Change search
Refine search result
1234567 1 - 50 of 1867
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Abdalla, Elcio
    et al.
    Arendse, Nikki
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Di Valentino, Eleonora
    Niedermann, Florian
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Zumalacárregui, Miguel
    Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies2022In: Journal of High Energy Astrophysics, ISSN 2214-4048, E-ISSN 2214-4056, Vol. 34, p. 49-211Article, review/survey (Refereed)
    Abstract [en]

    The standard Λ Cold Dark Matter (ΛCDM) cosmological model provides a good description of a wide range of astrophysical and cosmological data. However, there are a few big open questions that make the standard model look like an approximation to a more realistic scenario yet to be found. In this paper, we list a few important goals that need to be addressed in the next decade, taking into account the current discordances between the different cosmological probes, such as the disagreement in the value of the Hubble constant H0, the σ8–S8 tension, and other less statistically significant anomalies. While these discordances can still be in part the result of systematic errors, their persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the necessity for new physics or generalisations beyond the standard model. In this paper, we focus on the 5.0σ tension between the Planck CMB estimate of the Hubble constant H0 and the SH0ES collaboration measurements. After showing the H0 evaluations made from different teams using different methods and geometric calibrations, we list a few interesting new physics models that could alleviate this tension and discuss how the next decade's experiments will be crucial. Moreover, we focus on the tension of the Planck CMB data with weak lensing measurements and redshift surveys, about the value of the matter energy density Ωm, and the amplitude or rate of the growth of structure (σ8,fσ8). We list a few interesting models proposed for alleviating this tension, and we discuss the importance of trying to fit a full array of data with a single model and not just one parameter at a time. Additionally, we present a wide range of other less discussed anomalies at a statistical significance level lower than the H0–S8 tensions which may also constitute hints towards new physics, and we discuss possible generic theoretical approaches that can collectively explain the non-standard nature of these signals. Finally, we give an overview of upgraded experiments and next-generation space missions and facilities on Earth that will be of crucial importance to address all these open questions.

  • 2. Abdel-Aty, M.
    et al.
    Larson, Jonas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Eleuch, H.
    Obada, A. S. F.
    Multi-particle entanglement of charge qubits coupled to a nanoresonator2011In: Physica. E, Low-Dimensional systems and nanostructures, ISSN 1386-9477, E-ISSN 1873-1759, Vol. 43, no 9, p. 1625-1630Article in journal (Refereed)
    Abstract [en]

    The dynamics of charge qubits coupled to a nanomechanical resonator under the influence of both a phonon bath in contact with the resonator and irreversible decay of the qubits is considered. The focus of our analysis is devoted to multi-particle entanglement and the effects arising from the coupling to the reservoir. Even in the presence of the reservoirs, the inherent entanglement is found to be rather robust. Due to this fact, together with control of system parameters, the system may, therefore, be especially suited for quantum information processing. Our findings also shed light on the evolution of open quantum many-body systems. For instance, due to intrinsic qubit-qubit couplings our model is related to a driven XY spin model.

  • 3. Abdollahi, S.
    et al.
    Acero, F.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Axelsson, Magnus
    Stockholm University, Faculty of Science, Department of Physics. KTH Royal Institute of Technology, Sweden.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Becerra Gonzalez, J.
    Bellazzini, R.
    Berretta, A.
    Bissaldi, E.
    Blandford, R. D.
    Bloom, E. D.
    Bonino, R.
    Bottacini, E.
    Brandt, T. J.
    Bregeon, J.
    Bruel, P.
    Buehler, R.
    Burnett, T. H.
    Buson, S.
    Cameron, R. A.
    Caputo, R.
    Caraveo, P. A.
    Casandjian, J. M.
    Castro, D.
    Cavazzuti, E.
    Charles, E.
    Chaty, S.
    Chen, S.
    Cheung, C. C.
    Chiaro, G.
    Ciprini, S.
    Cohen-Tanugi, J.
    Cominsky, L. R.
    Coronado-Blazquez, J.
    Costantin, D.
    Cuoco, A.
    Cutini, S.
    D'Ammando, F.
    DeKlotz, M.
    Luque, P. de la Tone
    de Palma, F.
    Desai, A.
    Digel, S. W.
    Di Lalla, N.
    Di Mauro, M.
    Di Venere, L.
    Dominguez, A.
    Dumora, D.
    Dirirsa, F. Fana
    Fegan, S. J.
    Ferrara, E. C.
    Franckowiak, A.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gaspanini, D.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Green, D.
    Grenier, I. A.
    Griffin, S.
    Grondin, M-H
    Grove, J. E.
    Guiriec, S.
    Harding, A. K.
    Hayashi, K.
    Hays, E.
    Hewitt, J. W.
    Horan, D.
    Jóhannesson, Guðlaugur
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). University of Iceland, Iceland.
    Johnson, T. J.
    Kamae, T.
    Kerr, M.
    Kocevski, D.
    Kovac'evic, M.
    Kuss, M.
    Landriu, D.
    Larsson, S.
    Latronico, L.
    Lemoine-Goumard, M.
    Li, J.
    Liodakis, I
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Maldera, S.
    Malyshev, D.
    Manfreda, A.
    Marchesini, J.
    Marcotulli, L.
    Marti-Devesa, G.
    Martin, P.
    Massaro, F.
    Mazziotta, M. N.
    McEnery, J. E.
    Mereu, I
    Meyer, M.
    Michelson, P. F.
    Mirabal, N.
    Mizuno, T.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I.
    Negro, M.
    Nuss, E.
    Ojha, R.
    Omodei, N.
    Orienti, M.
    Orlando, E.
    Ormes, J. F.
    Palatiello, M.
    Paliya, V. S.
    Paneque, D.
    Pei, Z.
    Pena-Herazo, H.
    Perkins, J. S.
    Persic, M.
    Pesce-Rollms, M.
    Petrosian, V
    Petrov, L.
    Piron, F.
    Poon, H.
    Porter, T. A.
    Principe, G.
    Raino, S.
    Rando, R.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Remy, Q.
    Reposeur, T.
    Romani, R. W.
    Parkinson, P. M. Saz
    Schinzel, F. K.
    Serini, D.
    Sgro, C.
    Siskind, E. J.
    Smith, D. A.
    Spandre, G.
    Spinelli, P.
    Strong, A. W.
    Suson, D. J.
    Tajima, H.
    Takahashi, M. N.
    Tak, D.
    Thayer, J. B.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Torresi, E.
    Valverde, J.
    Van Klaveren, B.
    van Zyl, P.
    Wood, K.
    Yassine, M.
    Zaharijas, G.
    Fermi Large Area Telescope Fourth Source Catalog2020In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 247, no 1, article id 33Article in journal (Refereed)
    Abstract [en]

    We present the fourth Fermi Large Area Telescope catalog (4FGL) of gamma-ray sources. Based on the first eight years of science data from the Fermi Gamma-ray Space Telescope mission in the energy range from 50 MeV to 1 TeV, it is the deepest yet in this energy range. Relative to the 3FGL catalog, the 4FGL catalog has twice as much exposure as well as a number of analysis improvements, including an updated model for the Galactic diffuse gamma-ray emission, and two sets of light curves (one-year and two-month intervals). The 4FGL catalog includes 5064 sources above 4 sigma significance, for which we provide localization and spectral properties. Seventy-five sources are modeled explicitly as spatially extended, and overall, 358 sources are considered as identified based on angular extent, periodicity, or correlated variability observed at other wavelengths. For 1336 sources, we have not found plausible counterparts at other wavelengths. More than 3130 of the identified or associated sources are active galaxies of the blazar class, and 239 are pulsars.

  • 4. Abdollahi, S.
    et al.
    Acero, F.
    Ackermann, M.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bellazzini, R.
    Berenji, B.
    Berretta, A.
    Bissaldi, E.
    Blandford, R. D.
    Bonino, R.
    Bruel, P.
    Buson, S.
    Cameron, R. A.
    Caputo, R.
    Caraveo, P. A.
    Castro, D.
    Chiaro, G.
    Cibrario, N.
    Ciprini, S.
    Coronado-Blázquez, J.
    Crnogorcevic, M.
    Cutini, S.
    D'Ammando, F.
    De Gaetano, S.
    Di Lalla, N.
    Dirirsa, F.
    Di Venere, L.
    Domínguez, A.
    Fegan, S. J.
    Fiori, A.
    Fleischhack, H.
    Franckowiak, A.
    Fukazawa, Y.
    Fusco, P.
    Gammaldi, V
    Gargano, F.
    Gasparrini, D.
    Giacchino, F.
    Giglietto, N.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Green, D.
    Grenier, I. A.
    Grondin, M.-H.
    Guiriec, S.
    Gustafsson, M.
    Harding, A. K.
    Hays, E.
    Hewitt, J. W.
    Horan, D.
    Hou, X.
    Jóhannesson, Guðlaugur
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). University of Iceland, Iceland.
    Kayanoki, T.
    Kerr, M.
    Kuss, M.
    Larsson, S.
    Latronico, L.
    Lemoine-Goumard, M.
    Li, J.
    Longo, F.
    Loparco, F.
    Lubrano, P.
    Maldera, S.
    Malyshev, D.
    Manfreda, A.
    Martí-Devesa, G.
    Mazziotta, M. N.
    Mereu, I
    Michelson, P. F.
    Mirabal, N.
    Mitthumsiri, W.
    Mizuno, T.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Nuss, E.
    Omodei, N.
    Orienti, M.
    Orlando, E.
    Ormes, J. F.
    Paneque, D.
    Pei, Z.
    Persic, M.
    Pesce-Rollins, M.
    Pillera, R.
    Poon, H.
    Porter, T. A.
    Principe, G.
    Rainò, S.
    Rando, R.
    Rani, B.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Sánchez-Conde, M.
    Parkinson, P. M. Saz
    Scotton, L.
    Serini, D.
    Sgrò, C.
    Siskind, E. J.
    Spandre, G.
    Spinelli, P.
    Sueoka, K.
    Suson, D. J.
    Tajima, H.
    Tak, D.
    Thayer, J. B.
    Torres, D. F.
    Troja, E.
    Valverde, J.
    Wadiasingh, Z.
    Wood, K.
    Zaharijas, G.
    Search for New Cosmic-Ray Acceleration Sites within the 4FGL Catalog Galactic Plane Sources2022In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 933, no 2, article id 204Article in journal (Refereed)
    Abstract [en]

    Cosmic rays are mostly composed of protons accelerated to relativistic speeds. When those protons encounter interstellar material, they produce neutral pions, which in turn decay into gamma-rays. This offers a compelling way to identify the acceleration sites of protons. A characteristic hadronic spectrum, with a low-energy break around 200 MeV, was detected in the gamma-ray spectra of four supernova remnants (SNRs), IC 443, W44, W49B, and W51C, with the Fermi Large Area Telescope. This detection provided direct evidence that cosmic-ray protons are (re-)accelerated in SNRs. Here, we present a comprehensive search for low-energy spectral breaks among 311 4FGL catalog sources located within 5° from the Galactic plane. Using 8 yr of data from the Fermi Large Area Telescope between 50 MeV and 1 GeV, we find and present the spectral characteristics of 56 sources with a spectral break confirmed by a thorough study of systematic uncertainty. Our population of sources includes 13 SNRs for which the proton–proton interaction is enhanced by the dense target material; the high-mass gamma-ray binary LS I+61 303; the colliding wind binary η Carinae; and the Cygnus star-forming region. This analysis better constrains the origin of the gamma-ray emission and enlarges our view to potential new cosmic-ray acceleration sites.

  • 5. Abdollahi, S.
    et al.
    Acero, F.
    Baldini, L.
    Ballet, J.
    Bastieri, D.
    Bellazzini, R.
    Berenji, B.
    Berretta, A.
    Bissaldi, E.
    Blandford, R. D.
    Bloom, E.
    Bonino, R.
    Brill, A.
    Britto, R. J.
    Bruel, P.
    Burnett, T. H.
    Buson, S.
    Cameron, R. A.
    Caputo, R.
    Caraveo, P. A.
    Castro, D.
    Chaty, S.
    Cheung, C. C.
    Chiaro, G.
    Cibrario, N.
    Ciprini, S.
    Coronado-Blazquez, J.
    Crnogorcevic, M.
    Cutini, S.
    D'Ammando, F.
    De Gaetano, S.
    Digel, S. W.
    Di Lalla, N.
    Dirirsa, F.
    Di Venere, L.
    Dominguez, A.
    Fallah Ramazani, V.
    Fegan, S. J.
    Ferrara, E. C.
    Fiori, A.
    Fleischhack, H.
    Franckowiak, A.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Galanti, G.
    Gammaldi, V.
    Gargano, F.
    Garrappa, S.
    Gasparrini, D.
    Giacchino, F.
    Giglietto, N.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Green, D.
    Grenier, I. A.
    Grondin, M. -H.
    Guillemot, L.
    Guiriec, S.
    Gustafsson, M.
    Harding, A. K.
    Hays, E.
    Hewitt, J. W.
    Horan, D.
    Hou, X.
    Jóhannesson, Guðlaugur
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). University of Iceland, Iceland.
    Karwin, C.
    Kayanoki, T.
    Kerr, M.
    Kuss, M.
    Landriu, D.
    Larsson, S.
    Latronico, L.
    Lemoine-Goumard, M.
    Li, J.
    Liodakis, I.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lubrano, P.
    Maldera, S.
    Malyshev, D.
    Manfreda, A.
    Marti-Devesa, G.
    Mazziotta, M. N.
    Mereu, I.
    Meyer, M.
    Michelson, P. F.
    Mirabal, N.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Negro, M.
    Nuss, E.
    Omodei, N.
    Orienti, M.
    Orlando, E.
    Paneque, D.
    Pei, Z.
    Perkins, J. S.
    Persic, M.
    Pesce-Rollins, M.
    Petrosian, V.
    Pillera, R.
    Poon, H.
    Porter, T. A.
    Principe, G.
    Raino, S.
    Rando, R.
    Rani, B.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Sanchez-Conde, M.
    Saz Parkinson, P. M.
    Scotton, L.
    Serini, D.
    Sgro, C.
    Siskind, E. J.
    Smith, D. A.
    Spandre, G.
    Spinelli, P.
    Sueoka, K.
    Suson, D. J.
    Tajima, H.
    Tak, D.
    Thayer, J. B.
    Thompson, D. J.
    Torres, D. F.
    Troja, E.
    Valverde, J.
    Wood, K.
    Zaharijas, G.
    Incremental Fermi Large Area Telescope Fourth Source Catalog2022In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 260, no 2, article id 53Article in journal (Refereed)
    Abstract [en]

    We present an incremental version (4FGL-DR3, for Data Release 3) of the fourth Fermi Large Area Telescope (LAT) catalog of γ-ray sources. Based on the first 12 years of science data in the energy range from 50 MeV to 1 TeV, it contains 6658 sources. The analysis improves on that used for the 4FGL catalog over eight years of data: more sources are fit with curved spectra, we introduce a more robust spectral parameterization for pulsars, and we extend the spectral points to 1 TeV. The spectral parameters, spectral energy distributions, and associations are updated for all sources. Light curves are rebuilt for all sources with 1 yr intervals (not 2 month intervals). Among the 5064 original 4FGL sources, 16 were deleted, 112 are formally below the detection threshold over 12 yr (but are kept in the list), while 74 are newly associated, 10 have an improved association, and seven associations were withdrawn. Pulsars are split explicitly between young and millisecond pulsars. Pulsars and binaries newly detected in LAT sources, as well as more than 100 newly classified blazars, are reported. We add three extended sources and 1607 new point sources, mostly just above the detection threshold, among which eight are considered identified, and 699 have a plausible counterpart at other wavelengths. We discuss the degree-scale residuals to the global sky model and clusters of soft unassociated point sources close to the Galactic plane, which are possibly related to limitations of the interstellar emission model and missing extended sources.

  • 6.
    Abergel, David
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). KTH Royal Institute of Technology, Sweden.
    Excitonic condensation in spatially separated one-dimensional systems2015In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 106, no 21, article id 213103Article in journal (Refereed)
    Abstract [en]

    We show theoretically that excitons can form from spatially separated one-dimensional ground state populations of electrons and holes, and that the resulting excitons can form a quasicondensate. We describe a mean-field Bardeen-Cooper-Schrieffer theory in the low carrier density regime and then focus on the core-shell nanowire giving estimates of the size of the excitonic gap for InAs/GaSb wires and as a function of all the experimentally relevant parameters. We find that optimal conditions for pairing include small overlap of the electron and hole bands, large effective mass of the carriers, and low dielectric constant of the surrounding media. Therefore, one-dimensional systems provide an attractive platform for the experimental detection of excitonic quasicondensation in zero magnetic field.

  • 7.
    Abergel, David S. L.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Robustness of topologically protected transport in graphene-boron nitride lateral heterostructures2017In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 29, no 7, article id 075303Article in journal (Refereed)
    Abstract [en]

    Previously, graphene nanoribbons set in lateral heterostructures with hexagonal boron nitride were predicted to support topologically protected states at low energy. We investigate how robust the transport properties of these states are against lattice disorder. We find that forms of disorder that do not couple the two valleys of the zigzag graphene nanoribbon do not impact the transport properties at low bias, indicating that these lateral heterostructures are very promising candidates for chip-scale conducting interconnects. Forms of disorder that do couple the two valleys, such as vacancies in the graphene ribbon, or substantial inclusions of armchair edges at the graphene-hexagonal boron nitride interface will negatively affect the transport. However, these forms of disorder are not commonly seen in current experiments.

  • 8.
    Abergel, David S. L.
    et al.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Edge, Jonathan M.
    Balatsky, Alexander V.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Los Alamos National Laboratory, USA.
    The role of spin-orbit coupling in topologically protected interface states in Dirac materials2014In: New Journal of Physics, E-ISSN 1367-2630, Vol. 16, p. 065012-Article in journal (Refereed)
    Abstract [en]

    We highlight the fact that two-dimensional (2D) materials with Dirac-like low energy band structures and spin-orbit coupling (SOC) will produce linearly dispersing topologically protected Jackiw-Rebbi modes at interfaces where the Dirac mass changes sign. These modes may support persistent spin or valley currents parallel to the interface, and the exact arrangement of such topologically protected currents depends crucially on the details of the SOC in the material. As examples, we discuss buckled 2D hexagonal lattices such as silicene or germanene, and transition metal dichalcogenides such as MoS2.

  • 9.
    Abergel, David S. L.
    et al.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Mucha-Kruczynski, Marcin
    Infrared absorption of closely aligned heterostructures of monolayer and bilayer graphene with hexagonal boron nitride2015In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 92, no 11, article id 115430Article in journal (Refereed)
    Abstract [en]

    We model optical absorption of monolayer and bilayer graphene on hexagonal boron nitride for the case of closely aligned crystal lattices. We show that perturbations with different spatial symmetry can lead to similar absorption spectra. We suggest that a study of the absorption spectra as a function of the doping for an almost completely full first miniband is necessary to extract meaningful information about the moire characteristics from optical absorption measurements and to distinguish between various theoretical proposals for the physically realistic interaction. Also, for bilayer graphene, the ability to compare spectra for the opposite signs of electric-field-induced interlayer asymmetry might provide additional information about the moire parameters.

  • 10. Abolmasov, Pavel
    et al.
    Nättilä, Joonas
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Columbia University, USA; Flatiron Institute, USA.
    Poutanen, Juri
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). University of Turku, Finland; Space Research Institute of the Russian Academy of Sciences, Russia.
    Kilohertz quasi-periodic oscillations from neutron star spreading layers2020In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 638, article id A142Article in journal (Refereed)
    Abstract [en]

    When the accretion disc around a weakly magnetised neutron star (NS) meets the stellar surface, it should brake down to match the rotation of the NS, forming a boundary layer. As the mechanisms potentially responsible for this braking are apparently inefficient, it is reasonable to consider this layer as a spreading layer (SL) with negligible radial extent and structure. We perform hydrodynamical 2D spectral simulations of an SL, considering the disc as a source of matter and angular momentum. Interaction of new, rapidly rotating matter with the pre-existing, relatively slow material co-rotating with the star leads to instabilities capable of transferring angular momentum and creating variability on dynamical timescales. For small accretion rates, we find that the SL is unstable for heating instability that disrupts the initial latitudinal symmetry and produces large deviations between the two hemispheres. This instability also results in breaking of the axial symmetry as coherent flow structures are formed and escape from the SL intermittently. At enhanced accretion rates, the SL is prone to shearing instability and acts as a source of oblique waves that propagate towards the poles, leading to patterns that again break the axial symmetry. We compute artificial light curves of an SL viewed at different inclination angles. Most of the simulated light curves show oscillations at frequencies close to 1 kHz. We interpret these oscillations as inertial modes excited by shear instabilities near the boundary of the SL. Their frequencies, dependence on flux, and amplitude variations can explain the high-frequency pair quasi-periodic oscillations observed in many low-mass X-ray binaries.

  • 11. Abolmasov, Pavel
    et al.
    Poutanen, Juri
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). University of Turku, Finland.
    Gamma-ray opacity of the anisotropic stratified broad-line regions in blazars2017In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 464, no 1, p. 152-169Article in journal (Refereed)
    Abstract [en]

    The GeV-range spectra of blazars are shaped not only by non-thermal emission processes internal to the relativistic jet but also by external pair-production absorption on the thermal emission of the accretion disc and the broad-line region (BLR). For the first time, we compute here the pair-production opacities in the GeV range produced by a realistic BLR accounting for the radial stratification and radiation anisotropy. Using photoionization modelling with the CLOUDY code, we calculate a series of BLR models of different sizes, geometries, cloud densities, column densities and metallicities. The strongest emission features in the model BLR are Ly alpha and He II Ly alpha. Contribution of recombination continua is smaller, especially for hydrogen, because Ly continuum is efficiently trapped inside the large optical depth BLR clouds and converted to Lyman emission lines and higher order recombination continua. The largest effects on the gamma-ray opacity are produced by the BLR geometry and localization of the gamma-ray source. We show that when the gamma-ray source moves further from the central source, all the absorption details move to higher energies and the overall level of absorption drops because of decreasing incidence angles between the gamma-rays and BLR photons. The observed positions of the spectral breaks can be used to measure the geometry and the location of the gamma-ray emitting region relative to the BLR. Strong dependence on geometry means that the soft photons dominating the pair-production opacity may be actually produced by a different population of BLR clouds than the bulk of the observed broad line emission.

  • 12. Abolmasov, Pavel
    et al.
    Poutanen, Juri
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). University of Turku, Finland; Russian Academy of Sciences, Russia.
    Mechanical model of a boundary layer for the parallel tracks of kilohertz quasi-periodic oscillations in accreting neutron stars2021In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 647, article id A45Article in journal (Refereed)
    Abstract [en]

    Kilohertz-scale quasi-periodic oscillations (kHz QPOs) are a distinct feature of the variability of neutron star low-mass X-ray binaries. Among all the variability modes, they are especially interesting as a probe for the innermost parts of the accretion flow, including the accretion boundary layer (BL) on the surface of the neutron star. All the existing models of kHz QPOs explain only part of their rich phenomenology. Here, we show that some of their properties can be explained by a very simple model of the BL that is spun up by accreting rapidly rotating matter from the disk and spun down by the interaction with the neutron star. In particular, if the characteristic time scales for the mass and the angular momentum transfer from the BL to the star are of the same order of magnitude, our model naturally reproduces the so-called parallel tracks effect, where the QPO frequency is correlated with luminosity at time scales of hours but becomes uncorrelated at time scales of days. The closeness of the two time scales responsible for mass and angular momentum exchange between the BL and the star is an expected outcome of the radial structure of the BL.

  • 13. Acharya, Anshuman
    et al.
    Mertens, Florent
    Ciardi, Benedetta
    Ghara, Raghunath
    Koopmans, Léon V. E.
    Giri, Sambit K.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Hothi, Ian
    Ma, Qing-Bo
    Mellema, Garrelt
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Munshi, Satyapan
    21-cm signal from the Epoch of Reionization: a machine learning upgrade to foreground removal with Gaussian process regression2024In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 527, no 3, p. 7835-7846Article in journal (Refereed)
    Abstract [en]

    In recent years, a Gaussian process regression (GPR)-based framework has been developed for foreground mitigation from data collected by the LOw-Frequency ARray (LOFAR), to measure the 21-cm signal power spectrum from the Epoch of Reionization (EoR) and cosmic dawn. However, it has been noted that through this method there can be a significant amount of signal loss if the EoR signal covariance is misestimated. To obtain better covariance models, we propose to use a kernel trained on the GRIZZLY simulations using a Variational Auto-Encoder (VAE)-based algorithm. In this work, we explore the abilities of this machine learning-based kernel (VAE kernel) used with GPR, by testing it on mock signals from a variety of simulations, exploring noise levels corresponding to ≈10 nights (≈141 h) and ≈100 nights (≈1410 h) of observations with LOFAR. Our work suggests the possibility of successful extraction of the 21-cm signal within 2σ uncertainty in most cases using the VAE kernel, with better recovery of both shape and power than with previously used covariance models. We also explore the role of the excess noise component identified in past applications of GPR and additionally analyse the possibility of redshift dependence on the performance of the VAE kernel. The latter allows us to prepare for future LOFAR observations at a range of redshifts, as well as compare with results from other telescopes.

  • 14. Ackermann, M.
    et al.
    Ajello, M.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bellazzini, R.
    Bissaldi, E.
    Blandford, R. D.
    Bloom, E. D.
    Bonino, R.
    Bottacini, E.
    Brandt, T. J.
    Bregeon, J.
    Bruel, P.
    Buehler, R.
    Cameron, R. A.
    Caputo, R.
    Caraveo, P. A.
    Castro, D.
    Cavazzuti, E.
    Charles, E.
    Cheung, C. C.
    Chiaro, G.
    Ciprini, S.
    Cohen-Tanugi, J.
    Costantin, D.
    Cutini, S.
    D'Ammando, F.
    de Palma, F.
    Desai, A.
    Di Lalla, N.
    Di Mauro, M.
    Di Venere, L.
    Favuzzi, C.
    Finke, J.
    Franckowiak, A.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Giglietto, N.
    Giordano, F.
    Giroletti, M.
    Green, D.
    Grenier, I. A.
    Guillemot, L.
    Guiriec, S.
    Hays, E.
    Hewitt, J. W.
    Horan, D.
    Jóhannesson, Guðlaugur
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). University of Iceland, Iceland.
    Kensei, S.
    Kuss, M.
    Larsson, S.
    Latronico, L.
    Lemoine-Goumard, M.
    Li, J.
    Longo, F.
    Loparco, F.
    Lovellette, M. N.
    Lubrano, P.
    Magill, J. D.
    Maldera, S.
    Manfreda, A.
    Mazziotta, M. N.
    McEnery, J. E.
    Meyer, M.
    Mizuno, T.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Negro, M.
    Nuss, E.
    Omodei, N.
    Orienti, M.
    Orlando, E.
    Ormes, J. F.
    Palatiello, M.
    Paliya, V. S.
    Paneque, D.
    Perkins, J. S.
    Persic, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Principe, G.
    Raino, S.
    Rando, R.
    Rani, B.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Sgro, C.
    Siskind, E. J.
    Spandre, G.
    Spinelli, P.
    Suson, D. J.
    Tajima, H.
    Thayer, J. B.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Valverde, J.
    Venters, T. M.
    Vogel, M.
    Wood, K.
    Wood, M.
    Zaharijas, G.
    Biteau, J.
    The Search for Spatial Extension in High-latitude Sources Detected by the Fermi Large Area Telescope2018In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 237, no 2, article id 32Article in journal (Refereed)
    Abstract [en]

    We present a search for spatial extension in high-latitude (vertical bar b vertical bar > 5 degrees) sources in recent Fermi point source catalogs. The result is the Fermi High-Latitude Extended Sources Catalog, which provides source extensions (or upper limits thereof) and likelihood profiles for a suite of tested source morphologies. We find 24. extended sources, 19 of which were not previously characterized as extended. These include sources that are potentially associated with supernova remnants and star-forming regions. We also found extended.-ray emission in the vicinity of the Cen. A radio lobes and-at GeV energies for the first time-spatially coincident with the radio emission of the SNR CTA 1, as well as from the Crab Nebula. We also searched for halos around active galactic nuclei, which are predicted from electromagnetic cascades induced by the e(+)e(-) pairs that are deflected in intergalactic magnetic fields. These pairs are produced when gamma-rays interact with background radiation fields. We do not find evidence for extension in individual sources or in stacked source samples. This enables us to place limits on the flux of the extended source components, which are then used to constrain the intergalactic magnetic field to be stronger than 3 x 10(-16) G for a coherence length lambda greater than or similar to 10 kpc, even when conservative assumptions on the source duty cycle are made. This improves previous limits by several orders of magnitude.

  • 15. Ackermann, M.
    et al.
    Ajello, M.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bellazzini, R.
    Bissaldi, E.
    Blandford, R. D.
    Bonino, R.
    Bottacini, E.
    Bregeon, J.
    Bruel, P.
    Buehler, R.
    Burns, E.
    Buson, S.
    Cameron, R. A.
    Caputo, R.
    Caraveo, P. A.
    Cavazzuti, E.
    Chen, S.
    Chiaro, G.
    Ciprini, S.
    Costantin, D.
    Cuoco, A.
    Cutini, S.
    D'Ammando, F.
    Luque, P. de la Torre
    de Palma, F.
    Desai, A.
    Digel, S. W.
    Di Lalla, N.
    Di Mauro, M.
    Di Venere, L.
    Dirirsa, F. Fana
    Favuzzi, C.
    Franckowiak, A.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Giglietto, N.
    Giordano, F.
    Giroletti, M.
    Green, D.
    Grenier, I. A.
    Guillemot, L.
    Guiriec, S.
    Horan, D.
    Jóhannesson, Guðlaugur
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). University of Iceland, Iceland.
    Kuss, M.
    Larsson, S.
    Latronico, L.
    Li, J.
    Liodakis, I.
    Longo, F.
    Loparco, F.
    Lubrano, P.
    Magill, J. D.
    Maldera, S.
    Malyshev, D.
    Manfreda, A.
    Mazziotta, M. N.
    Mereu, I.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Negro, M.
    Nuss, E.
    Orienti, M.
    Orlando, E.
    Palatiello, M.
    Paliya, V. S.
    Paneque, D.
    Persic, M.
    Pesce-Rollins, M.
    Petrosian, V.
    Piron, F.
    Porter, T. A.
    Principe, G.
    Raino, S.
    Rando, R.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Serini, D.
    Sgro, C.
    Siskind, E. J.
    Spandre, G.
    Spinelli, P.
    Suson, D. J.
    Tajima, H.
    Takahashi, M.
    Thayer, J. B.
    Tibaldo, L.
    Torres, D. F.
    Troja, E.
    Venters, T. M.
    Vianello, G.
    Wood, K.
    Yassine, M.
    Zaharijas, G.
    Ammazzalorso, S.
    Fornengo, N.
    Regis, M.
    Unresolved Gamma-Ray Sky through its Angular Power Spectrum2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, no 24, article id 241101Article in journal (Refereed)
    Abstract [en]

    The gamma-ray sky has been observed with unprecedented accuracy in the last decade by the Fermi-large area telescope (LAT), allowing us to resolve and understand the high-energy Universe. The nature of the remaining unresolved emission [unresolved gamma-ray background (UGRB)] below the LAT source detection threshold can be uncovered by characterizing the amplitude and angular scale of the UGRB fluctuation field. This Letter presents a measurement of the UGRB autocorrelation angular power spectrum based on eight years of Fermi-LAT Pass 8 data products. The analysis is designed to be robust against contamination from resolved sources and noise systematics. The sensitivity to subthreshold sources is greatly enhanced with respect to previous measurements. We find evidence (with similar to 3.7 sigma significance) that the scenario in which two classes of sources contribute to the UGRB signal is favored over a single class. A double power law with exponential cutoff can explain the anisotropy energy spectrum well, with photon indices of the two populations being 2.55 +/- 0.23 and 1.86 +/- 0.15.

  • 16. Ackley, K.
    et al.
    Amati, L.
    Barbieri, C.
    Bauer, F. E.
    Benetti, S.
    Bernardini, M. G.
    Bhirombhakdi, K.
    Botticella, M. T.
    Branchesi, M.
    Brocato, E.
    Bruun, S. H.
    Bulla, Mattia
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Campana, S.
    Cappellaro, E.
    Castro-Tirado, A. J.
    Chambers, K. C.
    Chaty, S.
    Chen, Ting-Wan
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Max-Planck-Institut für Extraterrestrische Physik, Germany.
    Ciolfi, R.
    Coleiro, A.
    Copperwheat, C. M.
    Covino, S.
    Cutter, R.
    D'Ammando, F.
    D'Avanzo, P.
    De Cesare, G.
    D'Elia, V.
    Della Valle, M.
    Denneau, L.
    De Pasquale, M.
    Dhillon, V. S.
    Dyer, M. J.
    Elias-Rosa, N.
    Evans, P. A.
    Eyles-Ferris, R. A. J.
    Fiore, A.
    Fraser, M.
    Fruchter, A. S.
    Fynbo, J. P. U.
    Galbany, L.
    Gall, C.
    Galloway, D. K.
    Getman, F.
    Ghirlanda, G.
    Gillanders, J. H.
    Gomboc, A.
    Gompertz, B. P.
    Gonzalez-Fernandez, C.
    Gonzalez-Gaitan, S.
    Grado, A.
    Greco, G.
    Gromadzki, M.
    Groot, P. J.
    Gutierrez, C. P.
    Heikkila, T.
    Heintz, K. E.
    Hjorth, J.
    Hu, Y.-D.
    Huber, M. E.
    Inserra, C.
    Izzo, L.
    Japelj, J.
    Jerkstrand, Anders
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jin, Z. P.
    Jonker, P. G.
    Kankare, E.
    Kann, D. A.
    Kennedy, M.
    Kim, S.
    Klose, S.
    Kool, Erik C.
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kotak, R.
    Kuncarayakti, H.
    Lamb, G. P.
    Leloudas, G.
    Levan, A. J.
    Longo, F.
    Lowe, T. B.
    Lyman, J. D.
    Magnier, E.
    Maguire, K.
    Maiorano, E.
    Mandel, I.
    Mapelli, M.
    Mattila, S.
    McBrien, O. R.
    Melandri, A.
    Michalowski, M. J.
    Milvang-Jensen, B.
    Moran, S.
    Nicastro, L.
    Nicholl, M.
    Nicuesa Guelbenzu, A.
    Nuttal, L.
    Oates, S. R.
    O'Brien, P. T.
    Onori, F.
    Palazzi, E.
    Patricelli, B.
    Perego, A.
    Torres, M. A. P.
    Perley, D. A.
    Pian, E.
    Pignata, G.
    Piranomonte, S.
    Poshyachinda, S.
    Possenti, A.
    Pumo, M. L.
    Quirola-Vasquez, J.
    Ragosta, F.
    Ramsay, G.
    Rau, A.
    Rest, A.
    Reynolds, T. M.
    Rosetti, S. S.
    Rossi, A.
    Rosswog, Stephan
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Sabha, N. B.
    Sagués Carracedo, Ana
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Salafia, O. S.
    Salmon, L.
    Salvaterra, R.
    Savaglio, S.
    Sbordone, L.
    Schady, P.
    Schipani, P.
    Schultz, A. S. B.
    Schweyer, Tassilo
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Max-Planck-Institut für Extraterrestrische Physik, Germany.
    Smartt, S. J.
    Smith, K. W.
    Smith, M.
    Sollerman, Jesper
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Srivastav, S.
    Stanway, E. R.
    Starling, R. L. C.
    Steeghs, D.
    Stratta, G.
    Stubbs, C. W.
    Tanvir, N. R.
    Testa, V.
    Thrane, E.
    Tonry, J. L.
    Turatto, M.
    Ulaczyk, K.
    van der Horst, A. J.
    Vergani, S. D.
    Walton, N. A.
    Watson, D.
    Wiersema, K.
    Wiik, K.
    Wyrzykowski, L.
    Yang, Sheng
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Yi, S.-X.
    Young, D. R.
    Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv2020In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 643, article id A113Article in journal (Refereed)
    Abstract [en]

    Context. Gravitational wave (GW) astronomy has rapidly reached maturity, becoming a fundamental observing window for modern astrophysics. The coalescences of a few tens of black hole (BH) binaries have been detected, while the number of events possibly including a neutron star (NS) is still limited to a few. On 2019 August 14, the LIGO and Virgo interferometers detected a high-significance event labelled S190814bv. A preliminary analysis of the GW data suggests that the event was likely due to the merger of a compact binary system formed by a BH and a NS.

    Aims. In this paper, we present our extensive search campaign aimed at uncovering the potential optical and near infrared electromagnetic counterpart of S190814bv. We found no convincing electromagnetic counterpart in our data. We therefore use our non-detection to place limits on the properties of the putative outflows that could have been produced by the binary during and after the merger.

    Methods. Thanks to the three-detector observation of S190814bv, and given the characteristics of the signal, the LIGO and Virgo Collaborations delivered a relatively narrow localisation in low latency - a 50% (90%) credible area of 5 deg(2) (23 deg(2)) - despite the relatively large distance of 26752 Mpc. ElectromagNetic counterparts of GRAvitational wave sources at the VEry Large Telescope collaboration members carried out an intensive multi-epoch, multi-instrument observational campaign to identify the possible optical and near infrared counterpart of the event. In addition, the ATLAS, GOTO, GRAWITA-VST, Pan-STARRS, and VINROUGE projects also carried out a search on this event. In this paper, we describe the combined observational campaign of these groups.

    Results. Our observations allow us to place limits on the presence of any counterpart and discuss the implications for the kilonova (KN), which was possibly generated by this NS-BH merger, and for the strategy of future searches. The typical depth of our wide-field observations, which cover most of the projected sky localisation probability (up to 99.8%, depending on the night and filter considered), is r similar to 22 (resp. K similar to 21) in the optical (resp. near infrared). We reach deeper limits in a subset of our galaxy-targeted observations, which cover a total similar to 50% of the galaxy-mass-weighted localisation probability. Altogether, our observations allow us to exclude a KN with large ejecta mass M greater than or similar to 0.1 M-circle dot to a high (> 90%) confidence, and we can exclude much smaller masses in a sub-sample of our observations. This disfavours the tidal disruption of the neutron star during the merger.

    Conclusions. Despite the sensitive instruments involved in the campaign, given the distance of S190814bv, we could not reach sufficiently deep limits to constrain a KN comparable in luminosity to AT 2017gfo on a large fraction of the localisation probability. This suggests that future (likely common) events at a few hundred megaparsecs will be detected only by large facilities with both a high sensitivity and large field of view. Galaxy-targeted observations can reach the needed depth over a relevant portion of the localisation probability with a smaller investment of resources, but the number of galaxies to be targeted in order to get a fairly complete coverage is large, even in the case of a localisation as good as that of this event.

  • 17. Adam, R.
    et al.
    Ade, P. A. R.
    Aghanim, N.
    Alves, M. I. R.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R. -R.
    Chiang, H. C.
    Christensen, P. R.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Dickinson, C.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Ghosh, T.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, F.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Leahy, J. P.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Marshall, D. J.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Orlando, E.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paladini, R.
    Paoletti, D.
    Partridge, B.
    Pasian, F.
    Patanchon, G.
    Pearson, T. J.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reach, W. T.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Strong, A. W.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Umana, G.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Wilkinson, A.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results X. Diffuse component separation: Foreground maps2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A10Article in journal (Refereed)
    Abstract [en]

    Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps and the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7: 5 and 1 degrees. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4pK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100-353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.

  • 18. Adam, R.
    et al.
    Ade, P. A. R.
    Aghanim, N.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Basak, S.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Casaponsa, B.
    Castex, G.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R-R.
    Chiang, H. C.
    Christensen, P. R.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Dickinson, C.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fantaye, Y.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Francescht, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Ghosh, T.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jenne, M.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Marshall, D. J.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paladini, R.
    Paoletti, D.
    Pasian, F.
    Patanchon, G.
    Pearson, T. J.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Racine, B.
    Reach, W. T.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Tucci, M.
    Tuovinen, J.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results IX. Diffuse component separation: CMB maps2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A9Article in journal (Refereed)
    Abstract [en]

    We present foreground-reduced cosmic microwave background (CMB) maps derived from the full Planck data set in both temperature and polarization. Compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.2 for frequencies between 30 and 70 GHz, and by 1.9 for frequencies between 100 and 857 GHz. In addition, systematic errors in the forms of temperature-topolarization leakage, analogue-to-digital conversion uncertainties, and very long time constant errors have been dramatically reduced, to the extent that the cosmological polarization signal may now be robustly recovered on angular scales l greater than or similar to 40. On the very largest scales, instrumental systematic residuals are still non-negligible compared to the expected cosmological signal, and modes with l < 20 are accordingly suppressed in the current polarization maps by high-pass filtering. As in 2013, four different CMB component separation algorithms are applied to these observations, providing a measure of stability with respect to algorithmic and modelling choices. The resulting polarization maps have rms instrumental noise ranging between 0.21 and 0.27 mu K averaged over 55' pixels, and between 4.5 and 6.1 mu K averaged over 3.'4 pixels. The cosmological parameters derived from the analysis of temperature power spectra are in agreement at the 1 sigma level with the Planck 2015 likelihood. Unresolved mismatches between the noise properties of the data and simulations prevent a satisfactory description of the higher-order statistical properties of the polarization maps. Thus, the primary applications of these polarization maps are those that do not require massive simulations for accurate estimation of uncertainties, for instance estimation of cross-spectra and cross-correlations, or stacking analyses. However, the amplitude of primordial non-Gaussianity is consistent with zero within 2 sigma for all local, equilateral, and orthogonal configurations of the bispectrum, including for polarization E-modes. Moreover, excellent agreement is found regarding the lensing B-mode power spectrum, both internally among the various component separation codes and with the best-fit Planck 2015 Lambda cold dark matter model.

  • 19. Adam, R.
    et al.
    Ade, P. A. R.
    Aghanim, N.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit-Levy, A.
    Bersanelli, M.
    Bielewicz, P.
    Bikmaev, I.
    Bonaldi, A.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Burenin, R.
    Burigana, C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Chiang, H. C.
    Christensen, P. R.
    Churazov, E.
    Colombo, L. P. L.
    Combet, C.
    Comis, B.
    Couchot, F.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Diego, J. M.
    Dole, H.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Elsner, F.
    Ensslin, T. A.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Galeotta, S.
    Ganga, K.
    Genova-Santos, R. T.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Harrison, D. L.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Hornstrup, A.
    Hovest, W.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Khamitov, I.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leonardi, R.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Macias-Perez, J. F.
    Maffei, B.
    Maggio, G.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Norgaard-Nielsen, H. U.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Pasian, F.
    Perdereau, O.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Ponthieu, N.
    Pratt, G. W.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results XLIII. Spectral energy distribution of dust in clusters of galaxies2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 596, article id A104Article in journal (Refereed)
    Abstract [en]

    Although infrared (IR) overall dust emission from clusters of galaxies has been statistically detected using data from the Infrared Astronomical Satellite (IRAS), it has not been possible to sample the spectral energy distribution (SED) of this emission over its peak, and thus to break the degeneracy between dust temperature and mass. By complementing the IRAS spectral coverage with Planck satellite data from 100 to 857 GHz, we provide new constraints on the IR spectrum of thermal dust emission in clusters of galaxies. We achieve this by using a stacking approach for a sample of several hundred objects from the Planck cluster sample. This procedure averages out fluctuations from the IR sky, allowing us to reach a significant detection of the faint cluster contribution. We also use the large frequency range probed by Planck, together with component-separation techniques, to remove the contamination from both cosmic microwave background anisotropies and the thermal Sunyaev-Zeldovich effect (tSZ) signal, which dominate at v <= 353 GHz. By excluding dominant spurious signals or systematic effects, averaged detections are reported at frequencies 353 GHz <= v <= 5000 GHz. We confirm the presence of dust in clusters of galaxies at low and intermediate redshifts, yielding an SED with a shape similar to that of the Milky Way. Planck's resolution does not allow us to investigate the detailed spatial distribution of this emission (e.g. whether it comes from intergalactic dust or simply the dust content of the cluster galaxies), but the radial distribution of the emission appears to follow that of the stacked SZ signal, and thus the extent of the clusters. The recovered SED allows us to constrain the dust mass responsible for the signal and its temperature.

  • 20. Adam, R.
    et al.
    Ade, P. A. R.
    Alves, M. I. R.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Chiang, H. C.
    Christensen, P. R.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Dickinson, C.
    Diego, J. M.
    Dolag, K.
    Dore, O.
    Ducout, A.
    Dupac, X.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Ferriere, K.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Galeotta, S.
    Ganga, K.
    Ghosh, T.
    Giard, M.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Harrison, D. L.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hobson, M.
    Hornstrup, A.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leahy, J. P.
    Leonardi, R.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Norgaard-Nielsen, H. U.
    Oppermann, N.
    Orlando, E.
    Pagano, L.
    Pajot, F.
    Paladini, R.
    Paoletti, D.
    Pasian, F.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Ponthieu, N.
    Pratt, G. W.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Scott, D.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Strong, A. W.
    Sudiwala, R.
    Sunyaev, R.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results XLII. Large-scale Galactic magnetic fields2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 596, article id A103Article in journal (Refereed)
    Abstract [en]

    Recent models for the large-scale Galactic magnetic fields in the literature have been largely constrained by synchrotron emission and Faraday rotation measures. We use three different but representative models to compare their predicted polarized synchrotron and dust emission with that measured by the Planck satellite. We first update these models to match the Planck synchrotron products using a common model for the cosmic-ray leptons. We discuss the impact on this analysis of the ongoing problems of component separation in the Planck microwave bands and of the uncertain cosmic-ray spectrum. In particular, the inferred degree of ordering in the magnetic fields is sensitive to these systematic uncertainties, and we further show the importance of considering the expected variations in the observables in addition to their mean morphology. We then compare the resulting simulated emission to the observed dust polarization and find that the dust predictions do not match the morphology in the Planck data but underpredict the dust polarization away from the plane. We modify one of the models to roughly match both observables at high latitudes by increasing the field ordering in the thin disc near the observer. Though this specific analysis is dependent on the component separation issues, we present the improved model as a proof of concept for how these studies can be advanced in future using complementary information from ongoing and planned observational projects.

  • 21. Adam, R.
    et al.
    Aghanim, N.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Battye, R.
    Benabed, K.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Calabrese, E.
    Cardoso, J. -F.
    Carron, J.
    Chiang, H. C.
    Colombo, L. P. L.
    Combet, C.
    Comis, B.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fantaye, Y.
    Finelli, F.
    Forastieri, F.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Università La Sapienza, Italy.
    Ghosh, T.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Helou, G.
    Henrot-Versille, S.
    Herranz, D.
    Hivon, E.
    Huang, Z.
    Ilic, S.
    Jaffe, A. H.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Knox, L.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Langer, M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Levrier, F.
    Lewis, A.
    Liguori, M.
    Lilje, P. B.
    Lopez-Caniego, M.
    Ma, Y. -Z.
    Macias-Perez, J. F.
    Maggio, G.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Matarrese, S.
    Mauri, N.
    McEwen, J. D.
    Meinhold, P. R.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Moss, A.
    Naselsky, P.
    Natoli, P.
    Oxborrow, C. A.
    Pagano, L.
    Paoletti, D.
    Partridge, B.
    Patanchon, G.
    Patrizii, L.
    Perdereau, O.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Plaszczynski, S.
    Polastri, L.
    Polenta, G.
    Puget, J. -L
    Rachen, J. P.
    Racine, B.
    Reinecke, M.
    Remazeilles, M.
    Renzi, A.
    Rocha, G.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Ruiz-Granados, B.
    Salvati, L.
    Sandri, M.
    Savelainen, M.
    Scott, D.
    Sirri, G.
    Sunyaev, R.
    Suur-Uski, A. -S.
    Tauber, J. A.
    Tenti, M.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Vittorio, N.
    Wandelt, B. D.
    Wehus, I. K.
    White, M.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results XLVII. Planck constraints on reionization history2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 596, article id A108Article in journal (Refereed)
    Abstract [en]

    We investigate constraints on cosmic reionization extracted from the Planck cosmic microwave background (CMB) data. We combine the Planck CMB anisotropy data in temperature with the low-multipole polarization data to fit Lambda CDM models with various parameterizations of the reionization history. We obtain a Thomson optical depth tau = 0.058 +/- 0.012 for the commonly adopted instantaneous reionization model. This confirms, with data solely from CMB anisotropies, the low value suggested by combining Planck 2015 results with other data sets, and also reduces the uncertainties. We reconstruct the history of the ionization fraction using either a symmetric or an asymmetric model for the transition between the neutral and ionized phases. To determine better constraints on the duration of the reionization process, we also make use of measurements of the amplitude of the kinetic Sunyaev-Zeldovich (kSZ) effect using additional information from the high-resolution Atacama Cosmology Telescope and South Pole Telescope experiments. The average redshift at which reionization occurs is found to lie between z = 7.8 and 8.8, depending on the model of reionization adopted. Using kSZ constraints and a redshift-symmetric reionization model, we find an upper limit to the width of the reionization period of Delta z < 2.8. In all cases, we find that the Universe is ionized at less than the 10% level at redshifts above z similar or equal to 10. This suggests that an early onset of reionization is strongly disfavoured by the Planck data. We show that this result also reduces the tension between CMB-based analyses and constraints from other astrophysical sources.

  • 22. Adam, R.
    et al.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Università La Sapienza, Italy.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Lawrence, C. R.
    Zonca, A.
    Planck 2015 results I. Overview of products and scientific results2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A1Article in journal (Refereed)
    Abstract [en]

    The European Space Agency's Planck satellite, which is dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013. In February 2015, ESA and the Planck Collaboration released the second set of cosmology products based on data from the entire Planck mission, including both temperature and polarization, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the main characteristics of the data and the data products in the release, as well as the associated cosmological and astrophysical science results and papers. The data products include maps of the cosmic microwave background (CMB), the thermal Sunyaev-Zeldovich effect, diffuse foregrounds in temperature and polarization, catalogues of compact Galactic and extragalactic sources (including separate catalogues of Sunyaev-Zeldovich clusters and Galactic cold clumps), and extensive simulations of signals and noise used in assessing uncertainties and the performance of the analysis methods. The likelihood code used to assess cosmological models against the Planck data is described, along with a CMB lensing likelihood. Scientific results include cosmological parameters derived from CMB power spectra, gravitational lensing, and cluster counts, as well as constraints on inflation, non-Gaussianity, primordial magnetic fields, dark energy, and modified gravity, and new results on low-frequency Galactic foregrounds.

  • 23. Addazi, A.
    et al.
    Alvarez-Muniz, J.
    Alves Batista, R.
    Amelino-Camelia, G.
    Antonelli, V.
    Arzano, M.
    Asorey, M.
    Atteia, J.-L.
    Bahamonde, S.
    Bajardi, F.
    Ballesteros, A.
    Baret, B.
    Barreiros, D. M.
    Basilakos, S.
    Benisty, D.
    Birnholtz, O.
    Blanco-Pillado, J. J.
    Blas, D.
    Bolmont, J.
    Boncioli, D.
    Bosso, P.
    Calcagni, G.
    Capozziello, S.
    Carmona, J. M.
    Cerci, S.
    Chernyakova, M.
    Clesse, S.
    Coelho, J. A. B.
    Colak, S. M.
    Cortes, J. L.
    Das, S.
    D'Esposito, V.
    Demirci, M.
    Di Luca, M. G.
    di Matteo, A.
    Dimitrijevic, D.
    Djordjevic, G.
    Dominis Prester, D.
    Eichhorn, A.
    Ellis, J.
    Escamilla-Rivera, C.
    Fabiano, G.
    Franchino-Viñas, S. A.
    Frassino, A. M.
    Frattulillo, D.
    Funk, S.
    Fuster, A.
    Gamboa, J.
    Gent, A.
    Gergely, L. Á.
    Giammarchi, M.
    Giesel, K.
    Glicenstein, J.-F.
    Gracia-Bondía, J.
    Gracia-Ruiz, R.
    Gubitosi, G.
    Guendelman, E.
    Gutierrez-Sagredo, I.
    Haegel, L.
    Heefer, S.
    Held, A.
    Herranz, F. J.
    Hinderer, T.
    Illana, J. I.
    Ioannisian, A.
    Jetzer, P.
    Joaquim, F. R.
    Kampert, K.-H.
    Karasu Uysal, A.
    Katori, T.
    Kazarian, N.
    Kerszberg, D.
    Kowalski-Glikman, J.
    Kuroyanagi, S.
    Lämmerzahl, C.
    Levi Said, J.
    Liberati, S.
    Lim, E.
    Lobo, I. P.
    López-Moya, M.
    Luciano, G. G.
    Manganaro, M.
    Marcianò, A.
    Martin-Moruno, P.
    Martinez, Manel
    Martinez, Mario
    Martínez-Huerta, H.
    Martínez-Miravé, P.
    Masip, M.
    Mattingly, D.
    Mavromatos, N.
    Mazumdar, A.
    Méndez, F.
    Mercati, F.
    Micanovic, S.
    Mielczarek, J.
    Miller, A. L.
    Milosevic, M.
    Minic, D.
    Miramonti, L.
    Mitsou, V. A.
    Moniz, P.
    Mukherjee, S.
    Nardini, G.
    Navas, S.
    Niechciol, M.
    Nielsen, A. B.
    Obers, Niels A.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). University of Copenhagen, Denmark.
    Oikonomou, F.
    Oriti, D.
    Paganini, C. F.
    Palomares-Ruiz, S.
    Pasechnik, R.
    Pasic, V.
    Pérez de los Heros, C.
    Pfeifer, C.
    Pieroni, M.
    Piran, T.
    Platania, A.
    Rastgoo, S.
    Relancio, J. J.
    Reyes, M. A.
    Ricciardone, A.
    Risse, M.
    Rodriguez Frias, M. D.
    Rosati, G.
    Rubiera-Garcia, D.
    Sahlmann, H.
    Sakellariadou, M.
    Salamida, F.
    Saridakis, E. N.
    Satunin, P.
    Schiffer, M.
    Schüssler, F.
    Sigl, G.
    Sitarek, J.
    Solà Peracaula, J.
    Sopuerta, C. F.
    Sotiriou, T. P.
    Spurio, M.
    Staicova, D.
    Stergioulas, N.
    Stoica, S.
    Strišković, J.
    Stuttard, T.
    Sunar Cerci, D.
    Tavakoli, Y.
    Ternes, C. A.
    Terzić, T.
    Thiemann, T.
    Tinyakov, P.
    Torri, M. D. C.
    Tórtola, M.
    Trimarelli, C.
    Trześniewski, T.
    Tureanu, A.
    Urban, F. R.
    Vagenas, E. C.
    Vernieri, D.
    Vitagliano, V.
    Wallet, J.-C.
    Zornoza, J. D.
    Quantum gravity phenomenology at the dawn of the multi-messenger era—A review2022In: Progress in Particle and Nuclear Physics, ISSN 0146-6410, E-ISSN 1873-2224, Vol. 125, article id 103948Article, review/survey (Refereed)
    Abstract [en]

    The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.

  • 24. Ade, P. A. R.
    et al.
    Aghanim, N.
    Alves, M. I. R.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R. -R.
    Chiang, H. C.
    Christensen, P. R.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Delouis, J. -M.
    Desert, F. -X.
    Dickinson, C.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Ghosh, T.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leahy, J. P.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Marshall, D. J.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Orlando, E.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paladini, R.
    Paoletti, D.
    Partridge, B.
    Pasian, F.
    Patanchon, G.
    Pearson, T. J.
    Peel, M.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reach, W. T.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Strong, A. W.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Umana, G.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vidal, M.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Watson, R.
    Wehus, I. K.
    Wilkinson, A.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results XXV. Diffuse low-frequency Galactic foregrounds2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A25Article in journal (Refereed)
    Abstract [en]

    We discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude H alpha emission with our free-free map shows residuals that correlate with dust optical depth, consistent with a fraction (approximate to 30%) of H alpha having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in I-v) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H Pi regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5-20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is associated with distinct large-scale loops and spurs, and we re-discuss their structure. We argue that nearly all the emission at 40 degrees > l > -90 degrees is part of the Loop I structure, and show that the emission extends much further in to the southern Galactic hemisphere than previously recognised, giving Loop I an ovoid rather than circular outline. However, it does not continue as far as the Fermi bubble/microwave haze, making it less probable that these are part of the same structure. We identify a number of new faint features in the polarized sky, including a dearth of polarized synchrotron emission directly correlated with a narrow, roughly 20 degrees long filament seen in H alpha at high Galactic latitude. Finally, we look for evidence of polarized AME, however many AME regions are significantly contaminated by polarized synchrotron emission, and we find a 2 sigma upper limit of 1.6% in the Perseus region.

  • 25. Ade, P. A. R.
    et al.
    Aghanim, N.
    Argueeso, F.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Battaner, E.
    Beichman, C.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Boehringer, H.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Carvalho, P.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R. -R.
    Chiang, H. C.
    Christensen, P. R.
    Clemens, M.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Dickinson, C.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leahy, J. P.
    Leonardi, R.
    Leon-Tavares, J.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Marshall, D. J.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Negrello, M.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paladini, R.
    Paoletti, D.
    Partridge, B.
    Pasian, F.
    Patanchon, G.
    Pearson, T. J.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reach, W. T.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rowan-Robinson, M.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Sanghera, H. S.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tornikoski, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Turler, M.
    Umana, G.
    Valenziano, L.
    Valiviita, J.
    Van Tent, B.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Walter, B.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results XXVI. The Second Planck Catalogue of Compact Sources2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A26Article in journal (Refereed)
    Abstract [en]

    The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogues, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalogue. The second ( PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow us to increase the number of objects in the catalogue, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).

  • 26. Ade, P. A. R.
    et al.
    Aghanim, N.
    Arnaud, M.
    Arroja, F.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Chamballu, A.
    Chiang, H. C.
    Chluba, J.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Diego, J. M.
    Dolag, K.
    Dole, H.
    Donzelli, S.
    Dore, A.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fergusson, J.
    Finelli, F.
    Florido, E.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kim, J.
    Kisner, T. S.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leahy, J. P.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oppermann, N.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Pasian, F.
    Patanchon, G.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Popa, L.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Ruiz-Granados, B.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Shiraishi, M.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Umana, G.
    Valenziano, L.
    Valiviita, J.
    Van Tent, B.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results XIX. Constraints on primordial magnetic fields2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A19Article in journal (Refereed)
    Abstract [en]

    We compute and investigate four types of imprint of a stochastic background of primordial magnetic fields (PMFs) on the cosmic microwave background (CMB) anisotropies: the impact of PMFs on the CMB temperature and polarization spectra, which is related to their contribution to cosmological perturbations; the effect on CMB polarization induced by Faraday rotation; the impact of PMFs on the ionization history; magnetically-induced non-Gaussianities and related non-zero bispectra; and the magnetically-induced breaking of statistical isotropy. We present constraints on the amplitude of PMFs that are derived from different Planck data products, depending on the specific effect that is being analysed. Overall, Planck data constrain the amplitude of PMFs to less than a few nanoGauss, with different bounds that depend on the considered model. In particular, individual limits coming from the analysis of the CMB angular power spectra, using the Planck likelihood, are B-1 (Mpc) < 4.4 nG (where B1 Mpc is the comoving field amplitude at a scale of 1 Mpc) at 95% confidence level, assuming zero helicity. By considering the Planck likelihood, based only on parity-even angular power spectra, we obtain B-1 (Mpc) < 5.6 nG for a maximally helical field. For nearly scale-invariant PMFs we obtain B-1 (Mpc) < 2.0 nG and B-1 (Mpc) < 0.9 nG if the impact of PMFs on the ionization history of the Universe is included in the analysis. From the analysis of magnetically-induced non-Gaussianity, we obtain three different values, corresponding to three applied methods, all below 5 nG. The constraint from the magnetically-induced passive-tensor bispectrum is B-1 (Mpc) < 2.8 nG. A search for preferred directions in the magnetically-induced passive bispectrum yields B-1 (Mpc) < 4.5 nG, whereas the compensated-scalar bispectrum gives B-1 (Mpc) < 3 nG. The analysis of the Faraday rotation of CMB polarization by PMFs uses the Planck power spectra in EE and BB at 70 GHz and gives B-1 (Mpc) < 1380 nG. In our final analysis, we consider the harmonic-space correlations produced by Alfven waves, finding no significant evidence for the presence of these waves. Together, these results comprise a comprehensive set of constraints on possible PMFs with Planck data.

  • 27. Ade, P. A. R.
    et al.
    Aghanim, N.
    Arnaud, M.
    Arroja, F.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bondi, J. R.
    Borrillu, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R. -R.
    Chiang, H. C.
    Christensen, P. R.
    Churchl, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Contreras, D.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouillei, J.
    Desert, F. -X.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Gauthier, C.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hamann, J.
    Handley, W.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huang, Z.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kim, J.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Lewis, A.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Ma, Y. -Z.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martini, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munchmeyer, M.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paladini, R.
    Pandolfi, S.
    Paoletti, D.
    Pasian, F.
    Patanchon, G.
    Pearson, T. J.
    Peiris, H. V.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Popa, L.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reach, W. T.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rowan-Robinson, M.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Shiraishi, M.
    Spencer, L. D.
    Stolyarov, V.
    Stompori, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Tucci, M.
    Tuovinen, J.
    Valenziano, L.
    Valiviita, J.
    Van Tent, B.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    White, M.
    Yvon, D.
    Zacchei, A.
    Zibin, J. P.
    Zonca, A.
    Planck 2015 results XX. Constraints on inflation2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A20Article in journal (Refereed)
    Abstract [en]

    We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey, which includes more than twice the integration time of the nominal survey used for the 2013 release papers. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the spectral index of curvature perturbations to be n(s) = 0.968 +/- 0.006 and tightly constrain its scale dependence to dn(s)/dln k = -0.003 +/- 0.007 when combined with the Planck lensing likelihood. When the Planck high-l polarization data are included, the results are consistent and uncertainties are further reduced. The upper bound on the tensor-to-scalar ratio is r(0).(002) < 0.11 (95% CL). This upper limit is consistent with the B-mode polarization constraint r < 0.12 (95% CL) obtained from a joint analysis of the BICEP2/Keck Array and Planck data. These results imply that V(phi) proportional to phi(2) and natural inflation are now disfavoured compared to models predicting a smaller tensor-to-scalar ratio, such as R-2 inflation. We search for several physically motivated deviations from a simple power-law spectrum of curvature perturbations, including those motivated by a reconstruction of the inflaton potential not relying on the slow-roll approximation. We find that such models are not preferred, either according to a Bayesian model comparison or according to a frequentist simulation-based analysis. Three independent methods reconstructing the primordial power spectrum consistently recover a featureless and smooth P-R (k) over the range of scales 0.008 Mpc(-1) less than or similar to k less than or similar to 0.1 Mpc(-1). At large scales, each method finds deviations from a power law, connected to a deficit at multipoles l approximate to 20-40 in the temperature power spectrum, but at an uncompelling statistical significance owing to the large cosmic variance present at these multipoles. By combining power spectrum and non-Gaussianity bounds, we constrain models with generalized Lagrangians, including Galileon models and axion monodromy models. The Planck data are consistent with adiabatic primordial perturbations, and the estimated values for the parameters of the base Lambda cold dark matter (Lambda CDM) model are not significantly altered when more general initial conditions are admitted. In correlated mixed adiabatic and isocurvature models, the 95% CL upper bound for the non-adiabatic contribution to the observed CMB temperature variance is vertical bar alpha(non-adi)vertical bar < 1.9%, 4.0%, and 2.9% for CDM, neutrino density, and neutrino velocity isocurvature modes, respectively. We have tested inflationary models producing an anisotropic modulation of the primordial curvature power spectrum finding that the dipolar modulation in the CMB temperature field induced by a CDM isocurvature perturbation is not preferred at a statistically significant level. We also establish tight constraints on a possible quadrupolar modulation of the curvature perturbation. These results are consistent with the Planck 2013 analysis based on the nominal mission data and further constrain slow-roll single-field inflationary models, as expected from the increased precision of Planck data using the full set of observations.

  • 28. Ade, P. A. R.
    et al.
    Aghanim, N.
    Arnaud, M.
    Arrojam, F.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chiang, H. C.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Gauthier, C.
    Ghosh, T.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hamann, J.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Heavens, A.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huang, Z.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kim, J.
    Kisner, T. S.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lacasa, F.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Lewis, A.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Marinucci, D.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munchmeyer, M.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Pasian, F.
    Patanchon, G.
    Peiris, H. V.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Popa, L.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Racine, B.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Shiraishi, M.
    Smith, K.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutter, P.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Troja, A.
    Tucci, M.
    Tuovinen, J.
    Valenziano, L.
    Valiyiita, J.
    Van Tent, B.
    Vielva, P.
    Villas, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results XVII. Constraints on primordial non-Gaussianity2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A17Article in journal (Refereed)
    Abstract [en]

    The Planck full mission cosmic microwave background (CMB) temperature and E-mode polarization maps are analysed to obtain constraints on primordial non-Gaussianity (NG). Using three classes of optimal bispectrum estimators - separable template-fitting (KSW), binned, and modal we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result from temperature alone f(NL)(local) = 2.5 +/- 5.7, f(NL)(equil) = 16 +/- 70, and f(NL)(ortho) = 34 +/- 33 (68% CL, statistical). Combining temperature and polarization data we obtain f(NL)(local) = 0.8 +/- 5.0, f(NL)(equil) = 4 +/- 43, and f(NL)(ortho) = 26 +/- 21 (68% CL, statistical). The results are based on comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensive suite of tests, and are consistent with estimators based on measuring the Minkowski functionals of the CMB. The effect of time-domain de-glitching systematics on the bispectrum is negligible. In spite of these test outcomes we conservatively label the results including polarization data as preliminary, owing to a known mismatch of the noise model in simulations and the data. Beyond estimates of individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and derive constraints on early universe scenarios that generate primordial NG, including general single-field models of inflation, axion inflation, initial state modifications, models producing parity-violating tensor bispectra, and directionally dependent vector models. We present a wide survey of scale-dependent feature and resonance models, accounting for the look elsewhere effect in estimating the statistical significance of features. We also look for isocurvature NG, and find no signal, but we obtain constraints that improve significantly with the inclusion of polarization. The primordial trispectrum amplitude in the local model is constrained to be g(NL)(local) = (9.0 +/- 7.7) x 10(4) (68% CL statistical), and we perform an analysis of trispectrum shapes beyond the local case. The global picture that emerges is one of consistency with the premises of the Lambda CDM cosmology, namely that the structure we observe today was sourced by adiabatic, passive, Gaussian, and primordial seed perturbations.

  • 29. Ade, P. A. R.
    et al.
    Aghanim, N.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Basak, S.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chiang, H. C.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dunkley, J.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Gallin, S.
    Ganga, K.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Lewis, A.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Pasian, F.
    Patanchon, G.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Popa, L.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reach, W. T.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rowan-Robinson, M.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Valenziano, L.
    Valiviita, J.
    Van Tent, B.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    White, M.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results XV. Gravitational lensing2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A15Article in journal (Refereed)
    Abstract [en]

    We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40 sigma), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator, we detect lensing at a significance of 5 sigma. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40 <= L <= 400, and an associated likelihood for cosmological parameter constraints. We find good agreement between our measurement of the lensing potential power spectrum and that found in the Lambda CDM model that best fits the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percent-level measurement of the parameter combination sigma(8) Omega(0.25)(m) = 0.591 +/- 0.021. We combine our determination of the lensing potential with the E-mode polarization, also measured by Planck, to generate an estimate of the lensing B-mode. We show that this lensing B-mode estimate is correlated with the B-modes observed directly by Planck at the expected level and with a statistical significance of 10 sigma, confirming Planck's sensitivity to this known sky signal. We also correlate our lensing potential estimate with the large-scale temperature anisotropies, detecting a cross-correlation at the 3 sigma level, as expected because of dark energy in the concordance Lambda CDM model.

  • 30. Ade, P. A. R.
    et al.
    Aghanim, N.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Battaner, E.
    Battye, R.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrinll, J.
    Bouchet, F. R.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R. -R.
    Chiang, H. C.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Comis, B.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Diego, J. M.
    Dolag, K.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Kunzo, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteennmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri', A.
    Melin, J. -B.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitrao, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Partridge, B.
    Pasian, F.
    Patanchon, G.
    Pearson, T. J.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Popa, L.
    Prate, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Roman, M.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Turler, M.
    Umana, G.
    Valenziano, L.
    Valiviita', J.
    Van Tent, B.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Weller, J.
    White, S. D. M.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    XXIV. Cosmology from Sunyaev-Zeldovich cluster counts2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A24Article in journal (Refereed)
    Abstract [en]

    We present cluster counts and corresponding cosmological constraints from the Planck full mission data set. Our catalogue consists of 439 clusters detected via their Sunyaev-Zeldovich (SZ) signal down to a signal-to-noise ratio of 6, and is more than a factor of 2 larger than the 2013 Planck cluster cosmology sample. The counts are consistent with those from 2013 and yield compatible constraints under the same modelling assumptions. Taking advantage of the larger catalogue, we extend our analysis to the two-dimensional distribution in redshift and signal-to-noise. We use mass estimates from two recent studies of gravitational lensing of background galaxies by Planck clusters to provide priors on the hydrostatic bias parameter, (1 - b). In addition, we use lensing of cosmic microwave background (CMB) temperature fluctuations by Planck clusters as an independent constraint on this parameter. These various calibrations imply constraints on the present-day amplitude of matter fluctuations in varying degrees of tension with those from the Planck analysis of primary fluctuations in the CMB; for the lowest estimated values of (1 b) the tension is mild, only a little over one standard deviation, while it remains substantial (3.7 sigma) for the largest estimated value. We also examine constraints on extensions to the base flat Lambda CDM model by combining the cluster and CMB constraints. The combination appears to favour non-minimal neutrino masses, but this possibility does little to relieve the overall tension because it simultaneously lowers the implied value of the Hubble parameter, thereby exacerbating the discrepancy with most current astrophysical estimates. Improving the precision of cluster mass calibrations from the current 10%-level to 1% would significantly strengthen these combined analyses and provide a stringent test of the base Lambda CDM model.

  • 31. Ade, P. A. R.
    et al.
    Aghanim, N.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borri, J.
    Bouchet, F. R.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Casaponsa, B.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chiang, H. C.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fergusson, J.
    Fernandez-Cobos, R.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Genova-Santos, R. T.
    Girad, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Ilic, S.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Kneiss, R.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Langer, M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Ma, Y. -Z.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Marcos-Caballero, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Pasian, F.
    Patanchon, G.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Popa, L.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reach, W. T.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Schaefer, B. M.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    XXI. The integrated Sachs-Wolfe effect2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A21Article in journal (Refereed)
    Abstract [en]

    This paper presents a study of the integrated Sachs-Wolfe (ISW) effect from the Planck 2015 temperature and polarization data release. This secondary cosmic microwave background (CMB) anisotropy caused by the large-scale time-evolving gravitational potential is probed from different perspectives. The CMB is cross-correlated with different large-scale structure (LSS) tracers: radio sources from the NVSS catalogue; galaxies from the optical SDSS and the infrared WISE surveys; and the Planck 2015 convergence lensing map. The joint cross-correlation of the CMB with the tracers yields a detection at 4 sigma where most of the signal-to-noise is due to the Planck lensing and the NVSS radio catalogue. In fact, the ISW effect is detected from the Planck data only at approximate to 3 sigma (through the ISW-lensing bispectrum), which is similar to the detection level achieved by combining the cross-correlation signal coming from all the galaxy catalogues mentioned above. We study the ability of the ISW effect to place constraints on the dark-energy parameters; in particular, we show that Omega(Lambda) is detected at more than 3 sigma. This cross-correlation analysis is performed only with the Planck temperature data, since the polarization scales available in the 2015 release do not permit significant improvement of the CMB-LSS cross-correlation detectability. Nevertheless, the Planck polarization data are used to study the anomalously large ISW signal previously reported through the aperture photometry on stacked CMB features at the locations of known superclusters and supervoids, which is in conflict with Lambda CDM expectations. We find that the current Planck polarization data do not exclude that this signal could be caused by the ISW effect. In addition, the stacking of the Planck lensing map on the locations of superstructures exhibits a positive cross-correlation with these large-scale structures. Finally, we have improved our previous reconstruction of the ISW temperature fluctuations by combining the information encoded in all the previously mentioned LSS tracers. In particular, we construct a map of the ISW secondary anisotropies and the corresponding uncertainties map, obtained from simulations. We also explore the reconstruction of the ISW anisotropies caused by the large-scale structure traced by the 2MASS Photometric Redshift Survey (2MPZ) by directly inverting the density field into the gravitational potential field.

  • 32. Ade, P. A. R.
    et al.
    Aghanim, N.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J-P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chiang, H. C.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Feeney, S.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejse, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McEwen, J. D.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Pasian, F.
    Patanchon, G.
    Peiris, H. V.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pogosyan, D.
    Pointecouteau, E.
    Polenta, G.
    Popa, L.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rowan-Robinson, M.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results XVIII. Background geometry and topology of the Universe2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A18Article in journal (Refereed)
    Abstract [en]

    Maps of cosmic microwave background (CMB) temperature and polarization from the 2015 release of Planck data provide the highest quality full-sky view of the surface of last scattering available to date. This enables us to detect possible departures from a globally isotropic cosmology. We present the first searches using CMB polarization for correlations induced by a possible non-trivial topology with a fundamental domain that intersects, or nearly intersects, the last-scattering surface (at comoving distance chi(rec)), both via a direct scan for matched circular patterns at the intersections and by an optimal likelihood calculation for specific topologies. We specialize to flat spaces with cubic toroidal (T3) and slab (T1) topologies, finding that explicit searches for the latter are sensitive to other topologies with antipodal symmetry. These searches yield no detection of a compact topology with a scale below the diameter of the last-scattering surface. The limits on the radius R-i of the largest sphere inscribed in the fundamental domain (at log-likelihood ratio Delta ln L > -5 relative to a simply-connected flat Planck best-fit model) are: R-i > 0.97 chi(rec) for the T3 cubic torus; and R-i > 0.56 chi(rec) for the T1 slab. The limit for the T3 cubic torus from the matched-circles search is numerically equivalent, R-i > 0.97 chi(rec) at 99% confidence level from polarization data alone. We also perform a Bayesian search for an anisotropic global Bianchi VIIh geometry. In the non-physical setting, where the Bianchi cosmology is decoupled from the standard cosmology, Planck temperature data favour the inclusion of a Bianchi component with a Bayes factor of at least 2.3 units of log-evidence. However, the cosmological parameters that generate this pattern are in strong disagreement with those found from CMB anisotropy data alone. Fitting the induced polarization pattern for this model to the Planck data requires an amplitude of -0.10 +/- 0.04 compared to the value of + 1 if the model were to be correct. In the physically motivated setting, where the Bianchi parameters are coupled and fitted simultaneously with the standard cosmological parameters, we find no evidence for a Bianchi VIIh cosmology and constrain the vorticity of such models to (omega/H)(0) < 7.6 x 10(-10) (95% CL).

  • 33. Ade, P. A. R.
    et al.
    Aghanim, N.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Battaner, E.
    Battye, R.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chiang, H. C.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Heavens, A.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huang, Z.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Lewis, A.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Ma, Y. -Z.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Marchini, A.
    Maris, M.
    Martin, P. G.
    Martinelli, M.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Narimani, A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Pasian, F.
    Patanchon, G.
    Pearson, T. J.
    Perdereau, . O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Popa, L.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reach, W. T.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rowan-Robinson, M.
    Rubino-Martin, J. A.
    Rusholme, B.
    Salvatelli, V.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Schaefer, B. M.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Valenziano, L.
    Valiviita, J.
    Van Tent, B.
    Viel, M.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    White, M.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results XIV. Dark energy and modified gravity2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A14Article in journal (Refereed)
    Abstract [en]

    We study the implications of Planck data for models of dark energy (DE) and modified gravity (MG) beyond the standard cosmological constant scenario. We start with cases where the DE only directly affects the background evolution, considering Taylor expansions of the equation of state w(a), as well as principal component analysis and parameterizations related to the potential of a minimally coupled DE scalar field. When estimating the density of DE at early times, we significantly improve present constraints and find that it has to be below similar to 2% (at 95% confidence) of the critical density, even when forced to play a role for z < 50 only. We then move to general parameterizations of the DE or MG perturbations that encompass both effective field theories and the phenomenology of gravitational potentials in MG models. Lastly, we test a range of specific models, such as k-essence, f(R) theories, and coupled DE. In addition to the latest Planck data, for our main analyses, we use background constraints from baryonic acoustic oscillations, type-Ia supernovae, and local measurements of the Hubble constant. We further show the impact of measurements of the cosmological perturbations, such as redshift-space distortions and weak gravitational lensing. These additional probes are important tools for testing MG models and for breaking degeneracies that are still present in the combination of Planck and background data sets. All results that include only background parameterizations (expansion of the equation of state, early DE, general potentials in minimally-coupled scalar fields or principal component analysis) are in agreement with ACDM. When testing models that also change perturbations (even when the background is fixed to ACDM), some tensions appear in a few scenarios: the maximum one found is similar to 2 sigma for Planck TT + lowP when parameterizing observables related to the gravitational potentials with a chosen time dependence; the tension increases to, at most, 3 sigma when external data sets are included. It however disappears when including CMB lensing.

  • 34. Ade, P. A. R.
    et al.
    Aghanim, N.
    Arnaud, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B. -
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Catalano, A.
    Chiang, H. C.
    Christensen, P. R.
    Clements, D. L.
    Colombo, L. P. L.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Dickinson, C.
    Diego, J. M.
    Dole, H.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Finelli, F.
    Flores-Cacho, I.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Harrison, D. L.
    Helou, G.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leonardi, R.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maffei, B.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Munshi, D.
    Murphy, J. A.
    Nati, F.
    Natoli, P.
    Nesvadba, N. P. H.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Partridge, B.
    Pasian, F.
    Pearson, T. J.
    Perdereau, O.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Pratt, G. W.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuerler, M.
    Umana, G.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Welikala, N.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results XXXIX. The Planck list of high-redshift source candidates2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 596, article id A100Article in journal (Refereed)
    Abstract [en]

    The Planck mission, thanks to its large frequency range and all-sky coverage, has a unique potential for systematically detecting the brightest, and rarest, submillimetre sources on the sky, including distant objects in the high-redshift Universe traced by their dust emission. A novel method, based on a component-separation procedure using a combination of Planck and IRAS data, has been validated and characterized on numerous simulations, and applied to select the most luminous cold submillimetre sources with spectral energy distributions peaking between 353 and 857 GHz at 5' resolution. A total of 2151 Planck high-z source candidates (the PHZ) have been detected in the cleanest 26% of the sky, with flux density at 545 GHz above 500 mJy. Embedded in the cosmic infrared background close to the confusion limit, these high-z candidates exhibit colder colours than their surroundings, consistent with redshifts z > 2, assuming a dust temperature of T-xgal = 35K and a spectral index of beta(xgal) = 1.5. Exhibiting extremely high luminosities, larger than 10(14) L-circle dot, the PHZ objects may be made of multiple galaxies or clumps at high redshift, as suggested by a first statistical analysis based on a comparison with number count models. Furthermore, first follow-up observations obtained from optical to submillimetre wavelengths, which can be found in companion papers, have confirmed that this list consists of two distinct populations. A small fraction (around 3%) of the sources have been identified as strongly gravitationally lensed star-forming galaxies at redshift 2 to 4, while the vast majority of the PHZ sources appear as overdensities of dusty star-forming galaxies, having colours consistent with being at z > 2, and may be considered as proto-cluster candidates. The PHZ provides an original sample, which is complementary to the Planck Sunyaev-Zeldovich Catalogue (PSZ2); by extending the population of virialized massive galaxy clusters detected below z < 1.5 through their SZ signal to a population of sources at z > 1.5, the PHZ may contain the progenitors of today's clusters. Hence the Planck list of high-redshift source candidates opens a new window on the study of the early stages of structure formation, particularly understanding the intensively star-forming phase at high-z.

  • 35. Ade, P. A. R.
    et al.
    Aghanim, N.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Battaner, E.
    Benabed, K.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Chiang, H. C.
    Christensen, P. R.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davis, R. J.
    de Bernardis, P.
    de Zotti, G.
    Delabrouille, J.
    Dickinson, C.
    Diego, J. M.
    Dore, O.
    Ducout, A.
    Dupac, X.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Ghosh, T.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Harrison, D. L.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hornstrup, A.
    Hovest, W.
    Hurier, G.
    Jaffe, A. H.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Knoche, J.
    Knox, L.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Leonardi, R.
    Levrier, F.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maffei, B.
    Maggie, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    Meinhold, P. R.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Novikov, D.
    Novikov, I.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Pasian, F.
    Patanchon, G.
    Perdereau, O.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pointecouteau, E.
    Polenta, G.
    Pratt, G. W.
    Rachen, J. P.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Valenziano, L.
    Valiviita, J.
    Van Tent, B.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results XLI. A map of lensing-induced B-modes2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 596, article id A102Article in journal (Refereed)
    Abstract [en]

    The secondary cosmic microwave background (CMB) B-modes stem from the post-decoupling distortion of the polarization E-modes due to the gravitational lensing effect of large-scale structures. These lensing-induced B-modes constitute both a valuable probe of the dark matter distribution and an important contaminant for the extraction of the primary CMB B-modes from inflation. Planck provides accurate nearly all-sky measurements of both the polarization E-modes and the integrated mass distribution via the reconstruction of the CMB lensing potential. By combining these two data products, we have produced an all-sky template map of the lensing-induced B-modes using a real-space algorithm that minimizes the impact of sky masks. The cross-correlation of this template with an observed (primordial and secondary) B-mode map can be used to measure the lensing B-mode power spectrum at multipoles up to 2000. In particular, when cross-correlating with the B-mode contribution directly derived from the Planck polarization maps, we obtain lensing-induced B-mode power spectrum measurement at a significance level of 12 sigma, which agrees with the theoretical expectation derived from the Planck best-fit Lambda cold dark matter model. This unique nearly all-sky secondary B-mode template, which includes the lensing-induced information from intermediate to small (10 less than or similar to l less than or similar to 1000) angular scales, is delivered as part of the Planck 2015 public data release. It will be particularly useful for experiments searching for primordial B-modes, such as BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of the lensing-induced contribution to the measured total CMB B-modes.

  • 36. Ade, P. A. R.
    et al.
    Efstathiou, G.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Università La Sapienza, Italy.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Zonca, A.
    Planck 2015 results XIII. Cosmological parameters2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A13Article in journal (Refereed)
    Abstract [en]

    This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter Lambda CDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted base Lambda CDM in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H-0 = (67.8 +/- 0.9) km s(-1)Mpc(-1), a matter density parameter Omega(m) = 0.308 +/- 0.012, and a tilted scalar spectral index with ns = 0.968 +/- 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of tau = 0.066 +/- 0.016, corresponding to a reionization redshift of z(re) = 8.8(-1.4)(+1.7) These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base Lambda CDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find N-eff = 3.15 +/- 0.23 for the effective number of relativistic degrees of freedom, consistent with the value N-eff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to Sigma m(v) < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with vertical bar Omega(K)vertical bar < 0.005. Adding a tensor component as a single-parameter extension to base Lambda CDM we find an upper limit on the tensor-to-scalar ratio of r(0.002) < 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r(0.002) < 0.09 and disfavours inflationary models with a V(phi) proportional to phi(2) potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = -1.006 +/- 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base Lambda CDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base Lambda CDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base Lambda CDM cosmology. Apart from these tensions, the base Lambda CDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

  • 37.
    Adler, Alexandre
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Duivenvoorden, A. J.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Modelling ground pickup for microwave telescopes2022In: Proceedings of SPIE, the International Society for Optical Engineering, ISSN 0277-786X, E-ISSN 1996-756X, Vol. 12190Article in journal (Refereed)
    Abstract [en]

    Microwave telescopes require an ever-increasing control of experimental systematics in their quest to measure the Cosmic Microwave Background (CMB) to exquisite levels of precision. One important systematic for ground and balloon-borne experiments is ground pickup, where beam sidelobes detect the thermal emission of the much warmer ground while the main beam is scanning the sky. This generates scan-synchronous noise in experiment timestreams, which is difficult to filter out without also deleting some of the signal from the sky. Therefore, efficient modelling of pickup can help guide the design of experiments and of analysis pipelines. In this work, we present an extension to the BEAMCONV algorithm that enables us to generate time-ordered data (TOD) from beam-convolved sky and ground maps simultaneously. We simulate ground pickup for both a ground-based experiment and a telescope attached to a stratospheric balloon. Ground templates for the balloon experiment are obtained by re-projecting satellite maps of the Earth's microwave emission. 

  • 38. Agarwal, Abhishek
    et al.
    Lipstein, Arthur E.
    Young, Donovan
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Scattering amplitudes of massive N = 2 gauge theories in three dimensions2014In: Physical Review D, ISSN 1550-7998, E-ISSN 1550-2368, Vol. 89, no 4, p. 045020-Article in journal (Refereed)
    Abstract [en]

    We study the scattering amplitudes of mass-deformed Chern-Simons theories and Yang-Mills-Chern-Simons theories with N = 2 supersymmetry in three dimensions. In particular, we derive the on-shell supersymmetry algebras which underlie the scattering matrices of these theories. We then compute various 3 and 4-point on-shell tree-level amplitudes in these theories. For the mass-deformed Chern-Simons theory, odd-point amplitudes vanish and we find that all of the 4-point amplitudes can be encoded elegantly in superamplitudes. For the Yang-Mills-Chern-Simons theory, we obtain all of the 4-point tree-level amplitudes using a combination of perturbative techniques and algebraic constraints and we comment on difficulties related to computing amplitudes with external gauge fields using Feynman diagrams. Finally, we propose a Britto-Cachazo-Feng-Witten recursion relation for mass-deformed theories in three dimensions and discuss the applicability of this proposal to mass-deformed N = 2 theories.

  • 39. Agarwal, Sahil
    et al.
    Del Sordo, Fabio
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Yale University, USA.
    Wettlaufer, John S.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Yale University, USA; University of Oxford, UK.
    EXOPLANETARY DETECTION BY MULTIFRACTAL SPECTRAL ANALYSIS2017In: Astronomical Journal, ISSN 0004-6256, E-ISSN 1538-3881, Vol. 153, no 1, article id 12Article in journal (Refereed)
    Abstract [en]

    Owing to technological advances, the number of exoplanets discovered has risen dramatically in the last few years. However, when trying to observe Earth analogs, it is often difficult to test the veracity of detection. We have developed a new approach to the analysis of exoplanetary spectral observations based on temporal multifractality, which identifies timescales that characterize planetary orbital motion around the host star and those that arise from stellar features such as spots. Without fitting stellar models to spectral data, we show how the planetary signal can be robustly detected from noisy data using noise amplitude as a source of information. For observation of transiting planets, combining this method with simple geometry allows us to relate the timescales obtained to primary and secondary eclipse of the exoplanets. Making use of data obtained with ground-based and space-based observations we have tested our approach on HD 189733b. Moreover, we have investigated the use of this technique in measuring planetary orbital motion via Doppler shift detection. Finally, we have analyzed synthetic spectra obtained using the SOAP 2.0 tool, which simulates a stellar spectrum and the influence of the presence of a planet or a spot on that spectrum over one orbital period. We have demonstrated that, so long as the signal-to-noise-ratio >= 75, our approach reconstructs the planetary orbital period, as well as the rotation period of a spot on the stellar surface.

  • 40. Agarwal, Sahil
    et al.
    Wettlaufer, John S.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Yale University, USA; University of Oxford, UK.
    Fluctuations in Arctic sea-ice extent: comparing observations and climate models2018In: Philosophical Transactions. Series A: Mathematical, physical, and engineering science, ISSN 1364-503X, E-ISSN 1471-2962, Vol. 376, no 2129, article id 20170332Article in journal (Refereed)
    Abstract [en]

    The fluctuation statistics of the observed sea-ice extent during the satellite era are compared with model output from CMIP5 models using a multifractal time series method. The two robust features of the observations are that on annual to biannual time scales the ice extent exhibits white noise structure, and there is a decadal scale trend associated with the decay of the ice cover. It is shown that (i) there is a large inter-model variability in the time scales extracted from the models, (ii) none of the models exhibits the decadal time scales found in the satellite observations, (iii) five of the 21 models examined exhibit the observed white noise structure, and (iv) the multi-model ensemble mean exhibits neither the observed white noise structure nor the observed decadal trend. It is proposed that the observed fluctuation statistics produced by this method serve as an appropriate test bed for modelling studies. This article is part of the theme issue 'Modelling of sea-ice phenomena'.

  • 41. Agarwal, Sahil
    et al.
    Wettlaufer, John S.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Yale University, USA; University of Oxford, UK.
    Maximal stochastic transport in the Lorenz equations2016In: Physics Letters A, ISSN 0375-9601, E-ISSN 1873-2429, Vol. 380, no 1-2, p. 142-146Article in journal (Refereed)
    Abstract [en]

    We calculate the stochastic upper bounds for the Lorenz equations using an extension of the background method. In analogy with Rayleigh-Benard convection the upper bounds are for heat transport versus Rayleigh number. As might be expected, the stochastic upper bounds are larger than the deterministic counterpart of Souza and Doering [1], but their variation with noise amplitude exhibits interesting behavior. Below the transition to chaotic dynamics the upper bounds increase monotonically with noise amplitude. However, in the chaotic regime this monotonicity depends on the number of realizations in the ensemble; at a particular Rayleigh number the bound may increase or decrease with noise amplitude. The origin of this behavior is the coupling between the noise and unstable periodic orbits, the degree of which depends on the degree to which the ensemble represents the ergodic set. This is confirmed by examining the close returns plots of the full solutions to the stochastic equations and the numerical convergence of the noise correlations. The numerical convergence of both the ensemble and time averages of the noise correlations is sufficiently slow that it is the limiting aspect of the realization of these bounds. Finally, we note that the full solutions of the stochastic equations demonstrate that the effect of noise is equivalent to the effect of chaos.

  • 42. Agarwal, Sahil
    et al.
    Wettlaufer, John S.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Yale University, USA.
    Minimal Data Fidelity for Stellar Feature and Companion Detection2022In: Astronomical Journal, ISSN 0004-6256, E-ISSN 1538-3881, Vol. 163, no 1, article id 6Article in journal (Refereed)
    Abstract [en]

    Technological advances in instrumentation have led to an exponential increase in exoplanet detection and scrutiny of stellar features such as spots and faculae. While the spots and faculae enable us to understand the stellar dynamics, exoplanets provide us with a glimpse into stellar evolution. While the ubiquity of noise (e.g., telluric, instrumental, or photonic) is unavoidable, combining this with increased spectrographic resolution compounds technological challenges. To account for these noise sources and resolution issues, we use a temporal multifractal framework to study data from the Spot Oscillation And Planet 2.0 tool, which simulates a stellar spectrum in the presence of a spot, a facula or a planet. Given these controlled simulations, we vary the resolution as well as the signal-to-noise ratio (S/N) to obtain a lower limit on the resolution and S/N required to robustly detect features. We show that a spot and a facula with a 1% coverage of the stellar disk can be robustly detected for a S/N (per pixel) of 35 and 60, respectively, for any spectral resolution above 20,000, while a planet with a radial velocity of 10 m s(-1) can be detected for a S/N (per pixel) of 600. Rather than viewing noise as an impediment, our approach uses noise as a source of information.

  • 43. Agarwal, Sahil
    et al.
    Wettlaufer, John S.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Yale University, USA; University of Oxford, United Kingdom.
    The Statistical Properties of Sea Ice Velocity Fields2017In: Journal of Climate, ISSN 0894-8755, E-ISSN 1520-0442, Vol. 30, no 13, p. 4873-4881Article in journal (Refereed)
    Abstract [en]

    By arguing that the surface pressure field over the Arctic Ocean can be treated as an isotropic, stationary, homogeneous, Gaussian random field, Thorndike estimated a number of covariance functions from two years of data (1979 and 1980). Given the active interest in changes of general circulation quantities and indices in the polar regions during the recent few decades, the spatial correlations in sea ice velocity fields are of particular interest. It is thus natural to ask, How persistent are these correlations?'' To this end, a multifractal stochastic treatment is developed to analyze observed Arctic sea ice velocity fields from satellites and buoys for the period 1978-2015. Since it was previously found that the Arctic equivalent ice extent (EIE) has a white noise structure on annual to biannual time scales, the connection between EIE and ice motion is assessed. The long-term stationarity of the spatial correlation structure of the velocity fields and the robustness of their white noise structure on multiple time scales is demonstrated; these factors (i) combine to explain the white noise characteristics of the EIE on annual to biannual time scales and (ii) explain why the fluctuations in the ice velocity are proportional to fluctuations in the geostrophic winds on time scales of days to months. Moreover, it is shown that the statistical structure of these two quantities is commensurate from days to years, which may be related to the increasing prevalence of free drift in the ice pack.

  • 44. Agarwala, Adhip
    et al.
    Juričić, Vladimir
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Roy, Bitan
    Higher-order topological insulators in amorphous solids2020In: Physical Review Research, E-ISSN 2643-1564, Vol. 2, no 1, article id 012067Article in journal (Refereed)
    Abstract [en]

    We identify the possibility of realizing higher order topological (HOT) phases in noncrystalline or amorphous materials. Starting from two- and three-dimensional crystalline HOT insulators, accommodating topological corner states, we gradually enhance structural randomness in the system. Within a parameter regime, as long as amorphousness is confined by an outer crystalline boundary, the system continues to host corner states, yielding amorphous HOT insulators. However, as structural disorder percolates to the edges, corner states start to dissolve into amorphous bulk, and ultimately the system becomes a trivial insulator when amorphousness plagues the entire system. These outcomes are further substantiated by computing the quadrupolar (octupolar) moment in two (three) dimensions. Therefore, HOT phases can be realized in amorphous solids, when wrapped by a thin (lithographically grown, for example) crystalline layer. Our findings suggest that crystalline topological phases can be realized even in the absence of local crystalline symmetry.

  • 45. Agasthya, Lokahith
    et al.
    Picardo, Jason R.
    Sivaramakrishnan, Ravichandran
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Govindarajan, Rama
    Ray, Samriddhi Sankar
    Understanding droplet collisions through a model flow: Insights from a Burgers vortex2019In: Physical review. E, ISSN 2470-0045, E-ISSN 2470-0053, Vol. 99, no 6, article id 063107Article in journal (Refereed)
    Abstract [en]

    We investigate the role of intense vortical structures, similar to those in a turbulent flow, in enhancing collisions (and coalescences) which lead to the formation of large aggregates in particle-laden flows. By using a Burgers vortex model, we show, in particular, that vortex stretching significantly enhances sharp inhomogeneities in spatial particle densities, related to the rapid ejection of particles from intense vortices. Furthermore our work shows how such spatial clustering leads to an enhancement of collision rates and extreme statistics of collisional velocities. We also study the role of polydisperse suspensions in this enhancement. Our work uncovers an important principle, which, if valid for realistic turbulent flows, may be a factor in how small nuclei water droplets in warm clouds can aggregate to sizes large enough to trigger rain.

  • 46. Aghanim, N.
    et al.
    Akrami, Y.
    Alves, M. I. R.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Benabed, K.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bracco, Andrea
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Université Paris-Saclay, France.
    Bucher, M.
    Burigana, C.
    Calabrese, E.
    Cardoso, J. -F.
    Carron, J.
    Chary, R. -R.
    Chiang, H. C.
    Colombo, L. P. L.
    Combet, C.
    Crill, B. P.
    Cuttaia, F.
    de Bernardis, P.
    de Zotti, G.
    Delabrouille, J.
    Delouis, J. -M.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fantaye, Y.
    Fernandez-Cobos, R.
    Ferriere, K.
    Finelli, F.
    Forastieri, F.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ghosh, T.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Green, G.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Princeton University, USA.
    Guillet, V.
    Handley, W.
    Hansen, F. K.
    Helou, G.
    Herranz, D.
    Hivon, E.
    Huang, Z.
    Jaffe, A. H.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Kiiveri, K.
    Kim, J.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Lindholm, V.
    Lopez-Caniego, M.
    Lubin, P. M.
    Ma, Y. -Z.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Marcos-Caballero, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Matarrese, S.
    Mauri, N.
    McEwen, J. D.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Moss, A.
    Natoli, P.
    Pagano, L.
    Paoletti, D.
    Patanchon, G.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Polastri, L.
    Polenta, G.
    Puget, J. -L.
    Rachen, J. P.
    Reinecke, M.
    Remazeilles, M.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Roudier, G.
    Rubino-Martin, J. A.
    Ruiz-Granados, B.
    Salvati, L.
    Sandri, M.
    Savelainen, M.
    Scott, D.
    Sirignano, C.
    Sunyaev, R.
    Suur-Uski, A. -S.
    Tauber, J. A.
    Tavagnacco, D.
    Tenti, M.
    Toffolatti, L.
    Tomasi, M.
    Trombetti, T.
    Valiviita, J.
    Vansyngel, F.
    Van Tent, B.
    Vielva, P.
    Villa, F.
    Vittorio, N.
    Wandelt, B. D.
    Wehus, I. K.
    Zacchei, A.
    Zonca, A.
    Planck 2018 results XII. Galactic astrophysics using polarized dust emission2020In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 641, article id A12Article in journal (Refereed)
    Abstract [en]

    Observations of the submillimetre emission from Galactic dust, in both total intensity I and polarization, have received tremendous interest thanks to the Planck full-sky maps. In this paper we make use of such full-sky maps of dust polarized emission produced from the third public release of Planck data. As the basis for expanding on astrophysical studies of the polarized thermal emission from Galactic dust, we present full-sky maps of the dust polarization fraction p, polarization angle psi, and dispersion function of polarization angles ?. The joint distribution (one-point statistics) of p and N-H confirms that the mean and maximum polarization fractions decrease with increasing N-H. The uncertainty on the maximum observed polarization fraction, (max) = 22.0(-1.4)(+3.5) p max = 22 . 0 - 1.4 + 3.5 % at 353 GHz and 80 ' resolution, is dominated by the uncertainty on the Galactic emission zero level in total intensity, in particular towards diffuse lines of sight at high Galactic latitudes. Furthermore, the inverse behaviour between p and ? found earlier is seen to be present at high latitudes. This follows the ?proportional to p(-1) relationship expected from models of the polarized sky (including numerical simulations of magnetohydrodynamical turbulence) that include effects from only the topology of the turbulent magnetic field, but otherwise have uniform alignment and dust properties. Thus, the statistical properties of p, psi, and ? for the most part reflect the structure of the Galactic magnetic field. Nevertheless, we search for potential signatures of varying grain alignment and dust properties. First, we analyse the product map ?xp, looking for residual trends. While the polarization fraction p decreases by a factor of 3-4 between N-H=10(20) cm(-2) and N-H=2x10(22) cm(-2), out of the Galactic plane, this product ?xp only decreases by about 25%. Because ? is independent of the grain alignment efficiency, this demonstrates that the systematic decrease in p with N-H is determined mostly by the magnetic-field structure and not by a drop in grain alignment. This systematic trend is observed both in the diffuse interstellar medium (ISM) and in molecular clouds of the Gould Belt. Second, we look for a dependence of polarization properties on the dust temperature, as we would expect from the radiative alignment torque (RAT) theory. We find no systematic trend of ?xp with the dust temperature T-d, whether in the diffuse ISM or in the molecular clouds of the Gould Belt. In the diffuse ISM, lines of sight with high polarization fraction p and low polarization angle dispersion ? tend, on the contrary, to have colder dust than lines of sight with low p and high ?. We also compare the Planck thermal dust polarization with starlight polarization data in the visible at high Galactic latitudes. The agreement in polarization angles is remarkable, and is consistent with what we expect from the noise and the observed dispersion of polarization angles in the visible on the scale of the Planck beam. The two polarization emission-to-extinction ratios, R-P/p and R-S/V, which primarily characterize dust optical properties, have only a weak dependence on the column density, and converge towards the values previously determined for translucent lines of sight. We also determine an upper limit for the polarization fraction in extinction, p(V)/E(B-V), of 13% at high Galactic latitude, compatible with the polarization fraction p approximate to 20% observed at 353 GHz. Taken together, these results provide strong constraints for models of Galactic dust in diffuse gas.

  • 47. Aghanim, N.
    et al.
    Akrami, Y.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Battye, R.
    Benabed, K.
    Bernard, J-P
    Bersanelli, M.
    Bielewicz, P.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Burigana, C.
    Calabrese, E.
    Carron, J.
    Chiang, H. C.
    Comis, B.
    Contreras, D.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Dore, O.
    Ducout, A.
    Dupac, X.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fantaye, Y.
    Finelli, F.
    Forastieri, F.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Università La Sapienza, Italy.
    Gorski, K. M.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Princeton University, USA.
    Handley, W.
    Hansen, F. K.
    Herranz, D.
    Hivon, E.
    Huang, Z.
    Jaffe, A. H.
    Keihanen, E.
    Keskitalo, R.
    Kiiveri, K.
    Kim, J.
    Kisner, T. S.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lamarre, J-M
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Lindholm, V
    Lopez-Caniego, M.
    Lubin, P. M.
    Ma, Y-Z
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Matarrese, S.
    Mauri, N.
    McEwen, J. D.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Miville-Deschenes, M-A
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Natoli, P.
    Oxborrow, C. A.
    Pagano, L.
    Paoletti, D.
    Partridge, B.
    Perdereau, O.
    Perotto, L.
    Pettorino, V
    Piacentini, F.
    Plaszczynski, S.
    Polastri, L.
    Polenta, G.
    Rachen, J. P.
    Racine, B.
    Reinecke, M.
    Remazeilles, M.
    Renzi, A.
    Rocha, G.
    Roudier, G.
    Ruiz-Granados, B.
    Sandri, M.
    Savelainen, M.
    Scott, D.
    Sirignano, C.
    Sirri, G.
    Spencer, L. D.
    Stanco, L.
    Sunyaev, R.
    Tauber, J. A.
    Tavagnacco, D.
    Tenti, M.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Vittorio, N.
    Wandele, B. D.
    Wehus, I. K.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results LIII. Detection of velocity dispersion from the kinetic Sunyaev-Zeldovich effect2018In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 617, article id A48Article in journal (Refereed)
    Abstract [en]

    Using the Planck full-mission data, we present a detection of the temperature (and therefore velocity) dispersion due to the kinetic Sunyaev-Zeldovich (kSZ) effect from clusters of galaxies. To suppress the primary CMB and instrumental noise we derive a matched filter and then convolve it with the Planck foreground-cleaned 2D- ILC maps. By using the Meta Catalogue of X-ray detected Clusters of galaxies (MCXC), we determine the normalized rms dispersion of the temperature fluctuations at the positions of clusters, finding that this shows excess variance compared with the noise expectation. We then build an unbiased statistical estimator of the signal, determining that the normalized mean temperature dispersion of 1526 clusters is <(Delta T/T)(2))> = (1.64 +/- 0.48) x 10(-11). However, comparison with analytic calculations and simulations suggest that around 0.7 sigma of this result is due to cluster lensing rather than the kSZ effect. By correcting this, the temperature dispersion is measured to be <(Delta T/T)(2))> = (1.35 +/- 0.48) x 10(-11), which gives a detection at the 2.8 sigma level. We further convert uniform-weight temperature dispersion into a measurement of the line-of-sight velocity dispersion, by using estimates of the optical depth of each cluster (which introduces additional uncertainty into the estimate). We find that the velocity dispersion is (v(2)) = (123 000 +/- 71 000) (km s(-1))(2), which is consistent with findings from other large-scale structure studies, and provides direct evidence of statistical homogeneity on scales of 600 h(-1) Mpc. Our study shows the promise of using cross-correlations of the kSZ effect with large-scale structure in order to constrain the growth of structure.

  • 48. Aghanim, N.
    et al.
    Akrami, Y.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Benabed, K.
    Bersanelli, M.
    Bielewicz, P.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Burigana, C.
    Calabrese, E.
    Cardoso, J. -F.
    Challinor, A.
    Chiang, H. C.
    Colombo, L. P. L.
    Combet, C.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Dore, O.
    Ducout, A.
    Dupac, X.
    Dusini, S.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fantaye, Y.
    Finelli, F.
    Forastieri, F.
    Frailis, M.
    Franceschi, E.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Università La Sapienza, Italy.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Princeton University, USA.
    Herranz, D.
    Hivon, E.
    Huang, Z.
    Jaffe, A. H.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Kiiveri, K.
    Kim, J.
    Kisner, T. S.
    Knox, L.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Levrier, F.
    Lewis, A.
    Liguori, M.
    Lilje, P. B.
    Lilley, M.
    Lindholm, V.
    Lopez-Caniego, M.
    Lubin, P. M.
    Ma, Y. -Z.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Matarrese, S.
    Mauri, N.
    McEwen, J. D.
    Meinhold, P. R.
    Mennella, A.
    Migliaccio, M.
    Millea, M.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Moss, A.
    Narimani, A.
    Natoli, P.
    Oxborrow, C. A.
    Pagano, L.
    Paoletti, D.
    Partridge, B.
    Patanchon, G.
    Patrizii, L.
    Pettorino, V.
    Piacentini, F.
    Polastri, L.
    Polenta, G.
    Puget, J. -L.
    Rachen, J. P.
    Racine, B.
    Reinecke, M.
    Remazeilles, M.
    Renzi, A.
    Rocha, G.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Ruiz-Granados, B.
    Salvati, L.
    Sandri, M.
    Savelainen, M.
    Scott, D.
    Sirignano, C.
    Sirri, G.
    Stanco, L.
    Suur-Uski, A. -S.
    Tauber, J. A.
    Tavagnacco, D.
    Tenti, M.
    Toffolati, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Vittorio, N.
    Wandelt, B. D.
    Wehus, I. K.
    White, M.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters2017In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 607, article id A95Article in journal (Refereed)
    Abstract [en]

    The six parameters of the standard Lambda CDM model have best-fit values derived from the Planck temperature power spectrum that are shifted somewhat from the best-fit values derived from WMAP data. These shifts are driven by features in the Planck temperature power spectrum at angular scales that had never before been measured to cosmic-variance level precision. We have investigated these shifts to determine whether they are within the range of expectation and to understand their origin in the data. Taking our parameter set to be the optical depth of the reionized intergalactic medium tau, the baryon density omega(b), the matter density omega(m), the angular size of the sound horizon theta(*), the spectral index of the primordial power spectrum, n(s), and A(s)e(-2 pi) (where As is the amplitude of the primordial power spectrum), we have examined the change in best-fit values between a WMAP-like large angular-scale data set (with multipole moment l < 800 in the Planck temperature power spectrum) and an all angular-scale data set (l < 2500 Planck temperature power spectrum), each with a prior on tau of 0.07 +/- 0.02. We find that the shifts, in units of the 1 sigma expected dispersion for each parameter, are {Delta tau, Delta A(s)e(-2 tau), Delta n(s), Delta omega(m), Delta omega(b), Delta theta(*)} = {-1.7, -2.2, 1.2, 2.0, 1.1, 0.9}, with a chi(2) value of 8.0. We find that this chi(2) value is exceeded in 15% of our simulated data sets, and that a parameter deviates by more than 2.2 sigma in 9% of simulated data sets, meaning that the shifts are not unusually large. Comparing l < 800 instead to l > 800, or splitting at a different multipole, yields similar results. We examined the l < 800 model residuals in the l > 800 power spectrum data and find that the features there that drive these shifts are a set of oscillations across a broad range of angular scales. Although they partly appear similar to the effects of enhanced gravitational lensing, the shifts in Lambda CDM parameters that arise in response to these features correspond to model spectrum changes that are predominantly due to non-lensing effects; the only exception is tau, which, at fixed A(s)e(-2 tau), affects the l > 800 temperature power spectrum solely through the associated change in As and the impact of that on the lensing potential power spectrum. We also ask, what is it about the power spectrum at l < 800 that leads to somewhat different best-fit parameters than come from the full l range? We find that if we discard the data at l < 30, where there is a roughly 2 sigma downward fluctuation in power relative to the model that best fits the full l range, the l < 800 best-fit parameters shift significantly towards the l < 2500 best-fit parameters. In contrast, including l < 30, this previously noted low-l deficit drives ns up and impacts parameters correlated with ns, such as omega(m) and H-0. As expected, the l < 30 data have a much greater impact on the l < 800 best fit than on the l < 2500 best fit. So although the shifts are not very significant, we find that they can be understood through the combined effects of an oscillatory-like set of high-l residuals and the deficit in low-l power, excursions consistent with sample variance that happen to map onto changes in cosmological parameters. Finally, we examine agreement between Planck TT data and two other CMB data sets, namely the Planck lensing reconstruction and the TT power spectrum measured by the South Pole Telescope, again finding a lack of convincing evidence of any significant deviations in parameters, suggesting that current CMB data sets give an internally consistent picture of the Lambda CDM model.

  • 49. Aghanim, N.
    et al.
    Alves, M. I. R.
    Arzoumanian, D.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Benabed, K.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bracco, A.
    Bucher, M.
    Burigana, C.
    Calabrese, E.
    Cardoso, J. -F.
    Chiang, H. C.
    Colombo, L. P. L.
    Combet, C.
    Comis, B.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Delouis, J. -M.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Dusini, S.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fantaye, Y.
    Ferriere, K.
    Finelli, F.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Università La Sapienza, Italy.
    Ghosh, T.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Guillet, V.
    Hansen, F. K.
    Helou, G.
    Henrot-Versille, S.
    Herranz, D.
    Hivon, E.
    Huang, Z.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Langer, M.
    Lasenby, A.
    Lattanzi, M.
    Le Jeune, M.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Matarrese, S.
    Mauri, N.
    McEwen, J. D.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Moss, A.
    Naselsky, P.
    Natoli, P.
    Neveu, J.
    Norgaard-Nielsen, H. U.
    Oppermann, N.
    Oxborrow, C. A.
    Pagano, L.
    Paoletti, D.
    Partridge, B.
    Perdereau, O.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Plaszczynski, S.
    Polenta, G.
    Rachen, J. P.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rossetti, M.
    Roudier, G.
    Ruiz-Granados, B.
    Salvati, L.
    Sandri, M.
    Savelainen, M.
    Scott, D.
    Sirignano, C.
    Soler, J. D.
    Suur-Uski, A. -S.
    Tauber, J. A.
    Tavagnacco, D.
    Tenti, M.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Valiviita, J.
    Vansyngel, F.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wandelt, B. D.
    Wehus, I. K.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results XLIV. Structure of the Galactic magnetic field from dust polarization maps of the southern Galactic cap2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 596, article id A105Article in journal (Refereed)
    Abstract [en]

    Using data from the Planck satellite, we study the statistical properties of interstellar dust polarization at high Galactic latitudes around the south pole (b < -60 degrees). Our aim is to advance the understanding of the magnetized interstellar medium (ISM), and to provide a modelling framework of the polarized dust foreground for use in cosmic microwave background (CMB) component-separation procedures. We examine the Stokes I, Q, and U maps at 353 GHz, and particularly the statistical distribution of the polarization fraction (p) and angle (Psi), in order to characterize the ordered and turbulent components of the Galactic magnetic field (GMF) in the solar neighbourhood. The Q and U maps show patterns at large angular scales, which we relate to the mean orientation of the GMF towards Galactic coordinates (l(0); b(0)) = (70 degrees +/- 5 degrees, 24 degrees +/- 5 degrees). The histogram of the observed p values shows a wide dispersion up to 25%. The histogram Psi of has a standard deviation of 12 degrees about the regular pattern expected from the ordered GMF. We build a phenomenological model that connects the distributions of p and Psi to a statistical description of the turbulent component of the GMF, assuming a uniform effective polarization fraction (p(0)) of dust emission. To compute the Stokes parameters, we approximate the integration along the line of sight (LOS) as a sum over a set of N independent polarization layers, in each of which the turbulent component of the GMF is obtained from Gaussian realizations of a power-law power spectrum. We are able to reproduce the observed p and distributions using a p0 value of 26%, a ratio of 0.9 between the strengths of the turbulent and mean components of the GMF, and a small value of N. The mean value of p (inferred from the fit of the large-scale patterns in the Stokes maps) is 12 +/- 1%. We relate the polarization layers to the density structure and to the correlation length of the GMF along the LOS. We emphasize the simplicity of our model (involving only a few parameters), which can be easily computed on the celestial sphere to produce simulated maps of dust polarization. Our work is an important step towards a model that can be used to assess the accuracy of component-separation methods in present and future CMB experiments designed to search the B mode CMB polarization from primordial gravity waves.

  • 50. Aghanim, N.
    et al.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chiang, H. C.
    Christensen, P. R.
    Clements, D. L.
    Colombo, L. P. L.
    Combet, C.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Dolag, K.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dunkley, J.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Gauthier, C.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Università La Sapienza, Italy.
    Giard, M.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hamann, J.
    Hansen, F. K.
    Harrison, D. L.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Holmes, W. A.
    Hornstrup, A.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kiiveri, K.
    Knoche, J.
    Knox, L.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Lewis, A.
    Liguori, M.
    Lilje, P. B.
    Lilley, M.
    Linden-Vornle, M.
    Lindholm, V.
    Lopez-Caniego, M.
    Macias-Perez, J. F.
    Maffei, B.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    Meinhold, P. R.
    Melchiorri, A.
    Migliaccio, M.
    Millea, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Mottet, S.
    Munshi, D.
    Murphy, J. A.
    Narimani, A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Partridge, B.
    Pasian, F.
    Patanchon, G.
    Pearson, T. J.
    Perdereau, O.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Ponthieu, N.
    Pratt, G. W.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rossetti, M.
    Roudier, G.
    d'Orfeuil, B. Rouille
    Rubino-Martin, J. A.
    Rusholme, B.
    Salvati, L.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Serra, P.
    Spencer, L. D.
    Spinelli, M.
    Stolyarov, V.
    Stompor, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Tucci, M.
    Tuovinen, J.
    Umana, G.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results XI. CMB power spectra, likelihoods, and robustness of parameters2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A11Article in journal (Refereed)
    Abstract [en]

    This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlation functions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties, both instrumental and astrophysical in nature. They are based on the same hybrid approach used for the previous release, i.e., a pixel-based likelihood at low multipoles (l < 30) and a Gaussian approximation to the distribution of cross-power spectra at higher multipoles. The main improvements are the use of more and better processed data and of Planck polarization information, along with more detailed models of foregrounds and instrumental uncertainties. The increased redundancy brought by more than doubling the amount of data analysed enables further consistency checks and enhanced immunity to systematic effects. It also improves the constraining power of Planck, in particular with regard to small-scale foreground properties. Progress in the modelling of foreground emission enables the retention of a larger fraction of the sky to determine the properties of the CMB, which also contributes to the enhanced precision of the spectra. Improvements in data processing and instrumental modelling further reduce uncertainties. Extensive tests establish the robustness and accuracy of the likelihood results, from temperature alone, from polarization alone, and from their combination. For temperature, we also perform a full likelihood analysis of realistic end-to-end simulations of the instrumental response to the sky, which were fed into the actual data processing pipeline; this does not reveal biases from residual low-level instrumental systematics. Even with the increase in precision and robustness, the Lambda CDM cosmological model continues to offer a very good fit to the Planck data. The slope of the primordial scalar fluctuations, n(s), is confirmed smaller than unity at more than 5 sigma from Planck alone. We further validate the robustness of the likelihood results against specific extensions to the baseline cosmology, which are particularly sensitive to data at high multipoles. For instance, the effective number of neutrino species remains compatible with the canonical value of 3.046. For this first detailed analysis of Planck polarization spectra, we concentrate at high multipoles on the E modes, leaving the analysis of the weaker B modes to future work. At low multipoles we use temperature maps at all Planck frequencies along with a subset of polarization data. These data take advantage of Planck's wide frequency coverage to improve the separation of CMB and foreground emission. Within the baseline Lambda CDM cosmology this requires tau = 0.078 +/- 0.019 for the reionization optical depth, which is significantly lower than estimates without the use of high-frequency data for explicit monitoring of dust emission. At high multipoles we detect residual systematic errors in E polarization, typically at the mu K-2 level; we therefore choose to retain temperature information alone for high multipoles as the recommended baseline, in particular for testing non-minimal models. Nevertheless, the high-multipole polarization spectra from Planck are already good enough to enable a separate high-precision determination of the parameters of the Lambda CDM model, showing consistency with those established independently from temperature information alone.

1234567 1 - 50 of 1867
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf