Models that capture symmetries present in the data have been widely used in different applications, with early examples from psychometric and medical research. The aim of this article is to study a random effects model focusing on the covariance structure that is block circular symmetric. Useful results are obtained for the spectra of these structured matrices.
The general unbalanced mixed linear model with two variance components is considered. Through resampling it is demonstrated how the fixed effects can be estimated explicitly. It is shown that the obtained nonlinear estimator is unbiased and its variance is also derived. A condition is given when the proposed estimator is recommended instead of the ordinary least squares estimator.
Many researchers have studied restricted estimation in the context of exact and stochastic restrictions in linear regression. Some ideas in linear regression, where the ridge and restricted estimations are the well known, were carried to the generalized linear models which provide a wide range of models, including logistic regression, Poisson regression, etc. This study considers the estimation of generalized linear models under stochastic restrictions on the parameters. Furthermore, the sampling distribution of the estimators under the stochastic restriction, the compatibility test and choice of the biasing parameter are given. A real data set is analyzed and simulation studies concerning Binomial and Poisson distributions are conducted. The results show that when stochastic restrictions and ridge idea are simultaneously applied to the estimation methods, the new estimator gains efficiency in terms of having smaller variance and mean square error.