Endre søk
Begrens søket
1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Demina, Irina V.
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och botanik.
    Maity, Pooja Jha
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och botanik.
    Nagchowdhury, Anurupa
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och botanik.
    Ng, Jason L. P.
    van der Graaff, Eric
    Demchenko, Kirill N.
    Roitsch, Thomas
    Mathesius, Ulrike
    Pawlowski, Katharina
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och botanik.
    Accumulation of and Response to Auxins in Roots and Nodules of the Actinorhizal Plant Datisca glomerata Compared to the Model Legume Medicago truncatula2019Inngår i: Frontiers in Plant Science, ISSN 1664-462X, E-ISSN 1664-462X, Vol. 10, artikkel-id 1085Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Actinorhizal nodules are structurally different from legume nodules and show a greater similarity to lateral roots. Because of the important role of auxins in lateral root and nodule formation, auxin profiles were examined in roots and nodules of the actinorhizal species Datisca glomerata and the model legume Medicago truncatula. The auxin response in roots and nodules of both species was analyzed in transgenic root systems expressing a beta-glucuronidase gene under control of the synthetic auxin-responsive promoter DR5. The effects of two different auxin on root development were compared for both species. The auxin present in nodules at the highest levels was phenylacetic acid (PAA). No differences were found between the concentrations of active auxins of roots vs. nodules, while levels of the auxin conjugate indole-3-acetic acid-alanine were increased in nodules compared to roots of both species. Because auxins typically act in concert with cytokinins, cytokinins were also quantified. Concentrations of cis-zeatin and some glycosylated cytokinins were dramatically increased in nodules compared to roots of D. glomerata, but not of M. truncatula. The ratio of active auxins to cytokinins remained similar in nodules compared to roots in both species. The auxin response, as shown by the activation of the DR5 promoter, seemed significantly reduced in nodules compared to roots of both species, suggesting the accumulation of auxins in cell types that do not express the signal transduction pathway leading to DR5 activation. Effects on root development were analyzed for the synthetic auxin naphthaleneacetic acid (NAA) and PAA, the dominant auxin in nodules. Both auxins had similar effects, except that the sensitivity of roots to PAA was lower than to NAA. However, while the effects of both auxins on primary root growth were similar for both species, effects on root branching were different: both auxins had the classical positive effect on root branching in M. truncatula, but a negative effect in D. glomerata. Such a negative effect of exogenous auxin on root branching has previously been found for a cucurbit that forms lateral root primordia in the meristem of the parental root; however, root branching in D. glomerata does not follow that pattern.

  • 2. Ilina, Elena L.
    et al.
    Kiryushkin, Alexey S.
    Semenova, Victoria A.
    Demchenko, Nikolay P.
    Pawlowski, Katharina
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och botanik.
    Demchenko, Kirill N.
    Lateral root initiation and formation within the parental root meristem of Cucurbita pepo: is auxin a key player?2018Inngår i: Annals of Botany, ISSN 0305-7364, E-ISSN 1095-8290, Vol. 122, nr 5, s. 873-888Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background and Aims In some plant families. including Cucurbitaceae, initiation and development of lateral roots (LRs) occur in the parental root apical meristem. The objective of this study was to identify the general mechanisms underlying LR initiation (LRI). Therefore, the first cellular events leading to LRI as well as the role of auxin in this process were studied in the Cucurbita pepo root apical meristem.

    Methods Transgenic hairy roots harbouring the auxin-responsive promoter DR5 fused to different reporter genes were used for visualizing of cellular auxin response maxima (ARMs) via confocal laser scanning microscopy and 3-D imaging. The effects of exogenous auxin and auxin transport inhibitors on root branching were analysed.

    Key Results The earliest LRI event involved a group of symmetric anticlinal divisions in pericycle cell files at a distance of 250-350 pm from the initial cells. The visualization of the ARMs enabled the precise detection of cells involved in determining the site of LR primordium formation. A local ARM appeared in sister cells of the pericycle and endodermis files before the first division. Cortical cells contributed to LR development after the anticlinal divisions in the pericycle via the formation of an ARM. Exogenous auxins did not increase the total number of LRs and did not affect the LRI index. Although exogenous auxin transport inhibitors acted in different ways. they all reduced the number of LRs formed.

    Conclusions Literature data, as well as results obtained in this study, suggest that the formation of a local ARM before the first anticlinal formative divisions is the common mechanism underlying LRI in flowering plants. We propose that the mechanisms of the regulation of root branching are independent of the position of the LRI site relative to the parental root tip.

  • 3. Wibberg, Daniel
    et al.
    Vigil-Stenman, Theoden
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och botanik.
    Berckx, Fede
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och botanik.
    Battenberg, Kai
    Demchenko, Kirill N.
    Blom, Jochen
    Fernandez, Maria P.
    Yamanaka, Takashi
    Berry, Alison M.
    Kalinowski, Jörn
    Brachmann, Andreas
    Pawlowski, Katharina
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och botanik.
    Frankia-Enriched Metagenomes from the Earliest Diverging Symbiotic Frankia Cluster: They Come in Teams2019Inngår i: Genome Biology and Evolution, ISSN 1759-6653, E-ISSN 1759-6653, Vol. 11, nr 8, s. 2273-2291Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Frankia strains induce the formation of nitrogen-fixing nodules on roots of actinorhizal plants. Phylogenetically, Frankia strains can be grouped in four clusters. The earliest divergent cluster, cluster-2, has a particularly wide host range. The analysis of cluster-2 strains has been hampered by the fact that with two exceptions, they could never be cultured. In this study, 12 Frankia-enriched metagenomes of Frankia cluster-2 strains or strain assemblages were sequenced based on seven inoculum sources. Sequences obtained via DNA isolated from whole nodules were compared with those of DNA isolated from fractionated preparations enhanced in the Frankia symbiotic structures. The results show that cluster-2 inocula represent groups of strains, and that strains not represented in symbiotic structures, that is, unable to performsymbiotic nitrogen fixation, may still be able to colonize nodules. Transposase gene abundance was compared in the different Frankia-enriched metagenomes with the result that NorthAmerican strains contain more transposase genes than Eurasian strains. An analysis of the evolution and distribution of the host plants indicated that bursts of transposition may have coincided with niche competition with other cluster-2 Frankia strains. The first genome of an inoculum from the Southern Hemisphere, obtained from nodules of Coriaria papuana in Papua NewGuinea, represents a novel species, postulated as Candidatus Frankiameridionalis. All Frankia-enrichedmetagenomes obtained in this study contained homologs of the canonical nod genes nodABC; the North American genomes also contained the sulfotransferase gene nodH, while the genome from the Southern Hemisphere only contained nodC and a truncated copy of nodB.

1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf