Change search
Refine search result
1234567 1 - 50 of 766
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1. Abdel-Aty, M.
    et al.
    Larson, Jonas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Eleuch, H.
    Obada, A. S. F.
    Multi-particle entanglement of charge qubits coupled to a nanoresonator2011In: Physica. E, Low-Dimensional systems and nanostructures, ISSN 1386-9477, E-ISSN 1873-1759, Vol. 43, no 9, p. 1625-1630Article in journal (Refereed)
    Abstract [en]

    The dynamics of charge qubits coupled to a nanomechanical resonator under the influence of both a phonon bath in contact with the resonator and irreversible decay of the qubits is considered. The focus of our analysis is devoted to multi-particle entanglement and the effects arising from the coupling to the reservoir. Even in the presence of the reservoirs, the inherent entanglement is found to be rather robust. Due to this fact, together with control of system parameters, the system may, therefore, be especially suited for quantum information processing. Our findings also shed light on the evolution of open quantum many-body systems. For instance, due to intrinsic qubit-qubit couplings our model is related to a driven XY spin model.

  • 2.
    Abergel, D. S. L.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). KTH Royal Institute of Technology, Sweden.
    Excitonic condensation in spatially separated one-dimensional systems2015In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 106, no 21, article id 213103Article in journal (Refereed)
    Abstract [en]

    We show theoretically that excitons can form from spatially separated one-dimensional ground state populations of electrons and holes, and that the resulting excitons can form a quasicondensate. We describe a mean-field Bardeen-Cooper-Schrieffer theory in the low carrier density regime and then focus on the core-shell nanowire giving estimates of the size of the excitonic gap for InAs/GaSb wires and as a function of all the experimentally relevant parameters. We find that optimal conditions for pairing include small overlap of the electron and hole bands, large effective mass of the carriers, and low dielectric constant of the surrounding media. Therefore, one-dimensional systems provide an attractive platform for the experimental detection of excitonic quasicondensation in zero magnetic field.

  • 3.
    Abergel, David S. L.
    et al.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Edge, Jonathan M.
    Balatsky, Alexander V.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Los Alamos National Laboratory, USA.
    The role of spin-orbit coupling in topologically protected interface states in Dirac materials2014In: New Journal of Physics, ISSN 1367-2630, E-ISSN 1367-2630, Vol. 16, p. 065012-Article in journal (Refereed)
    Abstract [en]

    We highlight the fact that two-dimensional (2D) materials with Dirac-like low energy band structures and spin-orbit coupling (SOC) will produce linearly dispersing topologically protected Jackiw-Rebbi modes at interfaces where the Dirac mass changes sign. These modes may support persistent spin or valley currents parallel to the interface, and the exact arrangement of such topologically protected currents depends crucially on the details of the SOC in the material. As examples, we discuss buckled 2D hexagonal lattices such as silicene or germanene, and transition metal dichalcogenides such as MoS2.

  • 4. Adam, R.
    et al.
    Ade, P. A. R.
    Aghanim, N.
    Alves, M. I. R.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R. -R.
    Chiang, H. C.
    Christensen, P. R.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Dickinson, C.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Ghosh, T.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, F.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Leahy, J. P.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Marshall, D. J.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Orlando, E.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paladini, R.
    Paoletti, D.
    Partridge, B.
    Pasian, F.
    Patanchon, G.
    Pearson, T. J.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reach, W. T.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Strong, A. W.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Umana, G.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Wilkinson, A.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results X. Diffuse component separation: Foreground maps2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A10Article in journal (Refereed)
    Abstract [en]

    Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps and the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7: 5 and 1 degrees. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4pK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100-353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.

  • 5. Adam, R.
    et al.
    Ade, P. A. R.
    Aghanim, N.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Basak, S.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Casaponsa, B.
    Castex, G.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R-R.
    Chiang, H. C.
    Christensen, P. R.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Dickinson, C.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fantaye, Y.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Francescht, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Ghosh, T.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jenne, M.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Marshall, D. J.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paladini, R.
    Paoletti, D.
    Pasian, F.
    Patanchon, G.
    Pearson, T. J.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Racine, B.
    Reach, W. T.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Tucci, M.
    Tuovinen, J.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results IX. Diffuse component separation: CMB maps2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A9Article in journal (Refereed)
    Abstract [en]

    We present foreground-reduced cosmic microwave background (CMB) maps derived from the full Planck data set in both temperature and polarization. Compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.2 for frequencies between 30 and 70 GHz, and by 1.9 for frequencies between 100 and 857 GHz. In addition, systematic errors in the forms of temperature-topolarization leakage, analogue-to-digital conversion uncertainties, and very long time constant errors have been dramatically reduced, to the extent that the cosmological polarization signal may now be robustly recovered on angular scales l greater than or similar to 40. On the very largest scales, instrumental systematic residuals are still non-negligible compared to the expected cosmological signal, and modes with l < 20 are accordingly suppressed in the current polarization maps by high-pass filtering. As in 2013, four different CMB component separation algorithms are applied to these observations, providing a measure of stability with respect to algorithmic and modelling choices. The resulting polarization maps have rms instrumental noise ranging between 0.21 and 0.27 mu K averaged over 55' pixels, and between 4.5 and 6.1 mu K averaged over 3.'4 pixels. The cosmological parameters derived from the analysis of temperature power spectra are in agreement at the 1 sigma level with the Planck 2015 likelihood. Unresolved mismatches between the noise properties of the data and simulations prevent a satisfactory description of the higher-order statistical properties of the polarization maps. Thus, the primary applications of these polarization maps are those that do not require massive simulations for accurate estimation of uncertainties, for instance estimation of cross-spectra and cross-correlations, or stacking analyses. However, the amplitude of primordial non-Gaussianity is consistent with zero within 2 sigma for all local, equilateral, and orthogonal configurations of the bispectrum, including for polarization E-modes. Moreover, excellent agreement is found regarding the lensing B-mode power spectrum, both internally among the various component separation codes and with the best-fit Planck 2015 Lambda cold dark matter model.

  • 6. Adam, R.
    et al.
    Ade, P. A. R.
    Aghanim, N.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit-Levy, A.
    Bersanelli, M.
    Bielewicz, P.
    Bikmaev, I.
    Bonaldi, A.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Burenin, R.
    Burigana, C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Chiang, H. C.
    Christensen, P. R.
    Churazov, E.
    Colombo, L. P. L.
    Combet, C.
    Comis, B.
    Couchot, F.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Diego, J. M.
    Dole, H.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Elsner, F.
    Ensslin, T. A.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Galeotta, S.
    Ganga, K.
    Genova-Santos, R. T.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Harrison, D. L.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Hornstrup, A.
    Hovest, W.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Khamitov, I.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leonardi, R.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Macias-Perez, J. F.
    Maffei, B.
    Maggio, G.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Norgaard-Nielsen, H. U.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Pasian, F.
    Perdereau, O.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Ponthieu, N.
    Pratt, G. W.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results XLIII. Spectral energy distribution of dust in clusters of galaxies2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 596, article id A104Article in journal (Refereed)
    Abstract [en]

    Although infrared (IR) overall dust emission from clusters of galaxies has been statistically detected using data from the Infrared Astronomical Satellite (IRAS), it has not been possible to sample the spectral energy distribution (SED) of this emission over its peak, and thus to break the degeneracy between dust temperature and mass. By complementing the IRAS spectral coverage with Planck satellite data from 100 to 857 GHz, we provide new constraints on the IR spectrum of thermal dust emission in clusters of galaxies. We achieve this by using a stacking approach for a sample of several hundred objects from the Planck cluster sample. This procedure averages out fluctuations from the IR sky, allowing us to reach a significant detection of the faint cluster contribution. We also use the large frequency range probed by Planck, together with component-separation techniques, to remove the contamination from both cosmic microwave background anisotropies and the thermal Sunyaev-Zeldovich effect (tSZ) signal, which dominate at v <= 353 GHz. By excluding dominant spurious signals or systematic effects, averaged detections are reported at frequencies 353 GHz <= v <= 5000 GHz. We confirm the presence of dust in clusters of galaxies at low and intermediate redshifts, yielding an SED with a shape similar to that of the Milky Way. Planck's resolution does not allow us to investigate the detailed spatial distribution of this emission (e.g. whether it comes from intergalactic dust or simply the dust content of the cluster galaxies), but the radial distribution of the emission appears to follow that of the stacked SZ signal, and thus the extent of the clusters. The recovered SED allows us to constrain the dust mass responsible for the signal and its temperature.

  • 7. Adam, R.
    et al.
    Ade, P. A. R.
    Alves, M. I. R.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Chiang, H. C.
    Christensen, P. R.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Dickinson, C.
    Diego, J. M.
    Dolag, K.
    Dore, O.
    Ducout, A.
    Dupac, X.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Ferriere, K.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Galeotta, S.
    Ganga, K.
    Ghosh, T.
    Giard, M.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Harrison, D. L.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hobson, M.
    Hornstrup, A.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leahy, J. P.
    Leonardi, R.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Norgaard-Nielsen, H. U.
    Oppermann, N.
    Orlando, E.
    Pagano, L.
    Pajot, F.
    Paladini, R.
    Paoletti, D.
    Pasian, F.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Ponthieu, N.
    Pratt, G. W.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Scott, D.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Strong, A. W.
    Sudiwala, R.
    Sunyaev, R.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results XLII. Large-scale Galactic magnetic fields2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 596, article id A103Article in journal (Refereed)
    Abstract [en]

    Recent models for the large-scale Galactic magnetic fields in the literature have been largely constrained by synchrotron emission and Faraday rotation measures. We use three different but representative models to compare their predicted polarized synchrotron and dust emission with that measured by the Planck satellite. We first update these models to match the Planck synchrotron products using a common model for the cosmic-ray leptons. We discuss the impact on this analysis of the ongoing problems of component separation in the Planck microwave bands and of the uncertain cosmic-ray spectrum. In particular, the inferred degree of ordering in the magnetic fields is sensitive to these systematic uncertainties, and we further show the importance of considering the expected variations in the observables in addition to their mean morphology. We then compare the resulting simulated emission to the observed dust polarization and find that the dust predictions do not match the morphology in the Planck data but underpredict the dust polarization away from the plane. We modify one of the models to roughly match both observables at high latitudes by increasing the field ordering in the thin disc near the observer. Though this specific analysis is dependent on the component separation issues, we present the improved model as a proof of concept for how these studies can be advanced in future using complementary information from ongoing and planned observational projects.

  • 8. Adam, R.
    et al.
    Aghanim, N.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Battye, R.
    Benabed, K.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Calabrese, E.
    Cardoso, J. -F.
    Carron, J.
    Chiang, H. C.
    Colombo, L. P. L.
    Combet, C.
    Comis, B.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fantaye, Y.
    Finelli, F.
    Forastieri, F.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Università La Sapienza, Italy.
    Ghosh, T.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Helou, G.
    Henrot-Versille, S.
    Herranz, D.
    Hivon, E.
    Huang, Z.
    Ilic, S.
    Jaffe, A. H.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Knox, L.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Langer, M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Levrier, F.
    Lewis, A.
    Liguori, M.
    Lilje, P. B.
    Lopez-Caniego, M.
    Ma, Y. -Z.
    Macias-Perez, J. F.
    Maggio, G.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Matarrese, S.
    Mauri, N.
    McEwen, J. D.
    Meinhold, P. R.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Moss, A.
    Naselsky, P.
    Natoli, P.
    Oxborrow, C. A.
    Pagano, L.
    Paoletti, D.
    Partridge, B.
    Patanchon, G.
    Patrizii, L.
    Perdereau, O.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Plaszczynski, S.
    Polastri, L.
    Polenta, G.
    Puget, J. -L
    Rachen, J. P.
    Racine, B.
    Reinecke, M.
    Remazeilles, M.
    Renzi, A.
    Rocha, G.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Ruiz-Granados, B.
    Salvati, L.
    Sandri, M.
    Savelainen, M.
    Scott, D.
    Sirri, G.
    Sunyaev, R.
    Suur-Uski, A. -S.
    Tauber, J. A.
    Tenti, M.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Vittorio, N.
    Wandelt, B. D.
    Wehus, I. K.
    White, M.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results XLVII. Planck constraints on reionization history2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 596, article id A108Article in journal (Refereed)
    Abstract [en]

    We investigate constraints on cosmic reionization extracted from the Planck cosmic microwave background (CMB) data. We combine the Planck CMB anisotropy data in temperature with the low-multipole polarization data to fit Lambda CDM models with various parameterizations of the reionization history. We obtain a Thomson optical depth tau = 0.058 +/- 0.012 for the commonly adopted instantaneous reionization model. This confirms, with data solely from CMB anisotropies, the low value suggested by combining Planck 2015 results with other data sets, and also reduces the uncertainties. We reconstruct the history of the ionization fraction using either a symmetric or an asymmetric model for the transition between the neutral and ionized phases. To determine better constraints on the duration of the reionization process, we also make use of measurements of the amplitude of the kinetic Sunyaev-Zeldovich (kSZ) effect using additional information from the high-resolution Atacama Cosmology Telescope and South Pole Telescope experiments. The average redshift at which reionization occurs is found to lie between z = 7.8 and 8.8, depending on the model of reionization adopted. Using kSZ constraints and a redshift-symmetric reionization model, we find an upper limit to the width of the reionization period of Delta z < 2.8. In all cases, we find that the Universe is ionized at less than the 10% level at redshifts above z similar or equal to 10. This suggests that an early onset of reionization is strongly disfavoured by the Planck data. We show that this result also reduces the tension between CMB-based analyses and constraints from other astrophysical sources.

  • 9. Adam, R.
    et al.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Università La Sapienza, Italy.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Lawrence, C. R.
    Zonca, A.
    Planck 2015 results I. Overview of products and scientific results2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A1Article in journal (Refereed)
    Abstract [en]

    The European Space Agency's Planck satellite, which is dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013. In February 2015, ESA and the Planck Collaboration released the second set of cosmology products based on data from the entire Planck mission, including both temperature and polarization, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the main characteristics of the data and the data products in the release, as well as the associated cosmological and astrophysical science results and papers. The data products include maps of the cosmic microwave background (CMB), the thermal Sunyaev-Zeldovich effect, diffuse foregrounds in temperature and polarization, catalogues of compact Galactic and extragalactic sources (including separate catalogues of Sunyaev-Zeldovich clusters and Galactic cold clumps), and extensive simulations of signals and noise used in assessing uncertainties and the performance of the analysis methods. The likelihood code used to assess cosmological models against the Planck data is described, along with a CMB lensing likelihood. Scientific results include cosmological parameters derived from CMB power spectra, gravitational lensing, and cluster counts, as well as constraints on inflation, non-Gaussianity, primordial magnetic fields, dark energy, and modified gravity, and new results on low-frequency Galactic foregrounds.

  • 10. Ade, P. A. R.
    et al.
    Aghanim, N.
    Alves, M. I. R.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R. -R.
    Chiang, H. C.
    Christensen, P. R.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Delouis, J. -M.
    Desert, F. -X.
    Dickinson, C.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Ghosh, T.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leahy, J. P.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Marshall, D. J.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Orlando, E.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paladini, R.
    Paoletti, D.
    Partridge, B.
    Pasian, F.
    Patanchon, G.
    Pearson, T. J.
    Peel, M.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reach, W. T.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Strong, A. W.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Umana, G.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vidal, M.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Watson, R.
    Wehus, I. K.
    Wilkinson, A.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results XXV. Diffuse low-frequency Galactic foregrounds2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A25Article in journal (Refereed)
    Abstract [en]

    We discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude H alpha emission with our free-free map shows residuals that correlate with dust optical depth, consistent with a fraction (approximate to 30%) of H alpha having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in I-v) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H Pi regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5-20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is associated with distinct large-scale loops and spurs, and we re-discuss their structure. We argue that nearly all the emission at 40 degrees > l > -90 degrees is part of the Loop I structure, and show that the emission extends much further in to the southern Galactic hemisphere than previously recognised, giving Loop I an ovoid rather than circular outline. However, it does not continue as far as the Fermi bubble/microwave haze, making it less probable that these are part of the same structure. We identify a number of new faint features in the polarized sky, including a dearth of polarized synchrotron emission directly correlated with a narrow, roughly 20 degrees long filament seen in H alpha at high Galactic latitude. Finally, we look for evidence of polarized AME, however many AME regions are significantly contaminated by polarized synchrotron emission, and we find a 2 sigma upper limit of 1.6% in the Perseus region.

  • 11. Ade, P. A. R.
    et al.
    Aghanim, N.
    Argueeso, F.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Battaner, E.
    Beichman, C.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Boehringer, H.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Carvalho, P.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R. -R.
    Chiang, H. C.
    Christensen, P. R.
    Clemens, M.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Dickinson, C.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leahy, J. P.
    Leonardi, R.
    Leon-Tavares, J.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Marshall, D. J.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Negrello, M.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paladini, R.
    Paoletti, D.
    Partridge, B.
    Pasian, F.
    Patanchon, G.
    Pearson, T. J.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reach, W. T.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rowan-Robinson, M.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Sanghera, H. S.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tornikoski, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Turler, M.
    Umana, G.
    Valenziano, L.
    Valiviita, J.
    Van Tent, B.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Walter, B.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results XXVI. The Second Planck Catalogue of Compact Sources2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A26Article in journal (Refereed)
    Abstract [en]

    The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogues, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalogue. The second ( PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow us to increase the number of objects in the catalogue, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).

  • 12. Ade, P. A. R.
    et al.
    Aghanim, N.
    Arnaud, M.
    Arroja, F.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Chamballu, A.
    Chiang, H. C.
    Chluba, J.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Diego, J. M.
    Dolag, K.
    Dole, H.
    Donzelli, S.
    Dore, A.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fergusson, J.
    Finelli, F.
    Florido, E.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kim, J.
    Kisner, T. S.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leahy, J. P.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oppermann, N.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Pasian, F.
    Patanchon, G.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Popa, L.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Ruiz-Granados, B.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Shiraishi, M.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Umana, G.
    Valenziano, L.
    Valiviita, J.
    Van Tent, B.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results XIX. Constraints on primordial magnetic fields2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A19Article in journal (Refereed)
    Abstract [en]

    We compute and investigate four types of imprint of a stochastic background of primordial magnetic fields (PMFs) on the cosmic microwave background (CMB) anisotropies: the impact of PMFs on the CMB temperature and polarization spectra, which is related to their contribution to cosmological perturbations; the effect on CMB polarization induced by Faraday rotation; the impact of PMFs on the ionization history; magnetically-induced non-Gaussianities and related non-zero bispectra; and the magnetically-induced breaking of statistical isotropy. We present constraints on the amplitude of PMFs that are derived from different Planck data products, depending on the specific effect that is being analysed. Overall, Planck data constrain the amplitude of PMFs to less than a few nanoGauss, with different bounds that depend on the considered model. In particular, individual limits coming from the analysis of the CMB angular power spectra, using the Planck likelihood, are B-1 (Mpc) < 4.4 nG (where B1 Mpc is the comoving field amplitude at a scale of 1 Mpc) at 95% confidence level, assuming zero helicity. By considering the Planck likelihood, based only on parity-even angular power spectra, we obtain B-1 (Mpc) < 5.6 nG for a maximally helical field. For nearly scale-invariant PMFs we obtain B-1 (Mpc) < 2.0 nG and B-1 (Mpc) < 0.9 nG if the impact of PMFs on the ionization history of the Universe is included in the analysis. From the analysis of magnetically-induced non-Gaussianity, we obtain three different values, corresponding to three applied methods, all below 5 nG. The constraint from the magnetically-induced passive-tensor bispectrum is B-1 (Mpc) < 2.8 nG. A search for preferred directions in the magnetically-induced passive bispectrum yields B-1 (Mpc) < 4.5 nG, whereas the compensated-scalar bispectrum gives B-1 (Mpc) < 3 nG. The analysis of the Faraday rotation of CMB polarization by PMFs uses the Planck power spectra in EE and BB at 70 GHz and gives B-1 (Mpc) < 1380 nG. In our final analysis, we consider the harmonic-space correlations produced by Alfven waves, finding no significant evidence for the presence of these waves. Together, these results comprise a comprehensive set of constraints on possible PMFs with Planck data.

  • 13. Ade, P. A. R.
    et al.
    Aghanim, N.
    Arnaud, M.
    Arroja, F.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bondi, J. R.
    Borrillu, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R. -R.
    Chiang, H. C.
    Christensen, P. R.
    Churchl, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Contreras, D.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouillei, J.
    Desert, F. -X.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Gauthier, C.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hamann, J.
    Handley, W.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huang, Z.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kim, J.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Lewis, A.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Ma, Y. -Z.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martini, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munchmeyer, M.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paladini, R.
    Pandolfi, S.
    Paoletti, D.
    Pasian, F.
    Patanchon, G.
    Pearson, T. J.
    Peiris, H. V.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Popa, L.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reach, W. T.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rowan-Robinson, M.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Shiraishi, M.
    Spencer, L. D.
    Stolyarov, V.
    Stompori, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Tucci, M.
    Tuovinen, J.
    Valenziano, L.
    Valiviita, J.
    Van Tent, B.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    White, M.
    Yvon, D.
    Zacchei, A.
    Zibin, J. P.
    Zonca, A.
    Planck 2015 results XX. Constraints on inflation2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A20Article in journal (Refereed)
    Abstract [en]

    We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey, which includes more than twice the integration time of the nominal survey used for the 2013 release papers. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the spectral index of curvature perturbations to be n(s) = 0.968 +/- 0.006 and tightly constrain its scale dependence to dn(s)/dln k = -0.003 +/- 0.007 when combined with the Planck lensing likelihood. When the Planck high-l polarization data are included, the results are consistent and uncertainties are further reduced. The upper bound on the tensor-to-scalar ratio is r(0).(002) < 0.11 (95% CL). This upper limit is consistent with the B-mode polarization constraint r < 0.12 (95% CL) obtained from a joint analysis of the BICEP2/Keck Array and Planck data. These results imply that V(phi) proportional to phi(2) and natural inflation are now disfavoured compared to models predicting a smaller tensor-to-scalar ratio, such as R-2 inflation. We search for several physically motivated deviations from a simple power-law spectrum of curvature perturbations, including those motivated by a reconstruction of the inflaton potential not relying on the slow-roll approximation. We find that such models are not preferred, either according to a Bayesian model comparison or according to a frequentist simulation-based analysis. Three independent methods reconstructing the primordial power spectrum consistently recover a featureless and smooth P-R (k) over the range of scales 0.008 Mpc(-1) less than or similar to k less than or similar to 0.1 Mpc(-1). At large scales, each method finds deviations from a power law, connected to a deficit at multipoles l approximate to 20-40 in the temperature power spectrum, but at an uncompelling statistical significance owing to the large cosmic variance present at these multipoles. By combining power spectrum and non-Gaussianity bounds, we constrain models with generalized Lagrangians, including Galileon models and axion monodromy models. The Planck data are consistent with adiabatic primordial perturbations, and the estimated values for the parameters of the base Lambda cold dark matter (Lambda CDM) model are not significantly altered when more general initial conditions are admitted. In correlated mixed adiabatic and isocurvature models, the 95% CL upper bound for the non-adiabatic contribution to the observed CMB temperature variance is vertical bar alpha(non-adi)vertical bar < 1.9%, 4.0%, and 2.9% for CDM, neutrino density, and neutrino velocity isocurvature modes, respectively. We have tested inflationary models producing an anisotropic modulation of the primordial curvature power spectrum finding that the dipolar modulation in the CMB temperature field induced by a CDM isocurvature perturbation is not preferred at a statistically significant level. We also establish tight constraints on a possible quadrupolar modulation of the curvature perturbation. These results are consistent with the Planck 2013 analysis based on the nominal mission data and further constrain slow-roll single-field inflationary models, as expected from the increased precision of Planck data using the full set of observations.

  • 14. Ade, P. A. R.
    et al.
    Aghanim, N.
    Arnaud, M.
    Arrojam, F.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chiang, H. C.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Gauthier, C.
    Ghosh, T.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hamann, J.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Heavens, A.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huang, Z.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kim, J.
    Kisner, T. S.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lacasa, F.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Lewis, A.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Marinucci, D.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munchmeyer, M.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Pasian, F.
    Patanchon, G.
    Peiris, H. V.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Popa, L.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Racine, B.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Shiraishi, M.
    Smith, K.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutter, P.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Troja, A.
    Tucci, M.
    Tuovinen, J.
    Valenziano, L.
    Valiyiita, J.
    Van Tent, B.
    Vielva, P.
    Villas, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results XVII. Constraints on primordial non-Gaussianity2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A17Article in journal (Refereed)
    Abstract [en]

    The Planck full mission cosmic microwave background (CMB) temperature and E-mode polarization maps are analysed to obtain constraints on primordial non-Gaussianity (NG). Using three classes of optimal bispectrum estimators - separable template-fitting (KSW), binned, and modal we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result from temperature alone f(NL)(local) = 2.5 +/- 5.7, f(NL)(equil) = 16 +/- 70, and f(NL)(ortho) = 34 +/- 33 (68% CL, statistical). Combining temperature and polarization data we obtain f(NL)(local) = 0.8 +/- 5.0, f(NL)(equil) = 4 +/- 43, and f(NL)(ortho) = 26 +/- 21 (68% CL, statistical). The results are based on comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensive suite of tests, and are consistent with estimators based on measuring the Minkowski functionals of the CMB. The effect of time-domain de-glitching systematics on the bispectrum is negligible. In spite of these test outcomes we conservatively label the results including polarization data as preliminary, owing to a known mismatch of the noise model in simulations and the data. Beyond estimates of individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and derive constraints on early universe scenarios that generate primordial NG, including general single-field models of inflation, axion inflation, initial state modifications, models producing parity-violating tensor bispectra, and directionally dependent vector models. We present a wide survey of scale-dependent feature and resonance models, accounting for the look elsewhere effect in estimating the statistical significance of features. We also look for isocurvature NG, and find no signal, but we obtain constraints that improve significantly with the inclusion of polarization. The primordial trispectrum amplitude in the local model is constrained to be g(NL)(local) = (9.0 +/- 7.7) x 10(4) (68% CL statistical), and we perform an analysis of trispectrum shapes beyond the local case. The global picture that emerges is one of consistency with the premises of the Lambda CDM cosmology, namely that the structure we observe today was sourced by adiabatic, passive, Gaussian, and primordial seed perturbations.

  • 15. Ade, P. A. R.
    et al.
    Aghanim, N.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Basak, S.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chiang, H. C.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dunkley, J.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Gallin, S.
    Ganga, K.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Lewis, A.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Pasian, F.
    Patanchon, G.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Popa, L.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reach, W. T.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rowan-Robinson, M.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Valenziano, L.
    Valiviita, J.
    Van Tent, B.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    White, M.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results XV. Gravitational lensing2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A15Article in journal (Refereed)
    Abstract [en]

    We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40 sigma), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator, we detect lensing at a significance of 5 sigma. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40 <= L <= 400, and an associated likelihood for cosmological parameter constraints. We find good agreement between our measurement of the lensing potential power spectrum and that found in the Lambda CDM model that best fits the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percent-level measurement of the parameter combination sigma(8) Omega(0.25)(m) = 0.591 +/- 0.021. We combine our determination of the lensing potential with the E-mode polarization, also measured by Planck, to generate an estimate of the lensing B-mode. We show that this lensing B-mode estimate is correlated with the B-modes observed directly by Planck at the expected level and with a statistical significance of 10 sigma, confirming Planck's sensitivity to this known sky signal. We also correlate our lensing potential estimate with the large-scale temperature anisotropies, detecting a cross-correlation at the 3 sigma level, as expected because of dark energy in the concordance Lambda CDM model.

  • 16. Ade, P. A. R.
    et al.
    Aghanim, N.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Battaner, E.
    Battye, R.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrinll, J.
    Bouchet, F. R.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R. -R.
    Chiang, H. C.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Comis, B.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Diego, J. M.
    Dolag, K.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Kunzo, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteennmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri', A.
    Melin, J. -B.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitrao, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Partridge, B.
    Pasian, F.
    Patanchon, G.
    Pearson, T. J.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Popa, L.
    Prate, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Roman, M.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Turler, M.
    Umana, G.
    Valenziano, L.
    Valiviita', J.
    Van Tent, B.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Weller, J.
    White, S. D. M.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    XXIV. Cosmology from Sunyaev-Zeldovich cluster counts2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A24Article in journal (Refereed)
    Abstract [en]

    We present cluster counts and corresponding cosmological constraints from the Planck full mission data set. Our catalogue consists of 439 clusters detected via their Sunyaev-Zeldovich (SZ) signal down to a signal-to-noise ratio of 6, and is more than a factor of 2 larger than the 2013 Planck cluster cosmology sample. The counts are consistent with those from 2013 and yield compatible constraints under the same modelling assumptions. Taking advantage of the larger catalogue, we extend our analysis to the two-dimensional distribution in redshift and signal-to-noise. We use mass estimates from two recent studies of gravitational lensing of background galaxies by Planck clusters to provide priors on the hydrostatic bias parameter, (1 - b). In addition, we use lensing of cosmic microwave background (CMB) temperature fluctuations by Planck clusters as an independent constraint on this parameter. These various calibrations imply constraints on the present-day amplitude of matter fluctuations in varying degrees of tension with those from the Planck analysis of primary fluctuations in the CMB; for the lowest estimated values of (1 b) the tension is mild, only a little over one standard deviation, while it remains substantial (3.7 sigma) for the largest estimated value. We also examine constraints on extensions to the base flat Lambda CDM model by combining the cluster and CMB constraints. The combination appears to favour non-minimal neutrino masses, but this possibility does little to relieve the overall tension because it simultaneously lowers the implied value of the Hubble parameter, thereby exacerbating the discrepancy with most current astrophysical estimates. Improving the precision of cluster mass calibrations from the current 10%-level to 1% would significantly strengthen these combined analyses and provide a stringent test of the base Lambda CDM model.

  • 17. Ade, P. A. R.
    et al.
    Aghanim, N.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borri, J.
    Bouchet, F. R.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Casaponsa, B.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chiang, H. C.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fergusson, J.
    Fernandez-Cobos, R.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Genova-Santos, R. T.
    Girad, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Ilic, S.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Kneiss, R.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Langer, M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Ma, Y. -Z.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Marcos-Caballero, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Pasian, F.
    Patanchon, G.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Popa, L.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reach, W. T.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Schaefer, B. M.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    XXI. The integrated Sachs-Wolfe effect2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A21Article in journal (Refereed)
    Abstract [en]

    This paper presents a study of the integrated Sachs-Wolfe (ISW) effect from the Planck 2015 temperature and polarization data release. This secondary cosmic microwave background (CMB) anisotropy caused by the large-scale time-evolving gravitational potential is probed from different perspectives. The CMB is cross-correlated with different large-scale structure (LSS) tracers: radio sources from the NVSS catalogue; galaxies from the optical SDSS and the infrared WISE surveys; and the Planck 2015 convergence lensing map. The joint cross-correlation of the CMB with the tracers yields a detection at 4 sigma where most of the signal-to-noise is due to the Planck lensing and the NVSS radio catalogue. In fact, the ISW effect is detected from the Planck data only at approximate to 3 sigma (through the ISW-lensing bispectrum), which is similar to the detection level achieved by combining the cross-correlation signal coming from all the galaxy catalogues mentioned above. We study the ability of the ISW effect to place constraints on the dark-energy parameters; in particular, we show that Omega(Lambda) is detected at more than 3 sigma. This cross-correlation analysis is performed only with the Planck temperature data, since the polarization scales available in the 2015 release do not permit significant improvement of the CMB-LSS cross-correlation detectability. Nevertheless, the Planck polarization data are used to study the anomalously large ISW signal previously reported through the aperture photometry on stacked CMB features at the locations of known superclusters and supervoids, which is in conflict with Lambda CDM expectations. We find that the current Planck polarization data do not exclude that this signal could be caused by the ISW effect. In addition, the stacking of the Planck lensing map on the locations of superstructures exhibits a positive cross-correlation with these large-scale structures. Finally, we have improved our previous reconstruction of the ISW temperature fluctuations by combining the information encoded in all the previously mentioned LSS tracers. In particular, we construct a map of the ISW secondary anisotropies and the corresponding uncertainties map, obtained from simulations. We also explore the reconstruction of the ISW anisotropies caused by the large-scale structure traced by the 2MASS Photometric Redshift Survey (2MPZ) by directly inverting the density field into the gravitational potential field.

  • 18. Ade, P. A. R.
    et al.
    Aghanim, N.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J-P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chiang, H. C.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Feeney, S.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejse, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McEwen, J. D.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Pasian, F.
    Patanchon, G.
    Peiris, H. V.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pogosyan, D.
    Pointecouteau, E.
    Polenta, G.
    Popa, L.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rowan-Robinson, M.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results XVIII. Background geometry and topology of the Universe2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A18Article in journal (Refereed)
    Abstract [en]

    Maps of cosmic microwave background (CMB) temperature and polarization from the 2015 release of Planck data provide the highest quality full-sky view of the surface of last scattering available to date. This enables us to detect possible departures from a globally isotropic cosmology. We present the first searches using CMB polarization for correlations induced by a possible non-trivial topology with a fundamental domain that intersects, or nearly intersects, the last-scattering surface (at comoving distance chi(rec)), both via a direct scan for matched circular patterns at the intersections and by an optimal likelihood calculation for specific topologies. We specialize to flat spaces with cubic toroidal (T3) and slab (T1) topologies, finding that explicit searches for the latter are sensitive to other topologies with antipodal symmetry. These searches yield no detection of a compact topology with a scale below the diameter of the last-scattering surface. The limits on the radius R-i of the largest sphere inscribed in the fundamental domain (at log-likelihood ratio Delta ln L > -5 relative to a simply-connected flat Planck best-fit model) are: R-i > 0.97 chi(rec) for the T3 cubic torus; and R-i > 0.56 chi(rec) for the T1 slab. The limit for the T3 cubic torus from the matched-circles search is numerically equivalent, R-i > 0.97 chi(rec) at 99% confidence level from polarization data alone. We also perform a Bayesian search for an anisotropic global Bianchi VIIh geometry. In the non-physical setting, where the Bianchi cosmology is decoupled from the standard cosmology, Planck temperature data favour the inclusion of a Bianchi component with a Bayes factor of at least 2.3 units of log-evidence. However, the cosmological parameters that generate this pattern are in strong disagreement with those found from CMB anisotropy data alone. Fitting the induced polarization pattern for this model to the Planck data requires an amplitude of -0.10 +/- 0.04 compared to the value of + 1 if the model were to be correct. In the physically motivated setting, where the Bianchi parameters are coupled and fitted simultaneously with the standard cosmological parameters, we find no evidence for a Bianchi VIIh cosmology and constrain the vorticity of such models to (omega/H)(0) < 7.6 x 10(-10) (95% CL).

  • 19. Ade, P. A. R.
    et al.
    Aghanim, N.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Battaner, E.
    Battye, R.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chiang, H. C.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Heavens, A.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huang, Z.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Lewis, A.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Ma, Y. -Z.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Marchini, A.
    Maris, M.
    Martin, P. G.
    Martinelli, M.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Narimani, A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Pasian, F.
    Patanchon, G.
    Pearson, T. J.
    Perdereau, . O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Popa, L.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reach, W. T.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rowan-Robinson, M.
    Rubino-Martin, J. A.
    Rusholme, B.
    Salvatelli, V.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Schaefer, B. M.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Valenziano, L.
    Valiviita, J.
    Van Tent, B.
    Viel, M.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    White, M.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results XIV. Dark energy and modified gravity2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A14Article in journal (Refereed)
    Abstract [en]

    We study the implications of Planck data for models of dark energy (DE) and modified gravity (MG) beyond the standard cosmological constant scenario. We start with cases where the DE only directly affects the background evolution, considering Taylor expansions of the equation of state w(a), as well as principal component analysis and parameterizations related to the potential of a minimally coupled DE scalar field. When estimating the density of DE at early times, we significantly improve present constraints and find that it has to be below similar to 2% (at 95% confidence) of the critical density, even when forced to play a role for z < 50 only. We then move to general parameterizations of the DE or MG perturbations that encompass both effective field theories and the phenomenology of gravitational potentials in MG models. Lastly, we test a range of specific models, such as k-essence, f(R) theories, and coupled DE. In addition to the latest Planck data, for our main analyses, we use background constraints from baryonic acoustic oscillations, type-Ia supernovae, and local measurements of the Hubble constant. We further show the impact of measurements of the cosmological perturbations, such as redshift-space distortions and weak gravitational lensing. These additional probes are important tools for testing MG models and for breaking degeneracies that are still present in the combination of Planck and background data sets. All results that include only background parameterizations (expansion of the equation of state, early DE, general potentials in minimally-coupled scalar fields or principal component analysis) are in agreement with ACDM. When testing models that also change perturbations (even when the background is fixed to ACDM), some tensions appear in a few scenarios: the maximum one found is similar to 2 sigma for Planck TT + lowP when parameterizing observables related to the gravitational potentials with a chosen time dependence; the tension increases to, at most, 3 sigma when external data sets are included. It however disappears when including CMB lensing.

  • 20. Ade, P. A. R.
    et al.
    Aghanim, N.
    Arnaud, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B. -
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Catalano, A.
    Chiang, H. C.
    Christensen, P. R.
    Clements, D. L.
    Colombo, L. P. L.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Dickinson, C.
    Diego, J. M.
    Dole, H.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Finelli, F.
    Flores-Cacho, I.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Harrison, D. L.
    Helou, G.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leonardi, R.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maffei, B.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Munshi, D.
    Murphy, J. A.
    Nati, F.
    Natoli, P.
    Nesvadba, N. P. H.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Partridge, B.
    Pasian, F.
    Pearson, T. J.
    Perdereau, O.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Pratt, G. W.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuerler, M.
    Umana, G.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Welikala, N.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results XXXIX. The Planck list of high-redshift source candidates2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 596, article id A100Article in journal (Refereed)
    Abstract [en]

    The Planck mission, thanks to its large frequency range and all-sky coverage, has a unique potential for systematically detecting the brightest, and rarest, submillimetre sources on the sky, including distant objects in the high-redshift Universe traced by their dust emission. A novel method, based on a component-separation procedure using a combination of Planck and IRAS data, has been validated and characterized on numerous simulations, and applied to select the most luminous cold submillimetre sources with spectral energy distributions peaking between 353 and 857 GHz at 5' resolution. A total of 2151 Planck high-z source candidates (the PHZ) have been detected in the cleanest 26% of the sky, with flux density at 545 GHz above 500 mJy. Embedded in the cosmic infrared background close to the confusion limit, these high-z candidates exhibit colder colours than their surroundings, consistent with redshifts z > 2, assuming a dust temperature of T-xgal = 35K and a spectral index of beta(xgal) = 1.5. Exhibiting extremely high luminosities, larger than 10(14) L-circle dot, the PHZ objects may be made of multiple galaxies or clumps at high redshift, as suggested by a first statistical analysis based on a comparison with number count models. Furthermore, first follow-up observations obtained from optical to submillimetre wavelengths, which can be found in companion papers, have confirmed that this list consists of two distinct populations. A small fraction (around 3%) of the sources have been identified as strongly gravitationally lensed star-forming galaxies at redshift 2 to 4, while the vast majority of the PHZ sources appear as overdensities of dusty star-forming galaxies, having colours consistent with being at z > 2, and may be considered as proto-cluster candidates. The PHZ provides an original sample, which is complementary to the Planck Sunyaev-Zeldovich Catalogue (PSZ2); by extending the population of virialized massive galaxy clusters detected below z < 1.5 through their SZ signal to a population of sources at z > 1.5, the PHZ may contain the progenitors of today's clusters. Hence the Planck list of high-redshift source candidates opens a new window on the study of the early stages of structure formation, particularly understanding the intensively star-forming phase at high-z.

  • 21. Ade, P. A. R.
    et al.
    Aghanim, N.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Battaner, E.
    Benabed, K.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Chiang, H. C.
    Christensen, P. R.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davis, R. J.
    de Bernardis, P.
    de Zotti, G.
    Delabrouille, J.
    Dickinson, C.
    Diego, J. M.
    Dore, O.
    Ducout, A.
    Dupac, X.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Ghosh, T.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Harrison, D. L.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hornstrup, A.
    Hovest, W.
    Hurier, G.
    Jaffe, A. H.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Knoche, J.
    Knox, L.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Leonardi, R.
    Levrier, F.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maffei, B.
    Maggie, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    Meinhold, P. R.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Novikov, D.
    Novikov, I.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Pasian, F.
    Patanchon, G.
    Perdereau, O.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pointecouteau, E.
    Polenta, G.
    Pratt, G. W.
    Rachen, J. P.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Valenziano, L.
    Valiviita, J.
    Van Tent, B.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results XLI. A map of lensing-induced B-modes2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 596, article id A102Article in journal (Refereed)
    Abstract [en]

    The secondary cosmic microwave background (CMB) B-modes stem from the post-decoupling distortion of the polarization E-modes due to the gravitational lensing effect of large-scale structures. These lensing-induced B-modes constitute both a valuable probe of the dark matter distribution and an important contaminant for the extraction of the primary CMB B-modes from inflation. Planck provides accurate nearly all-sky measurements of both the polarization E-modes and the integrated mass distribution via the reconstruction of the CMB lensing potential. By combining these two data products, we have produced an all-sky template map of the lensing-induced B-modes using a real-space algorithm that minimizes the impact of sky masks. The cross-correlation of this template with an observed (primordial and secondary) B-mode map can be used to measure the lensing B-mode power spectrum at multipoles up to 2000. In particular, when cross-correlating with the B-mode contribution directly derived from the Planck polarization maps, we obtain lensing-induced B-mode power spectrum measurement at a significance level of 12 sigma, which agrees with the theoretical expectation derived from the Planck best-fit Lambda cold dark matter model. This unique nearly all-sky secondary B-mode template, which includes the lensing-induced information from intermediate to small (10 less than or similar to l less than or similar to 1000) angular scales, is delivered as part of the Planck 2015 public data release. It will be particularly useful for experiments searching for primordial B-modes, such as BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of the lensing-induced contribution to the measured total CMB B-modes.

  • 22. Ade, P. A. R.
    et al.
    Efstathiou, G.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Università La Sapienza, Italy.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Zonca, A.
    Planck 2015 results XIII. Cosmological parameters2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A13Article in journal (Refereed)
    Abstract [en]

    This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter Lambda CDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted base Lambda CDM in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H-0 = (67.8 +/- 0.9) km s(-1)Mpc(-1), a matter density parameter Omega(m) = 0.308 +/- 0.012, and a tilted scalar spectral index with ns = 0.968 +/- 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of tau = 0.066 +/- 0.016, corresponding to a reionization redshift of z(re) = 8.8(-1.4)(+1.7) These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base Lambda CDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find N-eff = 3.15 +/- 0.23 for the effective number of relativistic degrees of freedom, consistent with the value N-eff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to Sigma m(v) < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with vertical bar Omega(K)vertical bar < 0.005. Adding a tensor component as a single-parameter extension to base Lambda CDM we find an upper limit on the tensor-to-scalar ratio of r(0.002) < 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r(0.002) < 0.09 and disfavours inflationary models with a V(phi) proportional to phi(2) potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = -1.006 +/- 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base Lambda CDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base Lambda CDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base Lambda CDM cosmology. Apart from these tensions, the base Lambda CDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

  • 23. Agarwal, Abhishek
    et al.
    Lipstein, Arthur E.
    Young, Donovan
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Scattering amplitudes of massive N = 2 gauge theories in three dimensions2014In: Physical Review D, ISSN 1550-7998, E-ISSN 1550-2368, Vol. 89, no 4, p. 045020-Article in journal (Refereed)
    Abstract [en]

    We study the scattering amplitudes of mass-deformed Chern-Simons theories and Yang-Mills-Chern-Simons theories with N = 2 supersymmetry in three dimensions. In particular, we derive the on-shell supersymmetry algebras which underlie the scattering matrices of these theories. We then compute various 3 and 4-point on-shell tree-level amplitudes in these theories. For the mass-deformed Chern-Simons theory, odd-point amplitudes vanish and we find that all of the 4-point amplitudes can be encoded elegantly in superamplitudes. For the Yang-Mills-Chern-Simons theory, we obtain all of the 4-point tree-level amplitudes using a combination of perturbative techniques and algebraic constraints and we comment on difficulties related to computing amplitudes with external gauge fields using Feynman diagrams. Finally, we propose a Britto-Cachazo-Feng-Witten recursion relation for mass-deformed theories in three dimensions and discuss the applicability of this proposal to mass-deformed N = 2 theories.

  • 24. Agarwal, Sahil
    et al.
    Del Sordo, Fabio
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Yale University, USA.
    Wettlaufer, John S.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Yale University, USA; University of Oxford, UK.
    EXOPLANETARY DETECTION BY MULTIFRACTAL SPECTRAL ANALYSIS2017In: Astronomical Journal, ISSN 0004-6256, E-ISSN 1538-3881, Vol. 153, no 1, article id 12Article in journal (Refereed)
    Abstract [en]

    Owing to technological advances, the number of exoplanets discovered has risen dramatically in the last few years. However, when trying to observe Earth analogs, it is often difficult to test the veracity of detection. We have developed a new approach to the analysis of exoplanetary spectral observations based on temporal multifractality, which identifies timescales that characterize planetary orbital motion around the host star and those that arise from stellar features such as spots. Without fitting stellar models to spectral data, we show how the planetary signal can be robustly detected from noisy data using noise amplitude as a source of information. For observation of transiting planets, combining this method with simple geometry allows us to relate the timescales obtained to primary and secondary eclipse of the exoplanets. Making use of data obtained with ground-based and space-based observations we have tested our approach on HD 189733b. Moreover, we have investigated the use of this technique in measuring planetary orbital motion via Doppler shift detection. Finally, we have analyzed synthetic spectra obtained using the SOAP 2.0 tool, which simulates a stellar spectrum and the influence of the presence of a planet or a spot on that spectrum over one orbital period. We have demonstrated that, so long as the signal-to-noise-ratio >= 75, our approach reconstructs the planetary orbital period, as well as the rotation period of a spot on the stellar surface.

  • 25. Agarwal, Sahil
    et al.
    Wettlaufer, John S.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Yale University, USA; University of Oxford, UK.
    Maximal stochastic transport in the Lorenz equations2016In: Physics Letters A, ISSN 0375-9601, E-ISSN 1873-2429, Vol. 380, no 1-2, p. 142-146Article in journal (Refereed)
    Abstract [en]

    We calculate the stochastic upper bounds for the Lorenz equations using an extension of the background method. In analogy with Rayleigh-Benard convection the upper bounds are for heat transport versus Rayleigh number. As might be expected, the stochastic upper bounds are larger than the deterministic counterpart of Souza and Doering [1], but their variation with noise amplitude exhibits interesting behavior. Below the transition to chaotic dynamics the upper bounds increase monotonically with noise amplitude. However, in the chaotic regime this monotonicity depends on the number of realizations in the ensemble; at a particular Rayleigh number the bound may increase or decrease with noise amplitude. The origin of this behavior is the coupling between the noise and unstable periodic orbits, the degree of which depends on the degree to which the ensemble represents the ergodic set. This is confirmed by examining the close returns plots of the full solutions to the stochastic equations and the numerical convergence of the noise correlations. The numerical convergence of both the ensemble and time averages of the noise correlations is sufficiently slow that it is the limiting aspect of the realization of these bounds. Finally, we note that the full solutions of the stochastic equations demonstrate that the effect of noise is equivalent to the effect of chaos.

  • 26. Agarwal, Sahil
    et al.
    Wettlaufer, John S.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Yale University, USA; University of Oxford, United Kingdom.
    The Statistical Properties of Sea Ice Velocity Fields2017In: Journal of Climate, ISSN 0894-8755, E-ISSN 1520-0442, Vol. 30, no 13, p. 4873-4881Article in journal (Refereed)
    Abstract [en]

    By arguing that the surface pressure field over the Arctic Ocean can be treated as an isotropic, stationary, homogeneous, Gaussian random field, Thorndike estimated a number of covariance functions from two years of data (1979 and 1980). Given the active interest in changes of general circulation quantities and indices in the polar regions during the recent few decades, the spatial correlations in sea ice velocity fields are of particular interest. It is thus natural to ask, How persistent are these correlations?'' To this end, a multifractal stochastic treatment is developed to analyze observed Arctic sea ice velocity fields from satellites and buoys for the period 1978-2015. Since it was previously found that the Arctic equivalent ice extent (EIE) has a white noise structure on annual to biannual time scales, the connection between EIE and ice motion is assessed. The long-term stationarity of the spatial correlation structure of the velocity fields and the robustness of their white noise structure on multiple time scales is demonstrated; these factors (i) combine to explain the white noise characteristics of the EIE on annual to biannual time scales and (ii) explain why the fluctuations in the ice velocity are proportional to fluctuations in the geostrophic winds on time scales of days to months. Moreover, it is shown that the statistical structure of these two quantities is commensurate from days to years, which may be related to the increasing prevalence of free drift in the ice pack.

  • 27. Aghanim, N.
    et al.
    Akrami, Y.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Benabed, K.
    Bersanelli, M.
    Bielewicz, P.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Burigana, C.
    Calabrese, E.
    Cardoso, J. -F.
    Challinor, A.
    Chiang, H. C.
    Colombo, L. P. L.
    Combet, C.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Dore, O.
    Ducout, A.
    Dupac, X.
    Dusini, S.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fantaye, Y.
    Finelli, F.
    Forastieri, F.
    Frailis, M.
    Franceschi, E.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Università La Sapienza, Italy.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Princeton University, USA.
    Herranz, D.
    Hivon, E.
    Huang, Z.
    Jaffe, A. H.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Kiiveri, K.
    Kim, J.
    Kisner, T. S.
    Knox, L.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Levrier, F.
    Lewis, A.
    Liguori, M.
    Lilje, P. B.
    Lilley, M.
    Lindholm, V.
    Lopez-Caniego, M.
    Lubin, P. M.
    Ma, Y. -Z.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Matarrese, S.
    Mauri, N.
    McEwen, J. D.
    Meinhold, P. R.
    Mennella, A.
    Migliaccio, M.
    Millea, M.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Moss, A.
    Narimani, A.
    Natoli, P.
    Oxborrow, C. A.
    Pagano, L.
    Paoletti, D.
    Partridge, B.
    Patanchon, G.
    Patrizii, L.
    Pettorino, V.
    Piacentini, F.
    Polastri, L.
    Polenta, G.
    Puget, J. -L.
    Rachen, J. P.
    Racine, B.
    Reinecke, M.
    Remazeilles, M.
    Renzi, A.
    Rocha, G.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Ruiz-Granados, B.
    Salvati, L.
    Sandri, M.
    Savelainen, M.
    Scott, D.
    Sirignano, C.
    Sirri, G.
    Stanco, L.
    Suur-Uski, A. -S.
    Tauber, J. A.
    Tavagnacco, D.
    Tenti, M.
    Toffolati, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Vittorio, N.
    Wandelt, B. D.
    Wehus, I. K.
    White, M.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters2017In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 607, article id A95Article in journal (Refereed)
    Abstract [en]

    The six parameters of the standard Lambda CDM model have best-fit values derived from the Planck temperature power spectrum that are shifted somewhat from the best-fit values derived from WMAP data. These shifts are driven by features in the Planck temperature power spectrum at angular scales that had never before been measured to cosmic-variance level precision. We have investigated these shifts to determine whether they are within the range of expectation and to understand their origin in the data. Taking our parameter set to be the optical depth of the reionized intergalactic medium tau, the baryon density omega(b), the matter density omega(m), the angular size of the sound horizon theta(*), the spectral index of the primordial power spectrum, n(s), and A(s)e(-2 pi) (where As is the amplitude of the primordial power spectrum), we have examined the change in best-fit values between a WMAP-like large angular-scale data set (with multipole moment l < 800 in the Planck temperature power spectrum) and an all angular-scale data set (l < 2500 Planck temperature power spectrum), each with a prior on tau of 0.07 +/- 0.02. We find that the shifts, in units of the 1 sigma expected dispersion for each parameter, are {Delta tau, Delta A(s)e(-2 tau), Delta n(s), Delta omega(m), Delta omega(b), Delta theta(*)} = {-1.7, -2.2, 1.2, 2.0, 1.1, 0.9}, with a chi(2) value of 8.0. We find that this chi(2) value is exceeded in 15% of our simulated data sets, and that a parameter deviates by more than 2.2 sigma in 9% of simulated data sets, meaning that the shifts are not unusually large. Comparing l < 800 instead to l > 800, or splitting at a different multipole, yields similar results. We examined the l < 800 model residuals in the l > 800 power spectrum data and find that the features there that drive these shifts are a set of oscillations across a broad range of angular scales. Although they partly appear similar to the effects of enhanced gravitational lensing, the shifts in Lambda CDM parameters that arise in response to these features correspond to model spectrum changes that are predominantly due to non-lensing effects; the only exception is tau, which, at fixed A(s)e(-2 tau), affects the l > 800 temperature power spectrum solely through the associated change in As and the impact of that on the lensing potential power spectrum. We also ask, what is it about the power spectrum at l < 800 that leads to somewhat different best-fit parameters than come from the full l range? We find that if we discard the data at l < 30, where there is a roughly 2 sigma downward fluctuation in power relative to the model that best fits the full l range, the l < 800 best-fit parameters shift significantly towards the l < 2500 best-fit parameters. In contrast, including l < 30, this previously noted low-l deficit drives ns up and impacts parameters correlated with ns, such as omega(m) and H-0. As expected, the l < 30 data have a much greater impact on the l < 800 best fit than on the l < 2500 best fit. So although the shifts are not very significant, we find that they can be understood through the combined effects of an oscillatory-like set of high-l residuals and the deficit in low-l power, excursions consistent with sample variance that happen to map onto changes in cosmological parameters. Finally, we examine agreement between Planck TT data and two other CMB data sets, namely the Planck lensing reconstruction and the TT power spectrum measured by the South Pole Telescope, again finding a lack of convincing evidence of any significant deviations in parameters, suggesting that current CMB data sets give an internally consistent picture of the Lambda CDM model.

  • 28. Aghanim, N.
    et al.
    Alves, M. I. R.
    Arzoumanian, D.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Benabed, K.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bracco, A.
    Bucher, M.
    Burigana, C.
    Calabrese, E.
    Cardoso, J. -F.
    Chiang, H. C.
    Colombo, L. P. L.
    Combet, C.
    Comis, B.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Delouis, J. -M.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Dusini, S.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fantaye, Y.
    Ferriere, K.
    Finelli, F.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Università La Sapienza, Italy.
    Ghosh, T.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Guillet, V.
    Hansen, F. K.
    Helou, G.
    Henrot-Versille, S.
    Herranz, D.
    Hivon, E.
    Huang, Z.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Langer, M.
    Lasenby, A.
    Lattanzi, M.
    Le Jeune, M.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Matarrese, S.
    Mauri, N.
    McEwen, J. D.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Moss, A.
    Naselsky, P.
    Natoli, P.
    Neveu, J.
    Norgaard-Nielsen, H. U.
    Oppermann, N.
    Oxborrow, C. A.
    Pagano, L.
    Paoletti, D.
    Partridge, B.
    Perdereau, O.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Plaszczynski, S.
    Polenta, G.
    Rachen, J. P.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rossetti, M.
    Roudier, G.
    Ruiz-Granados, B.
    Salvati, L.
    Sandri, M.
    Savelainen, M.
    Scott, D.
    Sirignano, C.
    Soler, J. D.
    Suur-Uski, A. -S.
    Tauber, J. A.
    Tavagnacco, D.
    Tenti, M.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Valiviita, J.
    Vansyngel, F.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wandelt, B. D.
    Wehus, I. K.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results XLIV. Structure of the Galactic magnetic field from dust polarization maps of the southern Galactic cap2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 596, article id A105Article in journal (Refereed)
    Abstract [en]

    Using data from the Planck satellite, we study the statistical properties of interstellar dust polarization at high Galactic latitudes around the south pole (b < -60 degrees). Our aim is to advance the understanding of the magnetized interstellar medium (ISM), and to provide a modelling framework of the polarized dust foreground for use in cosmic microwave background (CMB) component-separation procedures. We examine the Stokes I, Q, and U maps at 353 GHz, and particularly the statistical distribution of the polarization fraction (p) and angle (Psi), in order to characterize the ordered and turbulent components of the Galactic magnetic field (GMF) in the solar neighbourhood. The Q and U maps show patterns at large angular scales, which we relate to the mean orientation of the GMF towards Galactic coordinates (l(0); b(0)) = (70 degrees +/- 5 degrees, 24 degrees +/- 5 degrees). The histogram of the observed p values shows a wide dispersion up to 25%. The histogram Psi of has a standard deviation of 12 degrees about the regular pattern expected from the ordered GMF. We build a phenomenological model that connects the distributions of p and Psi to a statistical description of the turbulent component of the GMF, assuming a uniform effective polarization fraction (p(0)) of dust emission. To compute the Stokes parameters, we approximate the integration along the line of sight (LOS) as a sum over a set of N independent polarization layers, in each of which the turbulent component of the GMF is obtained from Gaussian realizations of a power-law power spectrum. We are able to reproduce the observed p and distributions using a p0 value of 26%, a ratio of 0.9 between the strengths of the turbulent and mean components of the GMF, and a small value of N. The mean value of p (inferred from the fit of the large-scale patterns in the Stokes maps) is 12 +/- 1%. We relate the polarization layers to the density structure and to the correlation length of the GMF along the LOS. We emphasize the simplicity of our model (involving only a few parameters), which can be easily computed on the celestial sphere to produce simulated maps of dust polarization. Our work is an important step towards a model that can be used to assess the accuracy of component-separation methods in present and future CMB experiments designed to search the B mode CMB polarization from primordial gravity waves.

  • 29. Aghanim, N.
    et al.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chiang, H. C.
    Christensen, P. R.
    Clements, D. L.
    Colombo, L. P. L.
    Combet, C.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Dolag, K.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dunkley, J.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Gauthier, C.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Università La Sapienza, Italy.
    Giard, M.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hamann, J.
    Hansen, F. K.
    Harrison, D. L.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Holmes, W. A.
    Hornstrup, A.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kiiveri, K.
    Knoche, J.
    Knox, L.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Lewis, A.
    Liguori, M.
    Lilje, P. B.
    Lilley, M.
    Linden-Vornle, M.
    Lindholm, V.
    Lopez-Caniego, M.
    Macias-Perez, J. F.
    Maffei, B.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    Meinhold, P. R.
    Melchiorri, A.
    Migliaccio, M.
    Millea, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Mottet, S.
    Munshi, D.
    Murphy, J. A.
    Narimani, A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Partridge, B.
    Pasian, F.
    Patanchon, G.
    Pearson, T. J.
    Perdereau, O.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Ponthieu, N.
    Pratt, G. W.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rossetti, M.
    Roudier, G.
    d'Orfeuil, B. Rouille
    Rubino-Martin, J. A.
    Rusholme, B.
    Salvati, L.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Serra, P.
    Spencer, L. D.
    Spinelli, M.
    Stolyarov, V.
    Stompor, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Tucci, M.
    Tuovinen, J.
    Umana, G.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results XI. CMB power spectra, likelihoods, and robustness of parameters2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A11Article in journal (Refereed)
    Abstract [en]

    This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlation functions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties, both instrumental and astrophysical in nature. They are based on the same hybrid approach used for the previous release, i.e., a pixel-based likelihood at low multipoles (l < 30) and a Gaussian approximation to the distribution of cross-power spectra at higher multipoles. The main improvements are the use of more and better processed data and of Planck polarization information, along with more detailed models of foregrounds and instrumental uncertainties. The increased redundancy brought by more than doubling the amount of data analysed enables further consistency checks and enhanced immunity to systematic effects. It also improves the constraining power of Planck, in particular with regard to small-scale foreground properties. Progress in the modelling of foreground emission enables the retention of a larger fraction of the sky to determine the properties of the CMB, which also contributes to the enhanced precision of the spectra. Improvements in data processing and instrumental modelling further reduce uncertainties. Extensive tests establish the robustness and accuracy of the likelihood results, from temperature alone, from polarization alone, and from their combination. For temperature, we also perform a full likelihood analysis of realistic end-to-end simulations of the instrumental response to the sky, which were fed into the actual data processing pipeline; this does not reveal biases from residual low-level instrumental systematics. Even with the increase in precision and robustness, the Lambda CDM cosmological model continues to offer a very good fit to the Planck data. The slope of the primordial scalar fluctuations, n(s), is confirmed smaller than unity at more than 5 sigma from Planck alone. We further validate the robustness of the likelihood results against specific extensions to the baseline cosmology, which are particularly sensitive to data at high multipoles. For instance, the effective number of neutrino species remains compatible with the canonical value of 3.046. For this first detailed analysis of Planck polarization spectra, we concentrate at high multipoles on the E modes, leaving the analysis of the weaker B modes to future work. At low multipoles we use temperature maps at all Planck frequencies along with a subset of polarization data. These data take advantage of Planck's wide frequency coverage to improve the separation of CMB and foreground emission. Within the baseline Lambda CDM cosmology this requires tau = 0.078 +/- 0.019 for the reionization optical depth, which is significantly lower than estimates without the use of high-frequency data for explicit monitoring of dust emission. At high multipoles we detect residual systematic errors in E polarization, typically at the mu K-2 level; we therefore choose to retain temperature information alone for high multipoles as the recommended baseline, in particular for testing non-minimal models. Nevertheless, the high-multipole polarization spectra from Planck are already good enough to enable a separate high-precision determination of the parameters of the Lambda CDM model, showing consistency with those established independently from temperature information alone.

  • 30. Aghanim, N.
    et al.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Battye, R.
    Benabed, K.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Carron, J.
    Challinor, A.
    Chiang, H. C.
    Colombo, L. P. L.
    Combet, C.
    Comis, B.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Delouis, J. -M.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fantaye, Y.
    Finelli, F.
    Forastieri, F.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Università La Sapienza, Italy.
    Ghosh, T.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Helou, G.
    Henrot-Versille, S.
    Herranz, D.
    Hivon, E.
    Huang, Z.
    Ilic, S.
    Jaffe, A. H.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Knox, L.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lamarre, J. -M.
    Langer, M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Leahy, J. P.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Lopez-Caniego, M.
    Ma, Y. -Z.
    Macias-Perez, J. F.
    Maggio, G.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Matarrese, S.
    Mauri, N.
    McEwen, J. D.
    Meinhold, P. R.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Moss, A.
    Mottet, S.
    Naselsky, P.
    Natoli, P.
    Oxborrow, C. A.
    Pagano, L.
    Paoletti, D.
    Partridge, B.
    Patanchon, G.
    Patrizii, L.
    Perdereau, O.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Plaszczynski, S.
    Polastri, L.
    Polenta, G.
    Puget, J. -L.
    Rachen, J. P.
    Racine, B.
    Reinecke, M.
    Remazeilles, M.
    Renzi, A.
    Rocha, G.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Ruiz-Granados, B.
    Salvati, L.
    Sandri, M.
    Savelainen, M.
    Scott, D.
    Sirri, G.
    Sunyaev, R.
    Suur-Uski, A. -S.
    Tauber, J. A.
    Tenti, M.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Valiviita, J.
    Van Tent, F.
    Vibert, L.
    Vielva, P.
    Villa, F.
    Vittorio, N.
    Wandelt, B. D.
    Watson, R.
    Wehus, I. K.
    White, M.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 596, article id A107Article in journal (Refereed)
    Abstract [en]

    This paper describes the identification, modelling, and removal of previously unexplained systematic effects in the polarization data of the Planck High Frequency Instrument (HFI) on large angular scales, including new mapmaking and calibration procedures, new and more complete end-to-end simulations, and a set of robust internal consistency checks on the resulting maps. These maps, at 100, 143, 217, and 353 GHz, are early versions of those that will be released in final form later in 2016. The improvements allow us to determine the cosmic reionization optical depth tau using, for the first time, the low-multipole EE data from HFI, reducing significantly the central value and uncertainty, and hence the upper limit. Two different likelihood procedures are used to constrain tau from two estimators of the CMB E- and B-mode angular power spectra at 100 and 143 GHz, after debiasing the spectra from a small remaining systematic contamination. These all give fully consistent results. A further consistency test is performed using cross-correlations derived from the Low Frequency Instrument maps of the Planck 2015 data release and the new HFI data. For this purpose, end-to-end analyses of systematic effects from the two instruments are used to demonstrate the near independence of their dominant systematic error residuals. The tightest result comes from the HFI-based tau posterior distribution using the maximum likelihood power spectrum estimator from EE data only, giving a value 0.055 +/- 0.009. In a companion paper these results are discussed in the context of the best-fit Planck Lambda CDM cosmological model and recent models of reionization.

  • 31. Aghanim, N.
    et al.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Benabed, K.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bracco, A.
    Burigana, C.
    Calabrese, E.
    Cardoso, J. -F.
    Chiang, H. C.
    Colombo, L. P. L.
    Combet, C.
    Comis, B.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Delouis, J. -M.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Dusini, S.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fantaye, Y.
    Finelli, F.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Università La Sapienza, Italy.
    Ghosh, T.
    Giard, M.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Helou, G.
    Herranz, D.
    Hivon, E.
    Huang, Z.
    Jaffe, A. H.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Matarrese, S.
    Mauri, N.
    McEwen, J. D.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Moss, A.
    Naselsky, P.
    Norgaard-Nielsen, H. U.
    Oxborrow, C. A.
    Pagano, L.
    Paoletti, D.
    Partridge, B.
    Patrizii, L.
    Perdereau, O.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Plaszczynski, S.
    Polenta, G.
    Puget, J. -L.
    Rachen, J. P.
    Reinecke, M.
    Remazeilles, M.
    Renzi, A.
    Rocha, G.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Ruiz-Granados, B.
    Salvati, L.
    Sandri, M.
    Savelainen, M.
    Scott, D.
    Sirignano, C.
    Sirri, G.
    Stanco, L.
    Suur-Uski, A. -S.
    Tauber, J. A.
    Tenti, M.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Valiviita, J.
    Vansyngel, F.
    Van Tent, F.
    Vielva, P.
    Wandelt, B. D.
    Wehus, I. K.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results L. Evidence of spatial variation of the polarized thermal dust spectral energy distribution and implications for CMB B-mode analysis2017In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 599, article id A51Article in journal (Refereed)
    Abstract [en]

    The characterization of the Galactic foregrounds has been shown to be the main obstacle in the challenging quest to detect primordial B-modes in the polarized microwave sky. We make use of the Planck-HFI 2015 data release at high frequencies to place new constraints on the properties of the polarized thermal dust emission at high Galactic latitudes. Here, we specifically study the spatial variability of the dust polarized spectral energy distribution (SED), and its potential impact on the determination of the tensor-to-scalar ratio, r. We use the correlation ratio of the CBB `angular power spectra between the 217 and 353 GHz channels as a tracer of these potential variations, computed on different high Galactic latitude regions, ranging from 80% to 20% of the sky. The new insight from Planck data is a departure of the correlation ratio from unity that cannot be attributed to a spurious decorrelation due to the cosmic microwave background, instrumental noise, or instrumental systematics. The effect is marginally detected on each region, but the statistical combination of all the regions gives more than 99% confidence for this variation in polarized dust properties. In addition, we show that the decorrelation increases when there is a decrease in the mean column density of the region of the sky being considered, and we propose a simple power-law empirical model for this dependence, which matches what is seen in the Planck data. We explore the effect that this measured decorrelation has on simulations of the BICEP2-Keck Array/Planck analysis and show that the 2015 constraints from these data still allow a decorrelation between the dust at 150 and 353 GHz that is compatible with our measured value. Finally, using simplified models, we show that either spatial variation of the dust SED or of the dust polarization angle are able to produce decorrelations between 217 and 353 GHz data similar to the values we observe in the data.

  • 32. Aghanim, N.
    et al.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Benabed, K.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Burigana, C.
    Calabrese, E.
    Cardoso, J. -F.
    Carron, J.
    Chiang, H. C.
    Colombo, L. P. L.
    Comis, B.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    de Bernardis, P.
    de Zotti, G.
    Delabrouille, J.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Dusini, S.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fantaye, Y.
    Finelli, F.
    Forastieri, F.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Università La Sapienza, Italy.
    Ghosh, T.
    Giraud-Heraud, Y.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Helou, G.
    Henrot-Versille, S.
    Herranz, D.
    Hivon, E.
    Huang, Z.
    Jaffe, A. H.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Kiiveri, K.
    Kisner, T. S.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lamarre, J. -M.
    Langer, M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Levrier, F.
    Lilje, P. B.
    Lilley, M.
    Lindholm, V.
    Lopez-Caniego, M.
    Ma, Y. -Z.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Matarrese, S.
    Mauri, N.
    McEwen, J. D.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Moss, A.
    Natoli, P.
    Oxborrow, C. A.
    Pagano, L.
    Paoletti, D.
    Patanchon, G.
    Perdereau, O.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Plaszczynski, S.
    Polastri, L.
    Polenta, G.
    Puget, J. -L.
    Rachen, J. P.
    Racine, B.
    Reinecke, M.
    Remazeilles, M.
    Renzi, A.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Ruiz-Granados, B.
    Salvati, L.
    Sandri, M.
    Savelainen, M.
    Scott, D.
    Sirignano, C.
    Sirri, G.
    Soler, J. D.
    Spencer, L. D.
    Suur-Uski, A. -S.
    Tauber, J. A.
    Tavagnacco, D.
    Tenti, M.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Vittorio, N.
    Wandelt, B. D.
    Wehus, I. K.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results XLVIII. Disentangling Galactic dust emission and cosmic infrared background anisotropies2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 596, article id A109Article in journal (Refereed)
    Abstract [en]

    Using the Planck 2015 data release (PR2) temperature maps, we separate Galactic thermal dust emission from cosmic infrared background (CIB) anisotropies. For this purpose, we implement a specifically tailored component-separation method, the so-called generalized needlet internal linear combination (GNILC) method, which uses spatial information (the angular power spectra) to disentangle the Galactic dust emission and CIB anisotropies. We produce significantly improved all-sky maps of Planck thermal dust emission, with reduced CIB contamination, at 353, 545, and 857 GHz. By reducing the CIB contamination of the thermal dust maps, we provide more accurate estimates of the local dust temperature and dust spectral index over the sky with reduced dispersion, especially at high Galactic latitudes above b = +/- 20 degrees. We find that the dust temperature is T = (19.4 +/- 1.3) K and the dust spectral index is beta = 1.6 +/- 0.1 averaged over the whole sky, while T = (19.4 +/- 1.5) K and beta = 1.6 +/- 0.2 on 21% of the sky at high latitudes. Moreover, subtracting the new CIB-removed thermal dust maps from the CMB-removed Planck maps gives access to the CIB anisotropies over 60% of the sky at Galactic latitudes vertical bar b vertical bar > 20 degrees. Because they are a significant improvement over previous Planck products, the GNILC maps are recommended for thermal dust science. The new CIB maps can be regarded as indirect tracers of the dark matter and they are recommended for exploring cross-correlations with lensing and large-scale structure optical surveys. The reconstructed GNILC thermal dust and CIB maps are delivered as Planck products.

  • 33. Aghanim, N.
    et al.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Benabed, K.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Burigana, C.
    Calabrese, E.
    Cardoso, J. -F.
    Carron, J.
    Chiang, H. C.
    Colombo, L. P. L.
    Comis, B.
    Contreras, D.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Dore, O.
    Ducout, A.
    Dupac, X.
    Dusini, S.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fantaye, Y.
    Finelli, F.
    Forastieri, F.
    Frailis, M.
    Franceschi, E.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Università La Sapienza, Italy.
    Giraud-Heraud, Y.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Henrot-Versille, S.
    Herranz, D.
    Hivon, E.
    Huang, Z.
    Jaffe, A. H.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Kiiveri, K.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lamarre, J. -M.
    Langer, M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Leahy, J. P.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Lindholm, V.
    Lopez-Caniego, M.
    Ma, Y. -Z.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Matarrese, S.
    Mauri, N.
    McEwen, J. D.
    Meinhold, P. R.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Morgante, G.
    Moss, A.
    Natoli, P.
    Pagano, L.
    Paoletti, D.
    Patanchon, G.
    Patrizii, L.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Polastri, L.
    Polenta, G.
    Rachen, J. P.
    Racine, B.
    Reinecke, M.
    Remazeilles, M.
    Renzi, A.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Ruiz-Granados, B.
    Sandri, M.
    Savelainen, M.
    Scott, D.
    Sirignano, C.
    Sirri, G.
    Spencer, L. D.
    Suur-Uski, A. -S.
    Tauber, J. A.
    Tavagnacco, D.
    Tenti, M.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Vittorio, N.
    Wandelt, B. D.
    Wehus, I. K.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results XLIX. Parity-violation constraints from polarization data2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 596, article id A110Article in journal (Refereed)
    Abstract [en]

    Parity-violating extensions of the standard electromagnetic theory cause in vacuo rotation of the plane of polarization of propagating photons. This effect, also known as cosmic birefringence, has an impact on the cosmic microwave background (CMB) anisotropy angular power spectra, producing non-vanishing T-B and E-B correlations that are otherwise null when parity is a symmetry. Here we present new constraints on an isotropic rotation, parametrized by the angle alpha, derived from Planck 2015 CMB polarization data. To increase the robustness of our analyses, we employ two complementary approaches, in harmonic space and in map space, the latter based on a peak stacking technique. The two approaches provide estimates for alpha that are in agreement within statistical uncertainties and are very stable against several consistency tests. Considering the T-B and E-B information jointly, we find alpha = 0 degrees: 31 +/- 0 degrees.05 (stat:) +/- 0 degrees:28 (syst:) from the harmonic analysis and alpha = 0 degrees.35 +/- 0 degrees.05 (stat :) 0 degrees.28 (syst :) from the stacking approach. These constraints are compatible with no parity violation and are dominated by the systematic uncertainty in the orientation of Planck's polarization-sensitive bolometers.

  • 34. Ahmed, Towfiq
    et al.
    Albers, R. C.
    Balatsky, Alexander V.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Los Alamos National Laboratory, USA.
    Friedrich, C.
    Zhu, Jian-Xin
    GW quasiparticle calculations with spin-orbit coupling for the light actinides2014In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 89, no 3, p. 035104-Article in journal (Refereed)
    Abstract [en]

    We report on the importance of GW self-energy corrections for the electronic structure of light actinides in the weak-to-intermediate coupling regime. Our study is based on calculations of the band structure and total density of states of Np, U, and Pu using a one-shot GW approximation that includes spin-orbit coupling within a full potential LAPW framework. We also present RPA screened effective Coulomb interactions for the f-electron orbitals for different lattice constants, and show that there is an increased contribution from electron-electron correlation in these systems for expanded lattices. We find a significant amount of electronic correlation in these highly localized electronic systems.

  • 35. Ahmed, Towfiq
    et al.
    Haraldsen, Jason T.
    Rehr, John J.
    Di Ventra, Massimiliano
    Schuller, Ivan
    Balatsky, Alexander V.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Los Alamos National Laboratory, USA.
    Correlation dynamics and enhanced signals for the identification of serial biomolecules and DNA bases2014In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 25, no 12, p. 125705-Article in journal (Refereed)
    Abstract [en]

    Nanopore-based sequencing has demonstrated a significant potential for the development of fast, accurate, and cost-efficient fingerprinting techniques for next generation molecular detection and sequencing. We propose a specific multilayered graphene-based nanopore device architecture for the recognition of single biomolecules. Molecular detection and analysis can be accomplished through the detection of transverse currents as the molecule or DNA base translocates through the nanopore. To increase the overall signal-to-noise ratio and the accuracy, we implement a new 'multi-point cross-correlation' technique for identification of DNA bases or other molecules on the single molecular level. We demonstrate that the cross-correlations between each nanopore will greatly enhance the transverse current signal for each molecule. We implement first-principles transport calculations for DNA bases surveyed across a multilayered graphene nanopore system to illustrate the advantages of the proposed geometry. A time-series analysis of the cross-correlation functions illustrates the potential of this method for enhancing the signal-to-noise ratio. This work constitutes a significant step forward in facilitating fingerprinting of single biomolecules using solid state technology.

  • 36. Ahmed, Towfiq
    et al.
    Haraldsen, Jason T.
    Zhu, Jian-Xin
    Balatsky, Alexander V.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Royal Institute of Technology, Sweden; Los Alamos National Laboratory, USA.
    Next-Generation Epigenetic Detection Technique: Identifying Methylated Cytosine Using Graphene Nanopore2014In: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, Vol. 5, no 15, p. 2601-2607Article in journal (Refereed)
    Abstract [en]

    DNA methylation plays a pivotal role in the genetic evolution of both embryonic and adult cells. For adult somatic cells, the location and dynamics of methylation have been very precisely pinned down with the 5-cytosine markers on cytosine-phosphate-guanine (CpG) units. Unusual methylation on CpG islands is identified as one of the prime causes for silencing the tumor suppressant genes. Early detection of methylation changes can diagnose the potentially harmful oncogenic evolution of cells and provide promising guideline for cancer prevention. With this motivation, we propose a cytosine methylation detection technique. Our hypothesis is that electronic signatures of DNA acquired as a molecule translocates through a nanopore would be significantly different for methylated and nonmethylated bases. This difference in electronic fingerprints would allow for reliable real-time differentiation of methylated DNA. We calculate transport currents through a punctured graphene membrane while the cytosine and methylated cytosine translocate through the nanopore. We also calculate the transport properties for uracil and cyanocytosine for comparison. Our calculations of transmission, current, and tunneling conductance show distinct signatures in their spectrum for each molecular type. Thus, in this work, we provide a theoretical analysis that points to a viability of our hypothesis.

  • 37. Akrami, Y.
    et al.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Benabed, K.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Carron, J.
    Chiang, H. C.
    Colombo, L. P. L.
    Comis, B.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Dore, O.
    Ducout, A.
    Dupac, X.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fantaye, Y.
    Finelli, F.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Università La Sapienza, Italy.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Princeton University, USA.
    Hansen, F. K.
    Helou, G.
    Henrot-Versille, S.
    Herranz, D.
    Hivon, E.
    Jaffe, A. H.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Kiiveri, K.
    Kim, J.
    Kisner, T. S.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Lellouch, E.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Lindholm, V.
    Lopez-Caniego, M.
    Ma, Y. -Z.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Matarrese, S.