 x 10(-3) S cm(-1) at 600 degrees C) is found for the BaTi(0.3)Sc(07)cO(3-delta) composition.

  • 41. Risberg, Emiliana Damian
    et al.
    Jalilehvand, Farideh
    Leung, Bonnie O.
    Pettersson, Lars G. M.
    Stockholm University, Faculty of Science, Department of Physics.
    Sandström, Magnus
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
    Theoretical and Experimental Sulfur K-edge X-ray Absorption Spectroscopic Study of Cysteine, Cystine, Homocysteine, Penicillamine, Methionine and Methionine Sulfoxide2009In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, p. 3542-3558Article in journal (Refereed)
    Abstract [en]

      The experimental sulfur K-edge X-ray absorption near-edge structure (XANES) spectra of the amino acids cysteine, homocysteine, penicillamine, methionine, including the oxidation products methionine sulfoxide and the disulfide cystine, have been analyzed by transition potential DFT calculations. The absolute energies and intensities of the main pre-edge sulfur 1s electron transitions have been computed to determine the character of the receiving unoccupied molecular orbitals (MO), and to investigate the influence of external interactions, especially by introducing water molecules hydrogen-bonded to the ionic species present in different pH ranges. When the thiol group deprotonates for cysteine, homocysteine and penicillamine and also for the cysteine residue in glutathione the energy of the main transition, to an MO with antibonding σ*(S–H) character, reduces by 1.1 eV and the receiving MO obtains σ*(S–C) character. The changes in transition energy due to hydrogen-bonding were in most cases found to be relatively small, although the transition intensities could vary significantly due to the changes induced in the molecular charge distribution, thereby affecting the shapes of the spectral features. For the cysteine and penicillamine zwitterions deconvolution of the experimental spectra allowed the microscopic acid dissociation constants to be extracted separately for the thiol and the protonated amine groups, pKaS = 8.5 ± 0.1 and 8.2 ± 0.1, and pKaN = 8.9 ± 0.1 and 8.8 ± 0.1, respectively, with the thiol group in both cases being the more acidic. Coordination of cysteine to nickel(II) or mercury(II) introduced a new low energy transition involving metal ion orbitals in the receiving LUMO. The small experimentally observed energy differences between the similar main absorption features of the cysteine and methionine zwitterions, 0.2–0.3 eV in comparable surrounding, as well as a minor difference in their intensities, are reflected in the calculated transitions. The S K-edge XANES spectrum of the disulfide cystine displays a characteristic double peak with the lower energy transition (2469.9 eV) into the antibonding σ*(S–S) MO. The second peak, at 2471.5 eV in aqueous solution, contains several transitions into MOs with σ*(S–C) character involving also charge transfer to the water molecules hydrating the protonated amine groups (NH3+) of cystine. For solid cystine without hydrogen bonding the experimental energy difference between the two peaks is 0.2 eV larger, while no such increase occurs for the oxidized disulfide of glutathione, with a similar –S–S– bond between its cysteine residues as in cystine, because the amine groups are engaged in peptide bonds. This study shows that externally induced changes in the intramolecular bonding, e.g., by coordination, conformation geometry or hydrogen-bonding, can significantly influence the S K-edge spectra, and emphasizes the importance of a similar chemical surrounding when choosing the model compounds for standard spectra of sulfur functional groups, used to deconvolute composite experimental spectra.

  • 42. Risberg, Emiliana Damian
    et al.
    Mink, János
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
    Abbasi, Alireza
    Skripkin, Mikhail Yu.
    Hajba, Laszló
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
    Lindqvist-Reis, Patric
    Bencze, Éva
    Sandström, Magnus
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
    Ambidentate coordination in hydrogen bonded dimethyl sulfoxide, (CH3)2SO H3O+, and in dichlorobis(dimethyl sulfoxide) palladium(II) and platinum(II) solid solvates, by vibrational and sulfur K-edge X-ray absorption spectroscopy2009In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, p. 1328-1339Article in journal (Refereed)
    Abstract [en]

     

    The strongly hydrogen bonded species (CH3)2SOH3O+ formed in concentrated hydrochloric acid displays a new low energy feature in its sulfur K-edge X-ray absorption near edge structure (XANES) spectrum. Density Functional Theory-Transition Potential (DFT-TP) calculations reveal that the strong hydrogen bonding decreases the energy of the transition S(1s) → LUMO, which has antibonding σ*(S–O) character, with about 0.8 eV. Normal coordinate force field analyses of the vibrational spectra show that the SO stretching force constant decreases from 4.72 N cm−1 in neat liquid dimethyl sulfoxide to 3.73 N cm−1 for the hydrogen bonded (CH3)2SOH3O+ species. The effects of sulfur coordination on the ambidentate dimethyl sulfoxide molecule were investigated for the trans-Pd((CH3)2SO)2Cl2, trans-Pd((CD3)2SO)2Cl2 and cis-Pt((CH3)2SO)2Cl2 complexes with square planar coordination of the chlorine and sulfur atoms. The XANES spectra again showed shifts toward low energy for the transition S(1 s) → LUMO, now with antibonding σ*(M–Cl, M–S) character, with a larger shift for M = Pt than Pd. DFT-TP calculations indicated that the differences between the XANES spectra of the geometrical cis and trans isomers of the M((CH3)2SO)2Cl2 complexes are expected to be too small to allow experimental distinction. The vibrational spectra of the palladium(II) and platinum(II) complexes were recorded and complete assignments of the fundamentals were achieved. Even though the M–S bond distances are quite similar the high covalency especially of the Pt–S bonds induces significant increases in the S–O stretching force constants, 6.79 and 7.18 N cm−1, respectively.

  • 43.
    Selander, Nicklas
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis and transformation of organoboronates and stannanes by pincer-complex catalysts2009In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, no 32, p. 6267-6279Article in journal (Refereed)
  • 44.
    Shatskiy, Andrey
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lomoth, Reiner
    Abdel-Magied, Ahmed F.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Nuclear Materials Authority, Egypt.
    Rabten, Wangchuk
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Laine, Tanja M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chen, Hong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). KTH Royal Institute of Technology, Sweden.
    Sun, Junliang
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Andersson, Pher G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalyst-solvent interactions in a dinuclear Ru-based water oxidation catalyst2016In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 45, no 47, p. 19024-19033Article in journal (Refereed)
    Abstract [en]

    Photocatalytic water oxidation represents a key process in conversion of solar energy into fuels and can be facilitated by the use of molecular transition metal-based catalysts. A novel straightforward approach for covalent linking of the catalytic units to other moieties is demonstrated by preparation of a dinuclear complex containing two [Ru(pdc)(pic)(3)]-derived units (pdc = 2,6-pyridinedicarboxylate, pic = 4-picoline). The activity of this complex towards chemical and photochemical oxidation of water was evaluated and a detailed insight is given into the interactions between the catalyst and acetonitrile, a common co-solvent employed to increase solubility of water oxidation catalysts. The solvent-induced transformations were studied by electrochemical and spectroscopic techniques and the relevant quantitative parameters were extracted.

  • 45.
    Siegbahn, Per
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Blomberg, Margareta
    Stockholm University, Faculty of Science, Department of Physics.
    The Combined Picture from Theory and Experiments on Water Oxidation, Oxygen Reduction and Proton Pumping2009In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, no 30, p. 5832-5840Article in journal (Refereed)
    Abstract [en]

     

    In order to illustrate how theory and experiments can be combined, examples are taken from two projects that have been going on for a decade. The goal is to obtain the full mechanistic picture of wateroxidation in photosystem II and proton pumping in cytochrome c oxidase. It is argued that for obtaining a complete description of these processes, both experiments and theoretical calculations are needed. It is obvious that there are aspects, which are out of reach for computations, but there are also key aspects that can not be obtained by experiments. This concerns very short-lived species but also, in the case of photosynthesis in particular, structural information that is presently out of reach. The main contributions from theory in the present cases, is for photosynthesis a mechanism for O–O bond formation including new and improved structures for all S-states, and for proton pumping a plausible and simple mechanism for proton gating. The examples also illustrate that sometimes rather qualitative experimental information can be of highest importance.

  • 46.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Physics.
    Water oxidation in photosystem II: oxygen release, proton release and the effect of chloride2009In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, no 45, p. 10063-10068Article in journal (Refereed)
    Abstract [en]

    Recent reviews on quantum chemical studies of water oxidation in photosystem II have focused on the energetics of O-O bond formation, including the energies of the different S-states. In the present paper, this is extended by discussing the release pathways for dioxygen and protons from the oxygen evolving complex. Based on recent X-ray structures, the effect of adding chloride has also been investigated. Unlike most earlier suggestions, a small, but probably significant, electrostatic effect of adding chloride is found for the higher S-states. For releasing dioxygen in the S-4-state, entropy plays a major role. The suggested pathway for proton release in the S-1 to S-2 transition involves key roles of an outside water and the motion of Asp170. An electron transfer between manganese centra during proton release is also found to be important for a low barrier.

  • 47.
    Stewart, Beverly
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nyhlén, Jonas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martin-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Privalov, Timofei
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    A computational study of the CO dissociation in cyclopentadienyl ruthenium complexes relevant to the racemization of alcohols2013In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 42, no 4, p. 927-934Article in journal (Refereed)
    Abstract [en]

    The formation of an active 16-electron ruthenium sec-alkoxide complex via loss of the CO ligand is an important step in the mechanism of the racemization of sec-alcohols by (eta(5)-Ph5C5) Ru(CO)(2)X ruthenium complexes with X = Cl and OtBu. Here we show with accurate DFT calculations the potential energy profile of the CO dissociation pathway for a series of relevant (eta(5)-Ph5C5) Ru(CO) 2X complexes, where X = Cl, OtBu, H and (COOBu)-Bu-t. We have found that the CO dissociation energy increases in the following order: OtBu (lowest), Cl, COOtBu and H (highest). Using the distance between ruthenium and C-CO, r = Ru-C-CO, as a constraint, and by optimizing all other degrees of freedom for a range of Ru-CO distances, we obtained relative energies, Delta E(r) and geometries of a sufficient number of transient structures with the elongated Ru-CO bond up to r = 3.4 angstrom. Our calculations provide a quantitative understanding of the CO ligand dissociation in (eta(5)-Ph5C5) Ru(CO)(2)Cl and (eta(5)-Ph5C5) Ru(CO) 2(OtBu) complexes, which is relevant to the mechanism of their catalytic activity in the racemization of alcohols. We recently reported that exchange of the CO ligand by isotopically labeled (CO)-C-13 in the Ru-(OBu)-Bu-t complex occurs twenty times faster than that in the Ru-Cl complex. This corresponds to a difference of 1.8 kcal mol(-1) in the CO dissociation energy (at room temperature). This is in very good agreement with the calculated difference between the two potential energy curves for Ru-OtBu and Ru-Cl complexes, which is about 1.8-2 kcal mol(-1) around the corresponding transition states of the CO dissociation. The calculated difference in the total energy for CO dissociation in (eta(5)-Ph5C5) Ru(CO)(2)X complexes is related to the stabilization provided by the X group in the final 16-electron complexes, which are formed via product-like transition states. In addition to the calculated transition states of CO dissociation in Ru-OtBu and Ru-Cl complexes, the calculated transient structures with the elongated Ru-CO bond provide insight into how the geometry of the ruthenium complex with a potent heteroatom donor group (X) gradually changes when one of the COs is dissociating.

    Download full text (pdf)
    fulltext
  • 48.
    Su, Jie
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Wang, Yingxia
    Lin, Jianhua
    Liang, Jie
    Sun, Junliang
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    A silicogermanate with 20 ring channels directed by a simple quaternary ammonium cation2013In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 42, no 5, p. 1360-1363Article in journal (Refereed)
    Abstract [en]

    A silicogermanate, PKU-12, with the -CLO type of zeolite framework was hydrothermally synthesized under fluoride media using diisopropylethylmethylammonium as a structure directing agent. The formation of the silicogermanate zeolite with 20-ring channels has not only extended the -CLO family from phosphates into silicogermanates, but also demonstrated its structural diversity.

  • 49.
    Sun, Junliang
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Structure determination of porous materials by electron crystallography2010In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 39, p. 8355-8362Article, review/survey (Refereed)
    Abstract [en]

    Structure determination of porous materials is important for understanding the materials properties and exploiting their applications. Compared to X-ray diffraction, electron crystallography has two unique advantages. Crystals that are too small to be studied by X-ray diffraction can be studied by electron crystallography. The structure factor phase information, which is lost in diffraction, can be obtained from high resolution transmission electron microscopy (HRTEM) images. Here we will present different techniques and applications of electron crystallography for structure determination of zeolites and ordered mesoporous materials, based on electron diffraction data and/or HRTEM images. Electron crystallography and X-ray diffraction are complementary in many aspects. Their combinations show great potentials for structure determination of complex porous materials.

  • 50.
    Sun, Junliang
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Structure determination of zeolites and ordered mesoporous materials by electron crystallography2010In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 39, no 36, p. 8355-8362Article in journal (Refereed)
    Abstract [en]

    Structure determination of porous materials is important for understanding the materials properties and exploiting their applications. Compared to X-ray diffraction, electron crystallography has two unique advantages. Crystals that are too small to be studied by X-ray diffraction can be studied by electron crystallography. The structure factor phase information, which is lost in diffraction, can be obtained from high resolution transmission electron microscopy (HRTEM) images. Here we will present different techniques and applications of electron crystallography for structure determination of zeolites and ordered mesoporous materials, based on electron diffraction data and/or HRTEM images. Electron crystallography and X-ray diffraction are complementary in many aspects. Their combinations show great potentials for structure determination of complex porous materials.

12 1 - 50 of 65
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf