Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aleksis, Rihards
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Carvalho, José P.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Jaworski, Aleksander
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Pell, Andrew J.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Artefact-free broadband 2D NMR for separation of quadrupolar and paramagnetic shift interactions2019In: Solid State Nuclear Magnetic Resonance, ISSN 0926-2040, E-ISSN 1527-3326, Vol. 101, p. 51-62Article in journal (Refereed)
    Abstract [en]

    Two new two-dimensional, broadband, solid-state NMR experiments for separating and correlating the quadrupolar and shift interactions of spin I = 1 nuclei in paramagnetic systems are proposed. The new pulse sequences incorporate the short, high-power adiabatic pulses (SHAPs) into the shifting d-echo experiment of Walder et al. [J. Chem. Phys., 142, 014201 (2015)], in two different ways, giving double and quadruple adiabatic shifting d-echo sequences. These new experiments have the advantage over previous methods of both suppressing spectral artefacts due to pulse imperfections, and exhibiting a broader excitation bandwidth. Both experiments are analysed with theoretical calculations and simulations, and are applied experimentally to the H-2 NMR of deuterated CuCl2 center dot 2H(2)O, and two deuterated samples of the ion conductor oxyhydride BaTiO3-xHy prepared using two different methods. For the CuCl2 center dot 2H(2)O sample, both new methods obtain very high-quality spectra from which the parameters describing the shift and quadrupolar interaction tensors, and their relative orientation, were extracted. The two BaTiO3-xHy samples exhibited different local hydride environments with different tensor parameters. The H-2 spectra of these oxyhydrides exhibit inhomogeneous broadening of the H-2 shifts, and so whilst the quadrupolar interaction parameters were easily extracted, the measurement of the shift parameters was more complex. However, effective shift parameters were extracted, which combine the effects of both the paramagnetic shift tensor and the inhomogeneous broadening.

  • 2.
    Eden, Mattias
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
    Homonuclear dipolar recoupling of half-integer spin quadrupolar nuclei: techniques and applications2009In: Solid State Nuclear Magnetic Resonance, ISSN 0926-2040, E-ISSN 1527-3326, Vol. 36, no 1, p. 1-10Article in journal (Refereed)
    Abstract [en]

    We review recent advances in solid state NMR methodology for recovering homonuclear dipolar interactions among half-integer quadrupolar spins undergoing sample rotation. Existing dipolar recoupling techniques are contrasted, based on (i) the form of their associated dipolar Hamiltonian, (ii) the different experimental conditions necessitating their realization and (iii) their roles as components in multi-dimensional NMR correlation spectroscopy. Various types of structural information accessible from such solid state NMR experimentation is reviewed. Promises and limitations of methodologies targeting homonuclear dipolar couplings between half-integer spins under high-resolution conditions are discussed, with particular focus on the demands set for structural investigations of crystalline as well as structurally disordered (amorphous) inorganic network materials

  • 3.
    Hedin, Niklas
    et al.
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
    Ng, JBS
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
    Stilbs, P
    Spectral Deconvolution of NMR Cross Polarization Data Sets2009In: Solid State Nuclear Magnetic Resonance, ISSN 0926-2040, E-ISSN 1527-3326, Vol. 35, p. 208-213Article in journal (Refereed)
    Abstract [en]

    The COmponent-REsolved (CORE) strategy has been employed, for the first time to solid state NMR spectroscopy. CORE was used to extract two time-dependent spectral components in 24 Si-29(H-1) NMR spectra, recorded on a meso-structured silica material under conditions of cross polarization evolution. No prior assumptions were made about the component bandshapes, which were both found to be skewed to higher chemical shifts. For the silica fragments close to protons this skewness could be rationalized by a distribution of the degree of condensation in the silica network; however, for the other component the non-Gaussian shape was unexpected. We expect that the same strategy could be applied to a range of experiments in solid-state NMR spectroscopy, where spectral distributions or kinetic parameters need to be accurately extracted

  • 4.
    Leonova, Ekaterina
    et al.
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
    Grins, Jekabs
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
    Shariatgorji, Mohammadreza
    Stockholm University, Faculty of Science, Department of Analytical Chemistry.
    Ilag, Leopold L.
    Stockholm University, Faculty of Science, Department of Analytical Chemistry.
    Eden, Mattias
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
    Solid-state NMR investigations of Si-29 and N-15 enriched silicon nitride2009In: Solid State Nuclear Magnetic Resonance, ISSN 0926-2040, E-ISSN 1527-3326, Vol. 36, no 1, p. 11-18Article in journal (Refereed)
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf