Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Kaplan, D. L.
    et al.
    Stovall, K.
    van Kerkwijk, M. H.
    Fremling, Christoffer
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). California Institute of Technology, USA.
    Istrate, A. G.
    A Dense Companion to the Short-period Millisecond Pulsar Binary PSR J0636+51282018In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 864, no 1, article id 15Article in journal (Refereed)
    Abstract [en]

    PSR J0636+5128 is a millisecond pulsar in one of the most compact pulsar binaries known, with a 96 minute orbital period. The pulsar mass function suggests a very low mass companion, similar to that seen in so-called black widow binaries. Unlike in most of those, however, no radio eclipses by material driven off from the companion were seen leading to the possibility that the companion was a degenerate remnant of a carbon-oxygen white dwarf. We report the discovery of the optical counterpart of its companion in images taken with the Gemini North and Keck I telescopes. The companion varies between r' = 25 and r' = 23 on the 96 minute orbital period of the binary, caused by irradiation from the pulsar's energetic wind. We modeled the multicolor light curve using parallax constraints from pulsar timing and determine a companion mass of (1.71 +/- 0.23) x 10(-2) M-circle dot,M- a radius of (7.6 +/- 1.4) x 10(-2) R-circle dot, and a mean density of 54 +/- 26 g cm(-3), all for an assumed neutron star mass of 1.4 M-circle dot. This makes the companion to PSR J0636+5128 one of the densest of the black widow systems. Modeling suggests that the composition is not predominantly hydrogen, perhaps due to an origin in an ultracompact X-ray binary.

  • 2. Kasliwal, M. M.
    et al.
    Nakar, E.
    Singer, L. P.
    Kaplan, D. L.
    Cook, D. O.
    Van Sistine, A.
    Lau, R. M.
    Fremling, C.
    Gottlieb, O.
    Jencson, J. E.
    Adams, S. M.
    Feindt, Ulrich
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hotokezaka, K.
    Ghosh, S.
    Perley, D. A.
    Yu, P-C.
    Piran, T.
    Allison, J. R.
    Anupama, G. C.
    Balasubramanian, A.
    Bannister, K. W.
    Bally, J.
    Barnes, J.
    Barway, S.
    Bellm, E.
    Bhalerao, V.
    Bhattacharya, D.
    Blagorodnova, N.
    Bloom, J. S.
    Brady, P. R.
    Cannella, C.
    Chatterjee, D.
    Cenko, S. B.
    Cobb, B. E.
    Copperwheat, C.
    Corsi, A.
    De, K.
    Dobie, D.
    Emery, S. W. K.
    Evans, P. A.
    Fox, O. D.
    Frail, D. A.
    Frohmaier, C.
    Goobar, Ariel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hallinan, G.
    Harrison, F.
    Helou, G.
    Hinderer, T.
    Ho, A. Y. Q.
    Horesh, A.
    Ip, W-H.
    Itoh, R.
    Kasen, D.
    Kim, H.
    Kuin, N. P. M.
    Kupfer, T.
    Lynch, C.
    Madsen, K.
    Mazzali, P. A.
    Miller, A. A.
    Mooley, K.
    Murphy, T.
    Ngeow, C-C.
    Nichols, D.
    Nissanke, S.
    Nugent, P.
    Ofek, E. O.
    Qi, H.
    Quimby, R. M.
    Rosswog, Stephan
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Rusu, F.
    Sadler, E. M.
    Schmidt, P.
    Sollerman, Jesper
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Steele, I.
    Williamson, A. R.
    Xu, Y.
    Yan, L.
    Yatsu, Y.
    Zhang, C.
    Zhao, W.
    Illuminating gravitational waves: A concordant picture of photons from a neutron star merger2017In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 358, no 6370, p. 1559-+Article in journal (Refereed)
    Abstract [en]

    Merging neutron stars offer an excellent laboratory for simultaneously studying strong-field gravity and matter in extreme environments. We establish the physical association of an electromagnetic counterpart (EM170817) with gravitational waves (GW170817) detected from merging neutron stars. By synthesizing a panchromatic data set, we demonstrate that merging neutron stars are a long-sought production site forging heavy elements by r-process nucleosynthesis. The weak gamma rays seen in EM170817 are dissimilar to classical short gamma-ray bursts with ultrarelativistic jets. Instead, we suggest that breakout of a wide-angle, mildly relativistic cocoon engulfing the jet explains the low-luminosity gamma rays, the high-luminosity ultraviolet-optical-infrared, and the delayed radio and x-ray emission. We posit that all neutron star mergers may lead to a wide-angle cocoon breakout, sometimes accompanied by a successful jet and sometimes by a choked jet.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf