Change search
Refine search result
1234567 1 - 50 of 135347
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    A. da Cruz, Marcia Gabriely
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Budnyak, Tetyana M.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    M. Rodrigues, Bruno V.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Budnyk, Serhiy
    Slabon, Adam
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Biocoatings and additives as promising candidates for ultralow friction systems2021In: Green Chemistry Letters and Reviews, ISSN 1751-8253, E-ISSN 1751-7192, Vol. 14, no 2, p. 356-379Article, review/survey (Refereed)
    Abstract [en]

    The achievement of frictionless systems, known as superlubricity, has become of great importance concerning energy saving and emission reduction. In parallel, the drive toward sustainability and environmental aspects has led to intense advances in the research and development of biobased materials. From the standpoint of Green Chemistry principles, this review presents a critical overview of the latest findings and future perspectives on the application of biobased materials aiming at superlubricant pursuits. The progress in the use of biomacromolecules, such as chitosan, cellulose, and lignin, as additives to lubricants or coating materials, are addressed, as well as the advances on sustainable coatings based on diamond-like carbon (DLC). Deeper investigations on the development of non-hazardous processes dedicated to the tribological properties of DLC, such as electrochemical synthesis using environment-friendly solvents to generate molecular precursors, widen the perspectives to achieve sustainable materials. Besides, the exploration of the tribochemical interactions between the DLC surface and lubricants containing biobased materials arises as a promising strategy to achieve green superlubricity as a viable and scalable process, through different pathways: by hydrogen bonds between lubricant and additives, via surface passivation of the functional groups present in these biomacromolecules or by biomimicking natural joints.

  • 2.
    A. da Cruz, Marcia Gabriely
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    M. Rodrigues, Bruno V.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Ristic, Andjelka
    Budnyk, Serhiy
    Das, Shoubhik
    Slabon, Adam
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    On the product selectivity in the electrochemical reductive cleavage of 2-phenoxyacetophenone, a lignin model compound2022In: Green Chemistry Letters and Reviews, ISSN 1751-8253, E-ISSN 1751-7192, Vol. 15, no 1, p. 151-159Article in journal (Refereed)
    Abstract [en]

    Research towards the production of renewable chemicals for fuel and energy industries has found lignin valorization as key. With a high carbon content and aromaticity, a fine-tuning of the depolymerization process is required to convert lignin into valuable chemicals. In context, model compounds have been used to understand the electrocatalyzed depolymerization for mimicking the typical linkages of lignin. In this investigation, 2-phenoxyacetophenone, a model compound for lignin beta-O-4 linkage, was electro-catalytically hydrogenated (ECH) in distinct three-electrode setups: an open and a membrane cell. A deep eutectic solvent based on ethylene-glycol and choline chloride was used to pursue sustainable routes to dissolve lignin. Copper was used as electrocatalyst due to the economic feasibility and low activity towards hydrogen evolution reaction (HER), a side reaction of ECH. By varying the cell type, we demonstrate a simple ECH route for the generation of different monomers and oligomers from lignin. Gas chromatography of the products revealed a higher content of carbonyl groups in those using the membrane cell, whereas the open cell produced mostly hydroxyl-end chemicals. Aiming at high value-added products, our results disclose the cell type influence on electrochemical reductive depolymerization of lignin. This approach encompasses cheap transition metal electrodes and sustainable solvents.

  • 3.
    A. da Cruz, Márcia G.
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Gueret, Robin
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Chen, Jianhong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Piątek, Jędrzej
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Beele, Björn
    Sipponen, Mika H.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Frauscher, Marcella
    Budnyk, Serhiy
    M. Rodrigues, Bruno V.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Bergische Universität Wuppertal, Germany.
    Slabon, Adam
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Bergische Universität Wuppertal, Germany.
    Electrochemical Depolymerization of Lignin in a Biomass-based Solvent2022In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 15, no 15, article id e202200718Article in journal (Refereed)
    Abstract [en]

    Breaking down lignin into smaller units is the key to generate high value-added products. Nevertheless, dissolving this complex plant polyphenol in an environment-friendly way is often a challenge. Levulinic acid, which is formed during the hydrothermal processing of lignocellulosic biomass, has been shown to efficiently dissolve lignin. Herein, levulinic acid was evaluated as a medium for the reductive electrochemical depolymerization of the lignin macromolecule. Copper was chosen as the electrocatalyst due to the economic feasibility and low activity towards the hydrogen evolution reaction. After depolymerization, high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy revealed lignin-derived monomers and dimers. A predominance of aryl ether and phenolic groups was observed. Depolymerized lignin was further evaluated as an anti-corrosion coating, revealing enhancements on the electrochemical stability of the metal. Via a simple depolymerization process of biomass waste in a biomass-based solvent, a straightforward approach to produce high value-added compounds or tailored biobased materials was demonstrated. 

  • 4.
    A. da Cruz, Márcia G.
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Onwumere, Joy N.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Chen, Jianhong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Beele, Björn
    Yarema, Maksym
    Budnyk, Serhiy
    Slabon, Adam
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). University of Wuppertal, Germany.
    M. Rodrigues, Bruno V.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). University of Wuppertal, Germany.
    Solvent-free synthesis of photoluminescent carbon nanoparticles from lignin-derived monomers as feedstock2023In: Green Chemistry Letters and Reviews, ISSN 1751-8253, E-ISSN 1751-7192, Vol. 16, no 1, article id 2196031Article in journal (Refereed)
    Abstract [en]

    Photoluminescent carbon nanoparticles (CNPs), such as carbon dots (CDs), have attracted much attention owing to a unique set of properties, like high and tunable fluorescence. In this way, the use of carbon-rich lignin has been demonstrated to be a sustainable approach to producing a broad range of photoluminescent CNPs. However, the valorization of this complex polyphenol is limited when it comes to green and efficient ways of conversion. In addition, the existing solvothermal approaches using lignin often result in CDs with low photoluminescence, while flammable and/or toxic solvents are employed. Here, we depolymerized technical lignins, i.e. kraft and soda, through electroreductive cleavage in two different sustainable media: deep eutectic solvent and levulinic acid. After depolymerization, lignin-derived monomers were generated, with a predominance of aryl ether and phenolic groups, which were further combined with 1,2-Phenylenediamine to produce N-doped CNPs in a solvent-free approach. Photoluminescent CNPs with varied sizes were generated (5–50 nm), which presented a wide photoluminescence emission, from blue to red, depending on solvent polarity. These results demonstrate a feasible and sustainable route for the solvent-free synthesis of photoluminescent CNPs using lignin-derived monomers as carbon source, which may find applications in a wide range of fields.

  • 5.
    A. Kader, Roweida
    et al.
    Stockholm University, Faculty of Social Sciences, Department of Social Work.
    Abdullahi Ali, Kausar
    Stockholm University, Faculty of Social Sciences, Department of Social Work.
    Hör inget, ser inget och säger inget: En kvalitativ undersökning om idéburna organisationers syn på obenägenheten att avlägga vittnesmål i marginaliserade områden2020Independent thesis Basic level (university diploma), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    Residents in marginalized areas tend to show a lower level of confidence in the criminal justice system and carry out police reports and testimonies to the criminal justice system to a lesser extent than residents in other areas. In this scientific essay, a qualitative study is conducted to analyze the disinclination to leave testimonies and report crimes in marginalized areas, along with researching possible ways to improve the residents relationship with the criminal justice system. The theoretical framework for this study consists of Žižeks theory of violence, territorial stigma and social exclusion. The sample group for the study is advocates in non-profit organizations operating in marginalized areas. Using a semi-structured interview method, this study’s empirical findings reveals that a critical view of the criminal justice system, lack of confidence in the criminal justice system, ambivalent feelings about the residential area and mass medias stigmatizing effects are believed to cause a reluctance to cooperate with the criminal justice system in marginalized areas. Furthermore, our findings show that an admittance of the existence of racism within the justice system, increased communication, cultural competence, and safe meeting places are believed to improve the relationship between the residents and the criminal justice system.

    Download full text (pdf)
    Examensarbete 2020
  • 6. A. Madsen, Kevin
    et al.
    J. Bergholtz, Emil
    Stockholm University, Faculty of Science, Department of Physics.
    Brouwer, Piet W.
    Josephson effect in a Weyl SNS junction2017In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 95, no 6, article id 064511Article in journal (Refereed)
    Abstract [en]

    We calculate the Josephson current density j (phi) for a Weyl superconductor-normal-metal-superconductor junction for which the outer terminals are superconducting Weylmetals and the normal layer is a Weyl (semi) metal. We describe the Weyl (semi) metal using a simple model with two Weyl points. The model has broken time-reversal symmetry, but inversion symmetry is present. We calculate the Josephson current for both zero and finite temperature for the two pairing mechanisms inside the superconductors that have been proposed in the literature, zero-momentum BCS-like pairing and finite-momentum FFLO-like pairing, and assuming the short-junction limit. For both pairing types we find that the current is proportional to the normal-state junction conductivity, with a proportionality coefficient that shows quantitative differences between the two pairing mechanisms. The current for the BCS-like pairing is found to be independent of the chemical potential, whereas the current for the FFLO-like pairing is not.

  • 7.
    A. Manneh, Ilana
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education.
    Supporting Learning and Teaching of Chemistry in the Undergraduate Classroom2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    There is agreement in research about the need to find better ways of teaching chemistry to enhance students’ understanding. This thesis aims to contribute to the understanding of how we better support teaching and learning of undergraduate chemistry to make it meaningful and intelligible for students from the outset. The thesis is concerned with examining the interactions between student, specific content and teacher in the undergraduate chemistry classroom; that is, the processes making up the three relations of the didactic triangle. The data consists of observations of students and tutors during problem-solving activities in an introductory chemistry course and interviews with graduate students.

    Systematic analyses of the different interactions between the student, the chemistry content, and the tutor are made using the analytical tool of practical epistemology analysis. The main findings of the thesis include detailed insights into how undergraduate chemistry students deal with newly encountered content together with didactic models and concrete suggestions for improved teaching and for supporting continuity and progression in the undergraduate chemistry classroom. Specifically, I show how students deal with the chemistry content through a complex interaction of knowledge, experiences, and purposes on different levels invoked by both students and tutors as they interact with each other. Whether these interactions have a positive or negative effect on students’ learning depends on the nature of knowledge, experiences and purposes that were invoked. Moreover, the tutor sometimes invoked other purposes than the ones related to the task at hand for connecting the activity to the subject matter in general. These purposes were not always made continuous with the activity which resulting in confusion among students. The results from these analyses were used for producing hypotheses and models that could support continuity and progression during the activity. The suggested models aim to make the content more manageable and meaningful to students, enabling connections to other experiences and purposes, and helping teachers and tutors to analyze and reflect on their teaching. Moreover, a purpose- and activity-based progression is suggested that gives attention to purposes in chemistry education other than providing explanations of chemical phenomena. The aim of this ‘progression in action’ is to engage students in activities were they can see the meaning of chemical concepts and ideas through their use to accomplish different chemical tasks. A general conclusion is that detailed knowledge about the processes of teaching and learning is important for providing adequate support to both undergraduate students and university teachers in the chemistry classroom.

    Download full text (pdf)
    Supporting Learning and Teaching of Chemistry in the Undergraduate Classroom
    Download (jpg)
    Omslagsframsida
  • 8.
    A. Manneh, Ilana
    et al.
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education.
    Hamza, Karim M.
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education.
    Rundgren, Carl-Johan
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Progression in action for developing chemical knowledgeManuscript (preprint) (Other academic)
    Abstract [en]

    In this paper, we discuss the well-known teaching challenge of how to provide undergraduate students with basic chemistry knowledge without making them experience these basics as meaningless and unintelligible. First, we situate the challenge in a classic dilemma: should we teach the necessary basic facts before the chemical explanations or should the explanations be taught before or in parallel to these facts? Here we draw on examples from interviews with graduate students reflecting on their experiences regarding their studies at the undergraduate level. Second, we suggest a way out of the dilemma, through a shift in perspective from the typical progression of facts and explanations towards a purpose and activity-based progression. We conclude with a discussion of implications of such a shift for university chemistry education together with suggestions for future research.

  • 9.
    A. Manneh, Ilana
    et al.
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education.
    Hamza, Karim
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education.
    Rundgren, Carl-Johan
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    The role of anthropomorphisms in students’ reasoning about chemical structure and bonding2018In: Asia-Pacific Forum on Science Learning and Teaching, E-ISSN 1609-4913, Vol. 19, no 2, article id 4Article in journal (Refereed)
    Abstract [en]

    Anthropomorphisms are widespread at all levels of the educational system even among science experts. This has led to a shift in how anthropomorphisms are viewed in science education, from a discussion of whether they should be allowed or avoided towards an interest in their role in supporting students’ understanding of science. In this study we examine the role of anthropomorphisms in supporting students’ understanding of chemistry. We analyze examples from undergraduate students’ discussions during problem-solving classes through the use of practical epistemology analysis (PEA). Findings suggest that students invoked anthropomorphisms alongside technical relations which together produced more or less chemically appropriate explanations. Also, anthropomorphisms constitute potentially productive points of departure for rendering students’ explanations more chemically appropriate. The implications of this study refer to the need to deal with anthropomorphisms explicitly and repeatedly as well as to encourage explicit connections between different parts of the explanation - teleological as well as causal.

    Download full text (pdf)
    fulltext
  • 10.
    A. Manneh, Ilana
    et al.
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education.
    Rundgren, Carl-Johan
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education.
    Hamza, Karim M.
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Tutor-student interaction in undergraduate chemistry: a case of learning to make relevant distinctions of molecular structures for determining oxidation states of atoms2018In: International Journal of Science Education, ISSN 0950-0693, E-ISSN 1464-5289, Vol. 40, no 16, p. 2023-2043Article in journal (Refereed)
    Abstract [en]

    In this study, we explore the issues and challenges involved in supporting students’ learning to discern relevant and critical aspects of determining oxidation states of atoms in complex molecules. We present a detailed case of an interaction between three students and a tutor during a problem-solving class, using the analytical tool of practical epistemology analysis (PEA). The results show that the ability to make relevant distinctions between the different parts of a molecule for solving the problem, even with the guidance of the tutor, seemed to be challenging for students. These shifts were connected to both purposes that were specific for solving the problem at hand, and additional purposes for general learning of the subject matter, in this case how to assign oxidation states in molecules. The students sometimes could not follow the additional purposes introduced by the tutor, which made the related distinctions more confusing. Our results indicate that in order to provide adequate support and guidance for students the tutor needs to consider how to sequence, move between, and productively connect the different purposes introduced in a tutor-student interaction. One way of doing that is by first pursuing the purposes for solving the problem and then successively introduce additional, more general purposes for developing students’ learning of the subject matter studied. Further recommendations drawn from this study are discussed as well.

    Download full text (pdf)
    fulltext
  • 11.
    A. Zheltukhin, A
    Stockholm University, Faculty of Science, Department of Physics.
    Unification of twistors and Ramond vectors2007In: Physics letters B, Vol. 658, p. 82-Article in journal (Refereed)
  • 12. Aaberge, Rolf
    et al.
    Bourguignon, François
    Brandolini, Andrea
    Ferreira, Francisco H. G.
    Gornick, Janet G.
    Hills, John
    Jäntti, Markus
    Stockholm University, Faculty of Social Sciences, The Swedish Institute for Social Research (SOFI).
    Jenkins, Stephen P.
    Marlier, Eric
    Micklewright, John
    Nolan, Brian
    Piketty, Thomas
    Radermacher, Walter J.
    Smeeding, Timothy M.
    Stern, Nicholas H.
    Stiglitz, Joseph
    Sutherland, Holly
    Tony Atkinson and his Legacy2017In: The Review of Income and Wealth, ISSN 0034-6586, E-ISSN 1475-4991, Vol. 63, no 3, p. 411-444Article in journal (Refereed)
    Abstract [en]

    Tony Atkinson is universally celebrated for his outstanding contributions to the measurement and analysis of inequality, but he never saw the study of inequality as a separate branch of economics. He was an economist in the classical sense, rejecting any sub-field labelling of his interests and expertise, and he made contributions right across economics. His death on 1 January 2017 deprived the world of both an intellectual giant and a deeply committed public servant in the broadest sense of the term. This collective tribute highlights the range, depth and importance of Tony's enormous legacy, the product of almost fifty years’ work.

  • 13. Aad, G.
    et al.
    Abbott, B.
    Abdallah, J.
    Gellerstedt, Karl
    Stockholm University, Faculty of Science, Department of Physics.
    Measurement of the top quark pair production cross section with ATLAS in pp collisions at √s = 7 TeV in dilepton final states2011Report (Other academic)
    Abstract [en]

    A measurement is presented of the production cross section of top quark pairs (σ_{\ttbar{}}) in proton-proton (pp) collisions at √s = 7 TeV recorded with the ATLAS detector at the CERN Large Hadron Collider. Using a data sample of 35 pb−1, candidate events are selected in the dilepton topology with large missing transverse energy, \met{}, and at least two jets.

    A baseline analysis employing kinematic properties of the candidate events to separate the signal from background and using data-driven techniques to determine the most important backgrounds, results in a measurement ofσ_{\ttbar{}} = 173 ± 22(stat.)+18 −16(syst.)+8 −7(lum.) pb,

    where the three uncertainties are from statistics, systematics and integrated luminosity, respectively.

    We also perform a cross section measurement requiring at least one b-tagged jet and a looser kinematic selection that increases the signal-to-background ratio, yielding

    σ_{\ttbar{}} = 171 ± 22(stat.)+21 -16(syst.)+7 −6(lum.) pb.

    Additional studies are performed to corroborate these measurements; a technique that normalizes the \ttbar{} signal yield to the measured rate of Z decays, a two-dimensional template shape fit using the \met{} vs the number of jets to simultaneously measure the production cross sections of \ttbar{}, WW and Z → ττ final states, and a simultaneous measurement of σ_{\ttbar{}} and the b-tagging efficiency using the distribution of the number of tagged jets in each event.

    All the measurements are in good agreement with each other and the Standard Model prediction.

    Download full text (pdf)
    fulltext
  • 14. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clement, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Search for flavour-changing neutral-current couplings between the top quark and the photon with the ATLAS detector at √s=13 TeV2023In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 842, article id 137379Article in journal (Refereed)
    Abstract [en]

    This letter documents a search for flavour-changing neutral currents (FCNCs), which are strongly suppressed in the Standard Model, in events with a photon and a top quark with the ATLAS detector. The analysis uses data collected in pp collisions at √s = 13 TeV during Run 2 of the LHC, corresponding to an integrated luminosity of 139 fb−1. Both FCNC top-quark production and decay are considered. The final state consists of a charged lepton, missing transverse momentum, a b-tagged jet, one high-momentum photon and possibly additional jets. A multiclass deep neural network is used to classify events either as signal in one of the two categories, FCNC production or decay, or as background. No significant excess of events over the background prediction is observed and 95% CL upper limits are placed on the strength of left- and right-handed FCNC interactions. The 95% CL bounds on the branching fractions for the FCNC top-quark decays, estimated (expected) from both top-quark production and decay, are B(t → uγ ) < 0.85 (0.88) × 10−5 and B(t → cγ ) < 4.2 (3.40) × 10−5 for a left-handed tqγ coupling, and B(t → uγ ) < 1.2 (1.20)×10−5 and B(t → cγ ) < 4.5 (3.70)×10−5 for a right-handed coupling.

  • 15. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clement, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Search for heavy, long-lived, charged particles with large ionisation energy loss in pp collisions at √s = 13 TeV using the ATLAS experiment and the full Run 2 dataset2023In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 2023, no 6, article id 158Article in journal (Refereed)
    Abstract [en]

    This paper presents a search for hypothetical massive, charged, long-lived particles with the ATLAS detector at the LHC using an integrated luminosity of 139 fb−1 of proton–proton collisions at √s = 13 TeV. These particles are expected to move significantly slower than the speed of light and should be identifiable by their high transverse momenta and anomalously large specific ionisation losses, dE/dx. Trajectories reconstructed solely by the inner tracking system and a dE/dx measurement in the pixel detector layers provide sensitivity to particles with lifetimes down to O(1) ns with a mass, measured using the Bethe–Bloch relation, ranging from 100 GeV to 3 TeV. Interpretations for pair-production of R-hadrons, charginos and staus in scenarios of supersymmetry compatible with these particles being long-lived are presented, with mass limits extending considerably beyond those from previous searches in broad ranges of lifetime.

  • 16. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    A search for heavy Higgs bosons decaying into vector bosons in same-sign two-lepton final states in pp collisions at √s=13 TeV with the ATLAS detector2023In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 2023, no 7, article id 200Article in journal (Refereed)
    Abstract [en]

    A search for heavy Higgs bosons produced in association with a vector boson and decaying into a pair of vector bosons is performed in final states with two leptons (electrons or muons) of the same electric charge, missing transverse momentum and jets. A data sample of proton–proton collisions at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018 is used. The data correspond to a total integrated luminosity of 139 fb−1. The observed data are in agreement with Standard Model background expectations. The results are interpreted using higher-dimensional operators in an effective field theory. Upper limits on the production cross-section are calculated at 95% confidence level as a function of the heavy Higgs boson’s mass and coupling strengths to vector bosons. Limits are set in the Higgs boson mass range from 300 to 1500 GeV, and depend on the assumed couplings. The highest excluded mass for a heavy Higgs boson with the coupling combinations explored is 900 GeV. Limits on coupling strengths are also provided.

  • 17. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Correlations between flow and transverse momentum in Xe+Xe and Pb+Pb collisions at the LHC with the ATLAS detector: A probe of the heavy-ion initial state and nuclear deformation2023In: Physical Review C: Covering Nuclear Physics, ISSN 2469-9985, E-ISSN 2469-9993, Vol. 107, no 5, article id 054910Article in journal (Refereed)
    Abstract [en]

    The correlations between flow harmonics vn for n=2, 3, and 4 and mean transverse momentum [pT] in 129Xe+129Xe and 208Pb+208Pb collisions at √s=5.44 and 5.02 TeV, respectively, are measured using charged particles with the ATLAS detector. The correlations are potentially sensitive to the shape and size of the initial geometry, nuclear deformation, and initial momentum anisotropy. The effects from nonflow and centrality fluctuations are minimized, respectively, via a subevent cumulant method and an event-activity selection based on particle production at very forward rapidity. The vn−[pT] correlations show strong dependencies on centrality, harmonic number n, pT, and pseudorapidity range. Current models qualitatively describe the overall centrality- and system-dependent trends but fail to quantitatively reproduce all features of the data. In central collisions, where models generally show good agreement, the v2−[pT] correlations are sensitive to the triaxiality of the quadruple deformation. Comparison of the model with the Pb+Pb and Xe+Xe data confirms that the 129Xe nucleus is a highly deformed triaxial ellipsoid that has neither a prolate nor oblate shape. This provides strong evidence for a triaxial deformation of the 129Xe nucleus from high-energy heavy-ion collisions.

  • 18. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Cross-section measurements for the production of a Z boson in association with high-transverse-momentum jets in pp collisions at √s = 13 TeV with the ATLAS detector2023In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 2023, no 6, article id 80Article in journal (Refereed)
    Abstract [en]

    Cross-section measurements for a Z boson produced in association with high-transverse-momentum jets (pT ≥ 100 GeV) and decaying into a charged-lepton pair (e+e, μ+μ) are presented. The measurements are performed using proton–proton collisions at √s = 13 TeV corresponding to an integrated luminosity of 139 fb−1 collected by the ATLAS experiment at the LHC. Measurements of angular correlations between the Z boson and the closest jet are performed in events with at least one jet with pT ≥ 500 GeV. Event topologies of particular interest are the collinear emission of a Z boson in dijet events and a boosted Z boson recoiling against a jet. Fiducial cross sections are compared with state-of-the-art theoretical predictions. The data are found to agree with next-to-next-to-leading-order predictions by NNLOᴊᴇᴛ and with the next-to-leading-order multi-leg generators MADGRAPH5_AMC@NLO and SHERPA.

  • 19. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Evidence for the charge asymmetry in pp → tt- production at √s=13 TeV with the ATLAS detector2023In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 2023, no 8, article id 77Article in journal (Refereed)
    Abstract [en]

    Inclusive and differential measurements of the top–antitop () charge asymmetry and the leptonic asymmetry are presented in proton–proton collisions at √s = 13 TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb−1, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive charge asymmetry is measured to be = 0.0068 ± 0.0015, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients.

  • 20. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Measurement of electroweak Z(νν¯)γjj production and limits on anomalous quartic gauge couplings in pp collisions at √s = 13 TeV with the ATLAS detector2023In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 2023, no 6, article id 82Article in journal (Refereed)
    Abstract [en]

    The electroweak production of  in association with two jets is studied in a regime with a photon of high transverse momentum above 150 GeV using proton–proton collisions at a centre-of-mass energy of 13 TeV at the Large Hadron Collider. The analysis uses a data sample with an integrated luminosity of 139 fb−1collected by the ATLAS detector during the 2015–2018 LHC data-taking period. This process is an important probe of the electroweak symmetry breaking mechanism in the Standard Model and is sensitive to quartic gauge boson couplings via vector-boson scattering. The fiducial cross section for electroweak production is measured to be fb and is consistent with the Standard Model prediction. Evidence of electroweak production is found with an observed significance of 3.2σ for the background-only hypothesis, compared with an expected significance of 3.7σ. The combination of this result with the previously published ATLAS observation of electroweak production yields an observed (expected) signal significance of 6.3σ (6.6σ). Limits on anomalous quartic gauge boson couplings are obtained in the framework of effective field theory with dimension-8 operators.

  • 21. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Measurement of exclusive pion pair production in proton–proton collisions at √s=7TeV with the ATLAS detector2023In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 83, no 7, article id 627Article in journal (Refereed)
    Abstract [en]

    The exclusive production of pion pairs in the process ppppπ+π has been measured at √s=7TeV with the ATLAS detector at the LHC, using 80μb−1 of low-luminosity data. The pion pairs were detected in the ATLAS central detector while outgoing protons were measured in the forward ATLAS ALFA detector system. This represents the first use of proton tagging to measure an exclusive hadronic final state at the LHC. A cross-section measurement is performed in two kinematic regions defined by the proton momenta, the pion rapidities and transverse momenta, and the pion–pion invariant mass. Cross-section values of 4.8±1.0 (stat) (syst) μb and 9±6 (stat) (syst) μb are obtained in the two regions; they are compared with theoretical models and provide a demonstration of the feasibility of measurements of this type.

  • 22. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Measurement of substructure-dependent jet suppression in Pb+Pb collisions at 5.02 TeV with the ATLAS detector2023In: Physical Review C: Covering Nuclear Physics, ISSN 2469-9985, E-ISSN 2469-9993, Vol. 107, no 5, article id 054909Article in journal (Refereed)
    Abstract [en]

    The ATLAS detector at the Large Hadron Collider has been used to measure jet substructure modification and suppression in Pb+Pb collisions at a nucleon–nucleon center-of-mass energy in comparison with proton–proton (pp) collisions at . The Pb+Pb data, collected in 2018, have an integrated luminosity of 1.72nb−1, while the pp data, collected in 2017, have an integrated luminosity of 260pb−1. Jets used in this analysis are clustered using the anti-kt algorithm with a radius parameter R=0.4. The jet constituents, defined by both tracking and calorimeter information, are used to determine the angular scale rg of the first hard splitting inside the jet by reclustering them using the Cambridge–Aachen algorithm and employing the soft-drop grooming technique. The nuclear modification factor, RAA, used to characterize jet suppression in Pb+Pb collisions, is presented differentially in rg, jet transverse momentum, and in intervals of collision centrality. The RAA value is observed to depend significantly on jet rg. Jets produced with the largest measured rg are found to be twice as suppressed as those with the smallest rg in central Pb+Pb collisions. The RAA values do not exhibit a strong variation with jet pT in any of the rg intervals. The rg and pT dependence of jet RAA is qualitatively consistent with a picture of jet quenching arising from coherence and provides the most direct evidence in support of this approach

  • 23. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Measurement of the CP properties of Higgs boson interactions with τ-leptons with the ATLAS detector2023In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 83, no 7, article id 563Article in journal (Refereed)
    Abstract [en]

    A study of the charge conjugation and parity (CP) properties of the interaction between the Higgs boson and τ-leptons is presented. The study is based on a measurement of CP-sensitive angular observables defined by the visible decay products of τ-leptons produced in Higgs boson decays. The analysis uses 139 fb−1 of proton–proton collision data recorded at a centre-of-mass energy of √s=13 TeV with the ATLAS detector at the Large Hadron Collider. Contributions from CP-violating interactions between the Higgs boson and τ-leptons are described by a single mixing angle parameter φτ in the generalised Yukawa interaction. Without constraining the H→ττ signal strength to its expected value under the Standard Model hypothesis, the mixing angle φτ is measured to be 9°±16°, with an expected value of 0°±28° at the 68% confidence level. The pure CP-odd hypothesis is disfavoured at a level of 3.4 standard deviations. The results are compatible with the predictions for the Higgs boson in the Standard Model.

  • 24. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Measurement of the properties of Higgs boson production at √s = 13 TeV in the H → γγ channel using 139 fb1 of pp collision data with the ATLAS experiment2023In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 2023, no 7, article id 88Article in journal (Refereed)
    Abstract [en]

    Measurements of Higgs boson production cross-sections are carried out in the diphoton decay channel using 139 fb−1 of pp collision data at √s = 13 TeV collected by the ATLAS experiment at the LHC. The analysis is based on the definition of 101 distinct signal regions using machine-learning techniques. The inclusive Higgs boson signal strength in the diphoton channel is measured to be 1.04. Cross-sections for gluon-gluon fusion, vector-boson fusion, associated production with a W or Z boson, and top associated production processes are reported. An upper limit of 10 times the Standard Model prediction is set for the associated production process of a Higgs boson with a single top quark, which has a unique sensitivity to the sign of the top quark Yukawa coupling. Higgs boson production is further characterized through measurements of Simplified Template Cross-Sections (STXS). In total, cross-sections of 28 STXS regions are measured. The measured STXS cross-sections are compatible with their Standard Model predictions, with a p-value of 93%. The measurements are also used to set constraints on Higgs boson coupling strengths, as well as on new interactions beyond the Standard Model in an effective field theory approach. No significant deviations from the Standard Model predictions are observed in these measurements, which provide significant sensitivity improvements compared to the previous ATLAS results

  • 25. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Measurement of the total cross section and ρ-parameter from elastic scattering in pp collisions at √s=13 TeV with the ATLAS detector2023In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 83, no 5, article id 441Article in journal (Refereed)
    Abstract [en]

    In a special run of the LHC with β* = 2.5 km, proton–proton elastic-scattering events were recorded at √s = 13 TeV with an integrated luminosity of 340 µb−1 using the ALFA subdetector of ATLAS in 2016. The elastic cross section was measured differentially in the Mandelstam t variable in the range from −t = 2.5 · 10−4 GeV2 to −t = 0.46 GeV2 using 6.9 million elastic-scattering candidates. This paper presents measurements of the total cross section σtot, parameters of the nuclear slope, and the ρ-parameter defined as the ratio of the real part to the imaginary part of the elastic-scattering amplitude in the limit t → 0. These parameters are determined from a fit to the differential elastic cross section using the optical theorem and different parameterizations of the t-dependence. The results for σtotand ρ are

    σtot (ppX) = 104.7 ± 1.1 mb, ρ = 0.098 ± 0.011.

    The uncertainty in σtot is dominated by the luminosity measurement, and in ρ by imperfect knowledge of the detector alignment and by modelling of the nuclear amplitude.

  • 26. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Measurement of the tt¯ production cross-section in pp collisions at √s = 5.02 TeV with the ATLAS detector2023In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 2023, no 6, article id 138Article in journal (Refereed)
    Abstract [en]

    The inclusive top-quark pair (tt¯) production cross-section σtt¯ is measured inproton–proton collisions at a centre-of-mass energy √s = 5.02 TeV, using 257 pb−1 of datacollected in 2017 by the ATLAS experiment at the LHC. The tt¯ cross-section is measuredin both the dilepton and single-lepton final states of the tt¯ system and then combined. Thecombination of the two measurements yields

    σtt¯ = 67.5 ± 0.9 (stat.) ± 2.3 (syst.) ± 1.1 (lumi.) ± 0.2 (beam) pb,

    where the four uncertainties reflect the limited size of the data sample, experimental andtheoretical systematic effects, and imperfect knowledge of both the integrated luminosityand the LHC beam energy, giving a total uncertainty of 3.9%. The result is in agreementwith theoretical quantum chromodynamic calculations at next-to-next-to-leading order inthe strong coupling constant, including the resummation of next-to-next-to-leading logarithmic soft-gluon terms, and constrains the parton distribution functions of the proton atlarge Bjorken-x.

  • 27. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Measurements of the suppression and correlations of dijets in Pb+Pb collisions at √sNN=5.02 TeV2023In: Physical Review C: Covering Nuclear Physics, ISSN 2469-9985, E-ISSN 2469-9993, Vol. 107, no 5, article id 054908Article in journal (Refereed)
    Abstract [en]

    Studies of the correlations of the two highest transverse momentum (leading) jets in individual Pb+Pb collision events can provide information about the mechanism of jet quenching by the hot and dense matter created in such collisions. In Pb+Pb and pp collisions at sNN=5.02TeV, measurements of the leading dijet transverse momentum (pT) correlations are presented. Additionally, measurements in Pb+Pb collisions of the dijet pair nuclear modification factors projected along leading and subleading jet pT are made. The measurements are performed using the ATLAS detector at the LHC with 260 pb−1 of pp data collected in 2017 and 2.2 nb1 of Pb+Pb data collected in 2015 and 2018. An unfolding procedure is applied to the two-dimensional leading and subleading jet pT distributions to account for experimental effects in the measurement of both jets. Results are provided for dijets with leading jet pT greater than 100 GeV. Measurements of the dijet-yield-normalized xJ distributions in Pb+Pb collisions show an increased fraction of imbalanced jets compared to pp collisions; these measurements are in agreement with previous measurements of the same quantity at 2.76 TeV in the overlapping kinematic range. Measurements of the absolutely normalized dijet rate in Pb+Pb and pp collisions are also presented, and show that balanced dijets are significantly more suppressed than imbalanced dijets in Pb+Pb collisions. It is observed in the measurements of the pair nuclear modification factors that the subleading jets are significantly suppressed relative to leading jets with pT between 100 and 316 GeV for all centralities in Pb+Pb collisions

  • 28. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Measurements of W+ W- production in decay topologies inspired by searches for electroweak supersymmetry2023In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 83, no 8, article id 718Article in journal (Refereed)
    Abstract [en]

    This paper presents a measurement of fiducial and differential cross-sections for W+W production in proton–proton collisions at √s=13 TeV with the ATLAS experiment at the Large Hadron Collider using a dataset corresponding to an integrated luminosity of 139 fb−1. Events with exactly one electron, one muon and no hadronic jets are studied. The fiducial region in which the measurements are performed is inspired by searches for the electroweak production of supersymmetric charginos decaying to two-lepton final states. The selected events have moderate values of missing transverse momentum and the ‘stransverse mass’ variable mT2, which is widely used in searches for supersymmetry at the LHC. The ranges of these variables are chosen so that the acceptance is enhanced for direct W+W production and suppressed for production via top quarks, which is treated as a background. The fiducial cross-section and particle-level differential cross-sections for six variables are measured and compared with two theoretical SM predictions from perturbative QCD calculations.

  • 29. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Observation of Single-Top-Quark Production in Association with a Photon Using the ATLAS Detector2023In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 131, no 18, article id 181901Article in journal (Refereed)
    Abstract [en]

    This Letter reports the observation of single top quarks produced together with a photon, which directly probes the electroweak coupling of the top quark. The analysis uses 139  fb−1 of 13 TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider. Requiring a photon with transverse momentum larger than 20 GeV and within the detector acceptance, the fiducial cross section is measured to be 688±23(stat), to be compared with the standard model prediction of at next-to-leading order in QCD.

  • 30. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Observation of the γγττ Process in Pb+Pb Collisions and Constraints on the τ-Lepton Anomalous Magnetic Moment with the ATLAS Detector2023In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 131, no 15, article id 151802Article in journal (Refereed)
    Abstract [en]

    This Letter reports the observation of τ-lepton-pair production in ultraperipheral lead-lead collisions Pb+Pb→Pb(γγττ)Pb and constraints on the τ-lepton anomalous magnetic moment aτ. The dataset corresponds to an integrated luminosity of 1.44  nb−1 of LHC Pb+Pb collisions at √sNN=5.02  TeV recorded by the ATLAS experiment in 2018. Selected events contain one muon from a τ-lepton decay, an electron or charged-particle track(s) from the other τ-lepton decay, little additional central-detector activity, and no forward neutrons. The γγττ process is observed in Pb+Pb collisions with a significance exceeding 5 standard deviations and a signal strength of μττ= assuming the standard model value for aτ. To measure aτ, a template fit to the muon transverse-momentum distribution from τ-lepton candidates is performed, using a dimuon (γγμμ) control sample to constrain systematic uncertainties. The observed 95% confidence-level interval for aτ is −0.057<aτ<0.024.

  • 31. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Production of Υ(nS) mesons in Pb+Pb and pp collisions at 5.02 TeV2023In: Physical Review C: Covering Nuclear Physics, ISSN 2469-9985, E-ISSN 2469-9993, Vol. 107, no 5, article id 054912Article in journal (Refereed)
    Abstract [en]

    A measurement of the production of vector bottomonium states, Υ(1S), Υ(2S), and Υ(3S), in Pb+Pb and pp collisions at a center-of-mass energy per nucleon pair of 5.02 TeV is presented. The data correspond to integrated luminosities of 1.38nb−1 of Pb+Pb data collected in 2018, 0.44nb−1 of Pb+Pb data collected in 2015, and 0.26fb−1 of pp data collected in 2017 by the ATLAS detector at the Large Hadron Collider. The measurements are performed in the dimuon decay channel for transverse momentum <30GeV, absolute rapidity |yμμ|<1.5, and Pb+Pb event centrality 0–80%. The production rates of the three bottomonium states in Pb+Pb collisions are compared with those in pp collisions to extract the nuclear modification factors as functions of event centrality, , and |yμμ|. In addition, the suppression of the excited states relative to the ground state is studied. The results are compared with theoretical model calculations.

  • 32. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Search for a new scalar resonance in flavour-changing neutral-current top-quark decays t → qX (q = u, c), with X → bb¯, in proton-proton collisions at √s = 13 TeV with the ATLAS detector2023In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 2023, no 7, article id 199Article in journal (Refereed)
    Abstract [en]

    A search for flavour-changing neutral-current decays of a top quark into an up-type quark (either up or charm) and a light scalar particle X decaying into a bottom anti-bottom quark pair is presented. The search focuses on top-quark pair production where one top quark decays to qX, with X, and the other top quark decays according to the Standard Model, with the W boson decaying leptonically. The final state is thus characterised by an isolated electron or muon and at least four jets. Events are categorised according to the multiplicity of jets and jets tagged as originating from b-quarks, and a neural network is used to discriminate between signal and background processes. The data analysed correspond to 139 fb−1 of proton–proton collisions at a centre-of-mass energy of 13 TeV, recorded with the ATLAS detector at the LHC. The 95% confidence-level upper limits between 0.019% and 0.062% are derived for the branching fraction and between 0.018% and 0.078% for the branching fraction , for masses of the scalar particle X between 20 and 160 GeV.

  • 33. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Search for a new Z′ gauge boson in 4μ events with the ATLAS experiment2023In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 2023, no 7, article id 90Article in journal (Refereed)
    Abstract [en]

    This paper presents a search for a new Z′ vector gauge boson with the ATLAS experiment at the Large Hadron Collider using pp collision data collected at √s = 13 TeV, corresponding to an integrated luminosity of 139 fb−1. The new gauge boson Z′ is predicted by Lμ − Lτ models to address observed phenomena that can not be explained by the Standard Model. The search examines the four-muon (4μ) final state, using a deep learning neural network classifier to separate the Z′ signal from the Standard Model background events. The di-muon invariant masses in the 4μ events are used to extract the Z′ resonance signature. No significant excess of events is observed over the predicted background. Upper limits at a 95% confidence level on the Z′ production cross-section times the decay branching fraction of pp → Z′μμ → 4μ are set from 0.31 to 4.3 fb for the Z′ mass ranging from 5 to 81 GeV. The corresponding common coupling strengths, gZ′, of the Z′ boson to the second and third generation leptons above 0.003 – 0.2 have been excluded.

  • 34. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Search for boosted diphoton resonances in the 10 to 70 GeV mass range using 138 fb-1 of 13TeV pp collisions with the ATLAS detector2023In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 2023, no 7, article id 155Article in journal (Refereed)
    Abstract [en]

    A search for diphoton resonances in the mass range between 10 and 70 GeV with the ATLAS experiment at the Large Hadron Collider (LHC) is presented. The analysis is based on pp collision data corresponding to an integrated luminosity of 138 fb−1 at a centre-of-mass energy of 13 TeV recorded from 2015 to 2018. Previous searches for diphoton resonances at the LHC have explored masses down to 65 GeV, finding no evidence of new particles. This search exploits the particular kinematics of events with pairs of closely spaced photons reconstructed in the detector, allowing examination of invariant masses down to 10 GeV. The presented strategy covers a region previously unexplored at hadron colliders because of the experimental challenges of recording low-energy photons and estimating the backgrounds. No significant excess is observed and the reported limits provide the strongest bound on promptly decaying axion-like particles coupling to gluons and photons for masses between 10 and 70 GeV.

  • 35. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Search for dark matter produced in association with a dark Higgs boson decaying into W+W- in the one-lepton final state at √s=13 TeV using 139 fb-1 of pp collisions recorded with the ATLAS detector2023In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 2023, no 7, article id 116Article in journal (Refereed)
    Abstract [en]

    Several extensions of the Standard Model predict the production of dark matter particles at the LHC. A search for dark matter particles produced in association with a dark Higgs boson decaying into W+W in the , final states with ℓ = e, μ is presented. This analysis uses 139 fb−1 of pp collisions recorded by the ATLAS detector at a centre-of-mass energy of 13 TeV. The W± decays are reconstructed from pairs of calorimeter-measured jets or from track-assisted reclustered jets, a technique aimed at resolving the dense topology from a pair of boosted quarks using jets in the calorimeter and tracking information. The observed data are found to agree with Standard Model predictions. Scenarios with dark Higgs boson masses ranging between 140 and 390 GeV are excluded.

  • 36. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Search for dark matter produced in association with a single top quark and an energetic W boson in √s=13 TeV pp collisions with the ATLAS detector2023In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 83, no 7, article id 603Article in journal (Refereed)
    Abstract [en]

    This paper presents a search for dark matter, χ, using events with a single top quark and an energetic W boson. The analysis is based on proton–proton collision data collected with the ATLAS experiment at √s= 13 TeV during LHC Run 2 (2015–2018), corresponding to an integrated luminosity of 139 fb−1. The search considers final states with zero or one charged lepton (electron or muon), at least one b-jet and large missing transverse momentum. In addition, a result from a previous search considering two-charged-lepton final states is included in the interpretation of the results. The data are found to be in good agreement with the Standard Model predictions and the results are interpreted in terms of 95% confidence-level exclusion limits in the context of a class of dark matter models involving an extended two-Higgs-doublet sector together with a pseudoscalar mediator particle. The search is particularly sensitive to on-shell production of the charged Higgs boson state, H±, arising from the two-Higgs-doublet mixing, and its semi-invisible decays via the mediator particle, a: H±W±a(→χχ). Signal models with H± masses up to 1.5 TeV and a masses up to 350 GeV are excluded assuming a tan⁡ β value of 1. For masses of a of 150 (250) GeV, tan ⁡β values up to 2 are excluded for H± masses between 200 (400) GeV and 1.5 TeV. Signals with tan⁡ β values between 20 and 30 are excluded for H± masses between 500 and 800 GeV.

  • 37. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the W-boson mass in √s = 13 TeV pp collisions with the ATLAS detector2023In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 2023, no 6, article id 31Article in journal (Refereed)
    Abstract [en]

    A search for the electroweak production of pairs of charged sleptons or charginos decaying into two-lepton final states with missing transverse momentum is presented. Two simplified models of R-parity-conserving supersymmetry are considered: direct pair-production of sleptons (), with each decaying into a charged lepton and a neutralino, and direct pair-production of the lightest charginos (), with each decaying into a W-boson and a . The lightest neutralino () is assumed to be the lightest supersymmetric particle (LSP). The analyses target the experimentally challenging mass regions where m()−m() and m()−m() are close to the W-boson mass (‘moderately compressed’ regions). The search uses 139 fb−1 of √s = 13 TeV proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider. No significant excesses over the expected background are observed. Exclusion limits on the simplified models under study are reported in the (,) and () mass planes at 95% confidence level (CL). Sleptons with masses up to 150 GeV are excluded at 95% CL for the case of a mass-splitting between sleptons and the LSP of 50 GeV. Chargino masses up to 140 GeV are excluded at 95% CL for the case of a mass-splitting between the chargino and the LSP down to about 100 GeV.

  • 38. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Search for displaced photons produced in exotic decays of the Higgs boson using 13 TeV pp collisions with the ATLAS detector2023In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 108, no 3, article id 032016Article in journal (Refereed)
    Abstract [en]

    A search is performed for delayed and nonpointing photons originating from the displaced decay of a neutral long-lived particle (LLP). The analysis uses the full run 2 dataset of proton-proton collisions delivered by the LHC at a center-of-mass energy of √s=13  TeV between 2015 and 2018 and recorded by the ATLAS detector, corresponding to an integrated luminosity of 139  fb−1. The capabilities of the ATLAS electromagnetic calorimeter are exploited to precisely measure the arrival times and trajectories of photons. The results are interpreted in a scenario where the LLPs are pair produced in exotic decays of the 125 GeV Higgs boson, and each LLP subsequently decays into a photon and a particle that escapes direct detection, giving rise to missing transverse momentum. No significant excess is observed above the expectation due to Standard Model background processes. The results are used to set upper limits on the branching ratio of the exotic decay of the Higgs boson. A model-independent limit is also set on the production of photons with large values of displacement and time delay.

  • 39. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Search for doubly charged Higgs boson production in multi-lepton final states using 139 fb-1 of proton-proton collisions at √s=13 TeV with the ATLAS detector2023In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 83, no 7, article id 605Article in journal (Refereed)
    Abstract [en]

    A search for pair production of doubly charged Higgs bosons (H±±), each decaying into a pair of prompt, isolated, and highly energetic leptons with the same electric charge, is presented. The search uses a proton–proton collision data sample at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 139 fb−1 recorded by the ATLAS detector during Run 2 of the Large Hadron Collider (LHC). This analysis focuses on same-charge leptonic decays, H±±→ℓ±ℓ′± where ℓ,ℓ′=e,μ,τ, in two-, three-, and four-lepton channels, but only considers final states which include electrons or muons. No evidence of a signal is observed. Corresponding upper limits on the production cross-section of a doubly charged Higgs boson are derived, as a function of its mass m(H±±), at 95% confidence level. Assuming that the branching ratios to each of the possible leptonic final states are equal, , the observed (expected) lower limit on the mass of a doubly charged Higgs boson is 1080 GeV (1065 GeV) within the left-right symmetric type-II seesaw model, which is the strongest limit to date produced by the ATLAS Collaboration. Additionally, this paper provides the first direct test of the Zee–Babu neutrino mass model at the LHC, yielding an observed (expected) lower limit of m(H±±) = 900 GeV (880 GeV).

  • 40. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Search for flavour-changing neutral current interactions of the top quark and the Higgs boson in events with a pair of τ-leptons in pp collisions at √s = 13 TeV with the ATLAS detector2023In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 2023, no 6, article id 155Article in journal (Refereed)
    Abstract [en]

    A search for flavour-changing neutral current (FCNC) tqH interactions involving a top quark, another up-type quark (q = u, c), and a Standard Model (SM) Higgs boson decaying into a τ-lepton pair (Hτ+τ) is presented. The search is based on a dataset of pp collisions at √s = 13 TeV that corresponds to an integrated luminosity of 139 fb−1 recorded with the ATLAS detector at the Large Hadron Collider. Two processes are considered: single top quark FCNC production in association with a Higgs boson (pp tH), and top quark pair production in which one of top quarks decays into Wb and the other decays into qH through the FCNC interactions. The search selects events with two hadronically decaying τ-lepton candidates (τhad) or at least one τhad with an additional lepton (e, μ), as well as multiple jets. Event kinematics is used to separate signal from the background through a multivariate discriminant. A slight excess of data is observed with a significance of 2.3σ above the expected SM background, and 95% CL upper limits on the tqH branching ratios are derived. The observed (expected) 95% CL upper limits set on the tcH and tuH branching ratios are 9.4×10−4(4.8×10−4) and 6.9×10−4(3.5×10−4), respectively. The corresponding combined observed (expected) upper limits on the dimension-6 operator Wilson coefficients in the effective tqH couplings are C < 1.35 (0.97) and C < 1.16 (0.82).

  • 41. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Search for heavy long-lived multi-charged particles in the full LHC Run 2 pp collision data at √s=13 TeV using the ATLAS detector2023In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 847, article id 138316Article in journal (Refereed)
    Abstract [en]

    A search for heavy long-lived multi-charged particles is performed using the ATLAS detector at the LHC. Data collected in 2015-2018 at √s = 13 TeV from pp collisions corresponding to an integrated luminosity of 139 fb−1 are examined. Particles producing anomalously high ionization, consistent with long-lived spin-½ massive particles with electric charges from |q| = 2e to |q| = 7e are searched for. No statistically significant evidence of such particles is observed, and 95% confidence level cross-section upper limits are calculated and interpreted as the lower mass limits for a Drell-Yan plus photon-fusion production mode. The least stringent limit, 1060 GeV, is obtained for |q| = 2e particles, and the most stringent one, 1600 GeV, is for |q| = 6e particles.

  • 42. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Search for heavy resonances decaying into a Z or W boson and a Higgs boson in final states with leptons and b-jets in 139 fb1 of pp collisions at √s = 13 TeV with the ATLAS detector2023In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 2023, no 6, article id 16Article in journal (Refereed)
    Abstract [en]

    This article presents a search for new resonances decaying into a Z or W boson and a 125 GeV Higgs boson h, and it targets the νν¯¯¯bb¯¯, ℓ+bb¯, or ℓ±νbb¯ final states, where ℓ = e or μ, in proton-proton collisions at √s = 13 TeV. The data used correspond to a total integrated luminosity of 139 fb−1 collected by the ATLAS detector during Run 2 of the LHC at CERN. The search is conducted by examining the reconstructed invariant or transverse mass distributions of Zh or Wh candidates for evidence of a localised excess in the mass range from 220 GeV to 5 TeV. No significant excess is observed and 95% confidence-level upper limits between 1.3 pb and 0.3 fb are placed on the production cross section times branching fraction of neutral and charged spin-1 resonances and CP-odd scalar bosons. These limits are converted into constraints on the parameter space of the Heavy Vector Triplet model and the two-Higgs-doublet model.

  • 43. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Search for resonant WZ production in the fully leptonic final state in proton-proton collisions at √s=13 TeV with the ATLAS detector2023In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 83, no 7, article id 633Article in journal (Refereed)
    Abstract [en]

    A search for a WZ resonance, in the fully leptonic final state (electrons or muons), is performed using 139 fb−1 of data collected at a centre-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. The results are interpreted in terms of a singly charged Higgs boson of the Georgi–Machacek model, produced by WZ fusion, and of a Heavy Vector Triplet, with the resonance produced by WZ fusion or the Drell–Yan process. No significant excess over the Standard Model prediction is observed and limits are set on the production cross-section times branching ratio as a function of the resonance mass for these processes.

  • 44. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Search for tt¯H/A→tt¯tt¯ production in the multilepton final state in proton–proton collisions at √s = 13 TeV with the ATLAS detector2023In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 2023, no 7, article id 203Article in journal (Refereed)
    Abstract [en]

    A search for a new heavy scalar or pseudo-scalar Higgs boson (H/A) produced in association with a pair of top quarks, with the Higgs boson decaying into a pair of top quarks (H/A → ) is reported. The search targets a final state with exactly two leptons with same-sign electric charges or at least three leptons. The analysed dataset corresponds to an integrated luminosity of 139 fb−1 of proton–proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Two multivariate classifiers are used to separate the signal from the background. No significant excess of events over the Standard Model expectation is observed. The results are interpreted in the context of a type-II two-Higgs-doublet model. The observed (expected) upper limits at 95% confidence level on the H/A production cross-section times the branching ratio of H/A → range between 14 (10) fb and 6 (5) fb for a heavy Higgs boson with mass between 400 GeV and 1000 GeV, respectively. Assuming that only one particle, either the scalar H or the pseudo-scalar A, contributes to the final state, values of tan β below 1.2 or 0.5 are excluded for a mass of 400 GeV or 1000 GeV, respectively. These exclusion ranges increase to tan β below 1.6 or 0.6 when both particles are considered.

  • 45. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Searches for exclusive Higgs and Z boson decays into a vector quarkonium state and a photon using 139 fb-1 of ATLAS √s=13 TeV proton-proton collision data2023In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 83, no 9, article id 781Article in journal (Refereed)
    Abstract [en]

    Searches for the exclusive decays of Higgs and Z bosons into a vector quarkonium state and a photon are performed in the μ+μγ final state with a proton–proton collision data sample corresponding to an integrated luminosity of 139 fb−1 collected at √s=13 TeV with the ATLAS detector at the CERN Large Hadron Collider. The observed data are compatible with the expected backgrounds. The 95% confidence-level upper limits on the branching fractions of the Higgs boson decays into J/ψγ, ψ(2S)γ, and Υ(1S,2S,3S)γ are found to be 2.0×10−4, 10.5×10−4, and (2.5,4.2,3.4)×10−4, respectively, assuming Standard Model production of the Higgs boson. The corresponding 95% CL upper limits on the branching fractions of the Z boson decays are 1.2×10−6, 2.4×10−6, and (1.1,1.3,2.4)×10−6. An observed 95% CL interval of (−133,175) is obtained for the κc/κγ ratio of Higgs boson coupling modifiers, and a 95% CL interval of (−37,40) is obtained for κb/κγ.

  • 46. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Strong Constraints on Jet Quenching in Centrality-Dependent p + Pb Collisions at 5.02 TeV from ATLAS2023In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 131, no 7, article id 072301Article in journal (Refereed)
    Abstract [en]

    Jet quenching is the process of color-charged partons losing energy via interactions with quark-gluon plasma droplets created in heavy-ion collisions. The collective expansion of such droplets is well described by viscous hydrodynamics. Similar evidence of collectivity is consistently observed in smaller collision systems, including pp and p+Pb collisions. In contrast, while jet quenching is observed in Pb+Pb collisions, no evidence has been found in these small systems to date, raising fundamental questions about the nature of the system created in these collisions. The ATLAS experiment at the Large Hadron Collider has measured the yield of charged hadrons correlated with reconstructed jets in 0.36  nb−1 of p+Pb and 3.6  pb−1 of pp collisions at 5.02 TeV. The yields of charged hadrons with > 0.5 GeV near and opposite in azimuth to jets with >30 or 60 GeV, and the ratios of these yields between p+Pb and pp collisions, IpPb, are reported. The collision centrality of p+Pb events is categorized by the energy deposited by forward neutrons from the struck nucleus. The IpPb values are consistent with unity within a few percent for hadrons with >4  GeV at all centralities. These data provide new, strong constraints that preclude almost any parton energy loss in central p+Pb collisions.

     

  • 47. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Shaikh, Nabila W.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Test of CP Invariance in Higgs Boson Vector-Boson-Fusion Production Using the Hγγ Channel with the ATLAS Detector2023In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 131, no 6, article id 061802Article in journal (Refereed)
    Abstract [en]

    A test of CP invariance in Higgs boson production via vector-boson fusion has been performed in the Hγγ channel using 139  fb−1 of proton-proton collision data at √s=13  TeV collected by the ATLAS detector at the LHC. The optimal observable method is used to probe the CP structure of interactions between the Higgs boson and electroweak gauge bosons, as described by an effective field theory. No sign of CP violation is observed in the data. Constraints are set on the parameters describing the strength of the CP-odd component in the coupling between the Higgs boson and the electroweak gauge bosons in two effective field theory bases: in the HISZ basis and in the Warsaw basis. The results presented are the most stringent constraints on CP violation in the coupling between Higgs and weak bosons. The 95% C.L. constraint on is derived for the first time and the 95% C.L. constraint on has been improved by a factor of 5 compared to the previous measurement.

  • 48. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Anomaly detection search for new resonances decaying into a Higgs boson and a generic new particle X in hadronic final states using √s=13 TeV pp collisions with the ATLAS detector2023In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 108, no 5, article id 052009Article in journal (Refereed)
    Abstract [en]

    A search is presented for a heavy resonance Y decaying into a Standard Model Higgs boson H and a new particle X in a fully hadronic final state. The full Large Hadron Collider run 2 dataset of proton-proton collisions at √s=13  TeV collected by the ATLAS detector from 2015 to 2018 is used and corresponds to an integrated luminosity of 139  fb−1. The search targets the high Y-mass region, where the H and X have a significant Lorentz boost in the laboratory frame. A novel application of anomaly detection is used to define a general signal region, where events are selected solely because of their incompatibility with a learned background-only model. It is constructed using a jet-level tagger for signal-model-independent selection of the boosted X particle, representing the first application of fully unsupervised machine learning to an ATLAS analysis. Two additional signal regions are implemented to target a benchmark X decay into two quarks, covering topologies where the X is reconstructed as either a single large-radius jet or two small-radius jets. The analysis selects Higgs boson decays into , and a dedicated neural-network-based tagger provides sensitivity to the boosted heavy-flavor topology. No significant excess of data over the expected background is observed, and the results are presented as upper limits on the production cross section  for signals with mY between 1.5 and 6 TeV and mX between 65 and 3000 GeV.

  • 49. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    ATLAS flavour-tagging algorithms for the LHC Run 2 pp collision dataset2023In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 83, no 7, article id 681Article in journal (Refereed)
    Abstract [en]

    The flavour-tagging algorithms developed by the ATLAS Collaboration and used to analyse its dataset of √s=13 TeV pp collisions from Run 2 of the Large Hadron Collider are presented. These new tagging algorithms are based on recurrent and deep neural networks, and their performance is evaluated in simulated collision events. These developments yield considerable improvements over previous jet-flavour identification strategies. At the 77% b-jet identification efficiency operating point, light-jet (charm-jet) rejection factors of 170 (5) are achieved in a sample of simulated Standard Model events; similarly, at a c-jet identification efficiency of 30%, a light-jet (b-jet) rejection factor of 70 (9) is obtained.

  • 50. Aad, G.
    et al.
    Andrean, Stefio Y.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Backman, Filip
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barranco Navarro, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunne, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ingebretsen Carlson, Tom
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Dongwon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lee, Suhyun
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lou, Xuanhong
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pasuwan, Patrawan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Pereira Sanchez, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Richter, Stefan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Silverstein, Samuel B.
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strübig, Antonia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valdés Santurio, Eduardo
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zwalinski, L.
    Calibration of the light-flavour jet mistagging efficiency of the b-tagging algorithms with Z+jets events using 139 fb−1 of ATLAS proton–proton collision data at √s=13 TeV2023In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 83, no 8, article id 728Article in journal (Refereed)
    Abstract [en]

    The identification of b-jets, referred to as b-tagging, is an important part of many physics analyses in the ATLAS experiment at the Large Hadron Collider and an accurate calibration of its performance is essential for high-quality physics results. This publication describes the calibration of the light-flavour jet mistagging efficiency in a data sample of proton–proton collision events at √s=13 TeV corresponding to an integrated luminosity of 139 fb−1. The calibration is performed in a sample of Z bosons produced in association with jets. Due to the low mistagging efficiency for light-flavour jets, a method which uses modified versions of the b-tagging algorithms referred to as flip taggers is used in this work. A fit to the jet-flavour-sensitive secondary-vertex mass is performed to extract a scale factor from data, to correct the light-flavour jet mistagging efficiency in Monte Carlo simulations, while simultaneously correcting the b-jet efficiency. With this procedure, uncertainties coming from the modeling of jets from heavy-flavour hadrons are considerably lower than in previous calibrations of the mistagging scale factors, where they were dominant. The scale factors obtained in this calibration are consistent with unity within uncertainties.

1234567 1 - 50 of 135347
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf