Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Ade, Peter
    et al.
    Aguirre, James
    Ahmed, Zeeshan
    Aiola, Simone
    Ali, Aamir
    Alonso, David
    Alvarez, Marcelo A.
    Arnold, Kam
    Ashton, Peter
    Austermann, Jason
    Awan, Humna
    Baccigalupi, Carlo
    Baildon, Taylor
    Barron, Darcy
    Battaglia, Nick
    Battye, Richard
    Baxter, Eric
    Bazarko, Andrew
    Beall, James A.
    Bean, Rachel
    Beck, Dominic
    Beckman, Shawn
    Beringue, Benjamin
    Bianchini, Federico
    Boada, Steven
    Boettger, David
    Bond, J. Richard
    Borrill, Julian
    Brown, Michael L.
    Bruno, Sarah Marie
    Bryan, Sean
    Calabrese, Erminia
    Calafut, Victoria
    Calisse, Paolo
    Carron, Julien
    Challinor, Anthony
    Chesmore, Grace
    Chinone, Yuji
    Chluba, Jens
    Cho, Hsiao-Mei Sherry
    Choi, Steve
    Coppi, Gabriele
    Cothard, Nicholas F.
    Coughlin, Kevin
    Crichton, Devin
    Crowley, Kevin D.
    Crowley, Kevin T.
    Cukierman, Ari
    D'Ewart, John M.
    Dunner, Rolando
    de Haan, Tijmen
    Devlin, Mark
    Dicker, Simon
    Didier, Joy
    Dobbs, Matt
    Dober, Bradley
    Duell, Cody J.
    Duff, Shannon
    Duivenvoorden, Adri
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dunkley, Jo
    Dusatko, John
    Errard, Josquin
    Fabbian, Giulio
    Feeney, Stephen
    Ferraro, Simone
    Fluxa, Pedro
    Freese, Katherine
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). University of Michigan, U.S.A..
    Frisch, Josef C.
    Frolov, Andrei
    Fuller, George
    Fuzia, Brittany
    Galitzki, Nicholas
    Gallardo, Patricio A.
    Ghersi, Jose Tomas Galvez
    Gao, Jiansong
    Gawiser, Eric
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Gluscevic, Vera
    Goeckner-Wald, Neil
    Golec, Joseph
    Gordon, Sam
    Gralla, Megan
    Green, Daniel
    Grigorian, Arpi
    Groh, John
    Groppi, Chris
    Guan, Yilun
    Gudmundsson, Jon E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Han, Dongwon
    Hargrave, Peter
    Hasegawa, Masaya
    Hasselfield, Matthew
    Hattori, Makoto
    Haynes, Victor
    Hazumi, Masashi
    He, Yizhou
    Healy, Erin
    Henderson, Shawn W.
    Hervias-Caimapo, Carlos
    Hill, Charles A.
    Hill, J. Colin
    Hilton, Gene
    Hilton, Matt
    Hincks, Adam D.
    Hinshaw, Gary
    Hlozek, Renee
    Ho, Shirley
    Ho, Shuay-Pwu Patty
    Howe, Logan
    Huang, Zhiqi
    Hubmayr, Johannes
    Huffenberger, Kevin
    Hughes, John P.
    Ijjas, Anna
    Ikape, Margaret
    Irwin, Kent
    Jaffe, Andrew H.
    Jain, Bhuvnesh
    Jeong, Oliver
    Kaneko, Daisuke
    Karpel, Ethan D.
    Katayama, Nobuhiko
    Keating, Brian
    Kernasovskiy, Sarah S.
    Keskitalo, Reijo
    Kisner, Theodore
    Kiuchi, Kenji
    Klein, Jeff
    Knowles, Kenda
    Koopman, Brian
    Kosowsky, Arthur
    Krachmalnicoff, Nicoletta
    Kuenstner, Stephen E.
    Kuo, Chao-Lin
    Kusaka, Akito
    Lashner, Jacob
    Lee, Adrian
    Lee, Eunseong
    Leon, David
    Leung, Jason S-Y
    Lewis, Antony
    Li, Yaqiong
    Li, Zack
    Limon, Michele
    Linder, Eric
    Lopez-Caraballo, Carlos
    Louis, Thibaut
    Lowry, Lindsay
    Lungu, Marius
    Madhavacheril, Mathew
    Mak, Daisy
    Maldonado, Felipe
    Mani, Hamdi
    Mates, Ben
    Matsuda, Frederick
    Maurin, Loic
    Mauskopf, Phil
    May, Andrew
    McCallum, Nialh
    McKenney, Chris
    McMahon, Jeff
    Meerburg, P. Daniel
    Meyers, Joel
    Miller, Amber
    Mirmelstein, Mark
    Moodley, Kavilan
    Munchmeyer, Moritz
    Munson, Charles
    Naess, Sigurd
    Nati, Federico
    Navaroli, Martin
    Newburgh, Laura
    Ho, Nam
    Niemack, Michael
    Nishino, Haruki
    Orlowski-Scherer, John
    Page, Lyman
    Partridge, Bruce
    Peloton, Julien
    Perrotta, Francesca
    Piccirillo, Lucio
    Pisano, Giampaolo
    Poletti, Davide
    Puddu, Roberto
    Puglisi, Giuseppe
    Raum, Chris
    Reichardt, Christian L.
    Remazeilles, Mathieu
    Rephaeli, Yoel
    Riechers, Dominik
    Rojas, Felipe
    Roy, Anirban
    Sadeh, Sharon
    Sakurail, Yuki
    Salatino, Maria
    Rao, Mayuri Sathyanarayana
    Schaan, Emmanuel
    Schmittfull, Marcel
    Sehgal, Neelima
    Seibert, Joseph
    Seljak, Uros
    Sherwin, Blake
    Shimon, Meir
    Sierra, Carlos
    Sievers, Jonathan
    Sikhosana, Precious
    Silva-Feaver, Maximiliano
    Simon, Sara M.
    Sinclair, Adrian
    Siritanasak, Praween
    Smith, Kendrick
    Smith, Stephen R.
    Spergel, David
    Staggs, Suzanne T.
    Stein, George
    Stevens, Jason R.
    Stompor, Radek
    Suzuki, Aritoki
    Tajima, Osamu
    Takakura, Satoru
    Teply, Grant
    Thomas, Daniel B.
    Thorne, Ben
    Thornton, Robert
    Trac, Hy
    Tsai, Calvin
    Tucker, Carole
    Ullom, Joel
    Vagnozzi, Sunny
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    van Engelen, Alexander
    Van Lanen, Jeff
    Van Winkle, Daniel D.
    Vavagiakis, Eve M.
    Verges, Clara
    Vissers, Michael
    Wagoner, Kasey
    Walker, Samantha
    Ward, Jon
    Westbrook, Ben
    Whitehorn, Nathan
    Williams, Jason
    Williams, Joel
    Wollack, Edward J.
    Xu, Zhilei
    Yu, Byeonghee
    Yu, Cyndia
    Zago, Fernando
    Zhang, Hezi
    Zhu, Ningfeng
    The Simons Observatory: science goals and forecasts2019In: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, no 2, article id 056Article in journal (Refereed)
    Abstract [en]

    The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial con figuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping approximate to 10% of the sky to a white noise level of 2 mu K-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of sigma(r) = 0.003. The large aperture telescope will map approximate to 40% of the sky at arcminute angular resolution to an expected white noise level of 6 mu K-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.

  • 2. Burigana, C.
    et al.
    Carvalho, C. S.
    Trombetti, T.
    Notari, A.
    Quartin, M.
    Gasperis, G. D.
    Buzzelli, A.
    Vittorio, N.
    De Zotti, G.
    de Bernardis, P.
    Chluba, J.
    Bilicki, M.
    Danese, L.
    Delabrouille, J.
    Toffolatti, L.
    Lapi, A.
    Negrello, M.
    Mazzotta, P.
    Scott, D.
    Contreras, D.
    Achucarro, A.
    Ade, P.
    Allison, R.
    Ashdown, M.
    Ballardini, M.
    Banday, A. J.
    Banerji, R.
    Bartlett, J.
    Bartolo, N.
    Basak, S.
    Bersanelli, M.
    Bonaldi, A.
    Bonato, M.
    Borrill, J.
    Bouchet, F.
    Boulanger, F.
    Brinckmann, T.
    Bucher, M.
    Cabella, P.
    Cai, Z. -Y.
    Calvo, M.
    Castellano, M. G.
    Challinor, A.
    Clesse, S.
    Colantoni, I.
    Coppolecchia, A.
    Crook, M.
    D'Alessandro, G.
    Diego, J. -M.
    Di Marco, A.
    Di Valentino, E.
    Errard, J.
    Feeney, S.
    Fernandez-Cobos, R.
    Ferraro, S.
    Finelli, F.
    Forastieri, F.
    Galli, S.
    Genova-Santos, R.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Gonzalez-Nuevo, J.
    Grandis, S.
    Greenslade, J.
    Hagstotz, S.
    Hanany, S.
    Handley, W.
    Hernandez-Monteagudo, C.
    Hervias-Caimapo, C.
    Hills, M.
    Hivon, E.
    Kiiveri, K.
    Kisner, T.
    Kitching, T.
    Kunz, M.
    Kurki-Suonio, H.
    Lamagna, L.
    Lasenby, A.
    Lattanzi, M.
    Lesgourgues, J.
    Liguori, M.
    Lindholm, V.
    Lopez-Caniego, M.
    Luzziio, G.
    Maffei, B.
    Mandolesi, N.
    Martinez-Gonzalez, E.
    Martins, C. J. A. P.
    Masi, S.
    Matarrese, S.
    McCarthy, D.
    Melchiorri, A.
    Melin, J. -B.
    Molinari, D.
    Monfardini, A.
    Natoli, P.
    Paiellam, A.
    Paoletti, D.
    Patanchon, G.
    Piat, M.
    Pisano, G.
    Polastri, L.
    Polenta, G.
    Pollo, A.
    Poulin, V.
    Remazeilles, M.
    Roman, M.
    Rubino-Martin, J. -A.
    Salvati, L.
    Tartari, A.
    Tomasi, M.
    Tramonte, D.
    Trappe, N.
    Tucker, C.
    Valiviita, J.
    Van de Weijgaert, R.
    van Tent, B.
    Vennin, V.
    Vielva, P.
    Young, K.
    Zannoni, M.
    Exploring cosmic origins with CORE: Effects of observer peculiar motion2018In: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, no 4, article id 021Article in journal (Refereed)
    Abstract [en]

    We discuss the effects on the cosmic microwave background (CMB), cosmic infrared background (CIB), and thermal Sunyaev-Zeldovich effect due to the peculiar motion of an observer with respect to the CMB rest frame, which induces boosting effects. After a brief review of the current observational and theoretical status, we investigate the scientific perspectives opened by future CMB space missions, focussing on the Cosmic Origins Explorer (CORE) proposal. The improvements in sensitivity offered by a mission like CORE, together with its high resolution over a wide frequency range, will provide a more accurate estimate of the CMB dipole. The extension of boosting effects to polarization and cross-correlations will enable a more robust determination of purely velocity-driven effects that are not degenerate with the intrinsic CMB dipole, allowing us to achieve an overall signal-to-noise ratio of 13; this improves on the Planck detection and essentially equals that of an ideal cosmic variance-limited experiment up to a multipole l similar or equal to 2000. Precise inter-frequency calibration will offer the opportunity to constrain or even detect CMB spectral distortions, particularly from the cosmological reionization epoch, because of the frequency dependence of the dipole spectrum, without resorting to precise absolute calibration. The expected improvement with respect to COBE-FIRAS in the recovery of distortion parameters (which could in principle be a factor of several hundred for an ideal experiment with the CORE configuration) ranges from a factor of several up to about 50, depending on the quality of foreground removal and relative calibration. Even in the case of similar or equal to 1% accuracy in both foreground removal and relative calibration at an angular scale of 1 degrees, we find that dipole analyses for a mission like CORE will be able to improve the recovery of the CIB spectrum amplitude by a factor similar or equal to 17 in comparison with current results based on COBE-FIRAS. In addition to the scientific potential of a mission like CORE for these analyses, synergies with other planned and ongoing projects are also discussed.

  • 3. Challinor, A.
    et al.
    Allison, R.
    Carron, J.
    Errard, J.
    Feeney, S.
    Kitching, T.
    Lesgourgues, J.
    Lewis, A.
    Zubeldia, I.
    Achucarro, A.
    Ade, P.
    Ashdown, M.
    Ballardini, M.
    Banday, A. J.
    Banerji, R.
    Bartlett, J.
    Bartolo, N.
    Basak, S.
    Baumann, D.
    Bersanelli, M.
    Bonaldi, A.
    Bonato, M.
    Borri, J.
    Bouchet, F.
    Boulanger, F.
    Brinckmann, T.
    Bucher, M.
    Burigana, C.
    Buzzelli, A.
    Cai, Z. -Y.
    Calvo, M.
    Carvalho, C. -S.
    Castellano, G.
    Chluba, J.
    Clesse, S.
    Colantoni, I.
    Coppolecchia, A.
    Crook, M.
    d'Alessandro, G.
    de Bernardis, P.
    de Gasperis, G.
    De Zotti, G.
    Delabrouille, J.
    Di Valentino, E.
    Diego, J. -M.
    Fernandez-Cobos, R.
    Ferraro, S.
    Finelli, F.
    Forastieri, F.
    Galli, S.
    Genova-Santos, R.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Gonzalez-Nuevo, J.
    Grandis, S.
    Greenslade, J.
    Hagstotz, S.
    Hanany, S.
    Handley, W.
    Hernandez-Monteagudo, C.
    Hervias-Caimapo, C.
    Hills, M.
    Hivon, E.
    Kiiveri, K.
    Kisner, T.
    Kunz, M.
    Kurki-Suonio, H.
    Lamagna, L.
    Lasenby, A.
    Lattanzi, M.
    Liguori, M.
    Lindholm, V.
    Lopez-Caniego, M.
    Luzzi, G.
    Maffei, B.
    Martinez-Gonzalez, E.
    Martins, C. J. A. P.
    Masi, S.
    Matarrese, S.
    McCarthy, D.
    Melchiorri, A.
    Melin, J. -B.
    Molinari, D.
    Monfardini, A.
    Natoli, P.
    Negrello, M.
    Notari, A.
    Paiella, A.
    Paoletti, D.
    Patanchon, G.
    Piat, M.
    Pisano, G.
    Polastri, L.
    Polenta, G.
    Polio, A.
    Poulin, V.
    Quartin, M.
    Remazeilles, M.
    Roman, M.
    Rubino-Martin, J. -A.
    Salvati, L.
    Tartari, A.
    Tomasi, M.
    Tramonte, D.
    Trappe, N.
    Trombetti, T.
    Tucker, C.
    Valiviita, J.
    Van de Weijgaert, R.
    van Tent, B.
    Vennin, V.
    Vielva, P.
    Vittorio, N.
    Young, K.
    Zannoni, M.
    Exploring cosmic origins with CORE: Gravitational lensing of the CMB2018In: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, no 4, article id 018Article in journal (Refereed)
    Abstract [en]

    Lensing of the cosmic microwave background (CMB) is now a well-developed probe of the clustering of the large-scale mass distribution over a broad range of redshifts. By exploiting the non-Gaussian imprints of lensing in the polarization of the CMB, the CORE mission will allow production of a clean map of the lensing deflections over nearly the full-sky. The number of high-SAN modes in this map will exceed current CMB lensing maps by a factor of 40, and the measurement will be sample-variance limited on all scales where linear theory is valid. Here, we summarise this mission product and discuss the science that will follow from its power spectrum and the cross-correlation with other clustering data. For example, the summed mass of neutrinos will be determined to an accuracy of 17 meV combining CORE lensing and CMB two-point information with contemporaneous measurements of the baryon acoustic oscillation feature in the clustering of galaxies, three times smaller than the minimum total mass allowed by neutrino oscillation measurements. Lensing has applications across many other science goals of CORE, including the search for B-mode polarization from primordial gravitational waves. Here, lens-induced B-modes will dominate over instrument noise, limiting constraints on the power spectrum amplitude of primordial gravitational waves. With lensing reconstructed by CORE, one can delens the observed polarization internally, reducing the lensing B-mode power by 60 %. This can be improved to 70 % by combining lensing and measurements of the cosmic infrared background from CORE, leading to an improvement of a factor of 2.5 in the error on the amplitude of primordial gravitational waves compared to no delensing (in the null hypothesis of no primordial B-modes). Lensing measurements from CORE will allow calibration of the halo masses of the tens of thousands of galaxy clusters that it will find, with constraints dominated by the clean polarization-based estimators. The 19 frequency channels proposed for CORE will allow accurate removal of Galactic emission from CMB maps. We present initial findings that show that residual Galactic foreground contamination will not be a significant source of bias for lensing power spectrum measurements with CORE.

  • 4. De Zotti, G.
    et al.
    Gonzalez-Nuevo, J.
    Lopez-Caniego, M.
    Negrello, M.
    Greenslade, J.
    Hernandez-Monteagudo, C.
    Delabrouille, J.
    Cai, Z-Y.
    Bonato, M.
    Achucarro, A.
    Ade, P.
    Allison, R.
    Ashdown, M.
    Ballardini, M.
    Banday, A. J.
    Banerji, R.
    Bartlett, J. G.
    Bartolo, N.
    Basak, S.
    Bersanelli, M.
    Biesiada, M.
    Bilicki, M.
    Bonaldi, A.
    Bonavera, L.
    Borrill, J.
    Bouchet, F.
    Boulanger, F.
    Brinckmann, T.
    Bucher, M.
    Burigana, C.
    Buzzelli, A.
    Calvo, M.
    Carvalho, C. S.
    Castellano, M. G.
    Challinor, A.
    Chluba, J.
    Clements, D. L.
    Clesse, S.
    Colafrancesco, S.
    Colantoni, I.
    Coppolecchia, A.
    Crook, M.
    D'Alessandro, G.
    de Bernardis, P.
    de Gasperis, G.
    Diego, J. M.
    Di Valentino, E.
    Errard, J.
    Feeney, S. M.
    Fernandez-Cobos, R.
    Ferraro, S.
    Finelli, F.
    Forastieri, F.
    Galli, S.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Grandis, S.
    Hagstotz, S.
    Hanany, S.
    Handley, W.
    Hervias-Caimapo, C.
    Hills, M.
    Hivon, E.
    Kiiveri, K.
    Kisner, T.
    Kitching, T.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lamagna, L.
    Lasenby, A.
    Lattanzi, M.
    Le Brun, A.
    Lesgourgues, J.
    Lewis, A.
    Liguori, M.
    Lindholm, V.
    Luzzi, G.
    Maffei, B.
    Mandolesi, N.
    Martinez-Gonzalez, E.
    Martins, C. J. A. P.
    Masi, S.
    Massardi, M.
    Matarrese, S.
    McCarthy, D.
    Melchiorri, A.
    Melin, J-B.
    Molinari, D.
    Monfardini, A.
    Natoli, P.
    Notari, A.
    Paiella, A.
    Paoletti, D.
    Partridge, R. B.
    Patanchon, G.
    Piat, M.
    Pisano, G.
    Polastri, L.
    Polenta, G.
    Pollo, A.
    Poulin, V.
    Quartin, M.
    Remazeilles, M.
    Roman, M.
    Rossi, G.
    Roukema, B. F.
    Rubino-Martin, J-A.
    Salvati, L.
    Scott, D.
    Serjeant, S.
    Tartari, A.
    Toffolatti, L.
    Tomasi, M.
    Trappe, N.
    Triqueneaux, S.
    Trombetti, T.
    Tucci, M.
    Tucker, C.
    Valiviita, J.
    van de Weygaert, R.
    Van Tent, B.
    Vennin, V.
    Vielva, P.
    Vittorio, N.
    Young, K.
    Zannoni, M.
    Exploring cosmic origins with CORE: Extragalactic sources in cosmic microwave background maps2018In: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, no 4, article id 020Article in journal (Refereed)
    Abstract [en]

    We discuss the potential of a next generation space-borne Cosmic Microwave Background (CMB) experiment for studies of extragalactic sources. Our analysis has particular bearing on the definition of the future space project, CORE, that has been submitted in response to ESA's call for a Medium-size mission opportunity as the successor of the Planck satellite. Even though the effective telescope size will be somewhat smaller than that of Planck, CORE will have a considerably better angular resolution at its highest frequencies, since, in contrast with Planck, it will be diffraction limited at all frequencies. The improved resolution implies a considerable decrease of the source confusion, i.e. substantially fainter detection limits. In particular, CORE will detect thousands of strongly lensed high-z galaxies distributed over the full sky. The extreme brightness of these galaxies will make it possible to study them, via follow-up observations, in extraordinary detail. Also, the CORE resolution matches the typical sizes of high-z galaxy proto-clusters much better than the Planck resolution, resulting in a much higher detection efficiency; these objects will be caught in an evolutionary phase beyond the reach of surveys in other wavebands. Furthermore, CORE will provide unique information on the evolution of the star formation in virialized groups and clusters of galaxies up to the highest possible redshifts. Finally, thanks to its very high sensitivity, CORE will detect the polarized emission of thousands of radio sources and, for the first time, of dusty galaxies, at mm and sub-mm wavelengths, respectively.

  • 5. Delabrouille, J.
    et al.
    de Bernardis, P.
    Bouchet, F. R.
    Achucarro, A.
    Ade, P. A. R.
    Allison, R.
    Arroja, F.
    Artal, E.
    Ashdown, M.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Banerji, R.
    Barbosa, D.
    Bartlett, J.
    Bartolo, N.
    Basak, S.
    Baselmans, J. J. A.
    Basu, K.
    Battistelli, E. S.
    Battye, R.
    Baumann, D.
    Benoit, A.
    Bersanelli, M.
    Bideaud, A.
    Biesiada, M.
    Bilicki, M.
    Bonaldi, A.
    Bonato, M.
    Borrill, J.
    Boulanger, F.
    Brinckmann, T.
    Brown, M. L.
    Bucher, M.
    Burigana, C.
    Buzzelli, A.
    Cabass, G.
    Cai, Z. -Y.
    Calvo, M.
    Caputo, A.
    Carvalho, C. -S.
    Casas, F. J.
    Castellano, G.
    Catalano, A.
    Challinor, A.
    Charles, I.
    Chluba, J.
    Clements, D. L.
    Clesse, S.
    Colafrancesco, S.
    Colantoni, I.
    Contreras, D.
    Coppolecchia, A.
    Crook, M.
    D'Alessandro, G.
    D'Amico, G.
    da Silva, A.
    de Avillez, M.
    de Gasperis, G.
    De Petris, M.
    de Zotti, G.
    Danese, L.
    Desert, F. -X.
    Desjacques, V.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Doyle, S.
    Durrer, R.
    Dvorkin, C.
    Eriksen, H. K.
    Errard, J.
    Feeney, S.
    Fernandez-Cobos, R.
    FineIli, F.
    Forastieri, F.
    Franceschet, C.
    Fuskeland, U.
    Galli, S.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Giusarma, E.
    Gomez, A.
    Gonzalez-Nuevo, J.
    Grandis, S.
    Greenslade, J.
    Goupy, J.
    Hagstotz, S.
    Hanany, S.
    Handley, W.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Hervias-Caimapo, C.
    Hills, M.
    Hindmarsh, M.
    Hivon, E.
    Hoang, D. T.
    Hooper, D. C.
    Hu, B.
    Keihanen, E.
    Keskitalo, R.
    Kiiveri, K.
    Kisner, T.
    Kitching, T.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lamagna, L.
    Lapi, A.
    Lasenby, A.
    Lattanzi, M.
    Le Brun, A. M. C.
    Lesgourgues, J.
    Liguori, M.
    Lindholm, V.
    Lizarraga, J.
    Luzzi, G.
    Macias-Perez, J. F.
    Maffei, B.
    Mandolesi, N.
    Martin, S.
    Martinez-Gonzalez, E.
    Martins, C. J. A. P.
    Masi, S.
    Massardi, M.
    Matarrese, S.
    Mazzotta, P.
    McCarthy, D.
    Melchiorri, A.
    Melin, J. -B.
    Mennella, A.
    Mohr, J.
    Molinari, D.
    Monfardini, A.
    Montier, L.
    Natoli, P.
    Negrello, M.
    Notari, A.
    Noviello, F.
    Oppizzi, F.
    O'Sullivan, C.
    Pagano, L.
    Paiella, A.
    Pajer, E.
    Paoletti, D.
    Paradiso, S.
    Partridge, R. B.
    Patanchon, G.
    Patil, S. P.
    Perdereau, O.
    Piacentini, F.
    Piat, M.
    Pisano, G.
    Polastri, L.
    Polenta, G.
    Pollo, A.
    Ponthieu, N.
    Poulin, V.
    Prele, D.
    Quartin, M.
    Ravenni, A.
    Remazeilles, M.
    Renzi, A.
    Ringeval, C.
    Roest, D.
    Roman, M.
    Roukema, B. F.
    Rubino-Martin, J. -A.
    Salvati, L.
    Scott, D.
    Serjeant, S.
    Signorelli, G.
    Starobinsky, A. A.
    Sunyaev, R.
    Tan, C. Y.
    Tartari, A.
    Tasinato, G.
    Toffolatti, L.
    Tomasi, M.
    Torrado, J.
    Tramonte, D.
    Trappe, N.
    Triqueneaux, S.
    Tristram, M.
    Trombetti, T.
    Tucci, M.
    Tucker, C.
    Urrestilla, J.
    Valiviita, J.
    Van de Weygaert, R.
    Van Tent, B.
    Vennin, V.
    Verde, L.
    Vermeulen, G.
    Vielva, P.
    Vittorio, N.
    Voisin, F.
    Wallis, C.
    Wandelt, B.
    Wehus, I. K.
    Weller, J.
    Young, K.
    Zannoni, M.
    Exploring cosmic origins with CORE: Survey requirements and mission design2018In: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, no 4, article id 014Article in journal (Refereed)
    Abstract [en]

    Future observations of cosmic microwave background (CMB) polarisation have the potential to answer some of the most fundamental questions of modern physics and cosmology, including: what physical process gave birth to the Universe we see today? What are the dark matter and dark energy that seem to constitute 95% of the energy density of the Universe? Do we need extensions to the standard model of particle physics and fundamental interactions? Is the ACDM cosmological scenario correct, or are we missing an essential piece of the puzzle? In this paper, we list the requirements for a future CMB polarisation survey addressing these scientific objectives, and discuss the design drivers of the CORE space mission proposed to ESA in answer to the M5 call for a medium-sized mission. The rationale and options, and the methodologies used to assess the mission's performance, are of interest to other future CMB mission design studies. CORE has 19 frequency channels, distributed over a broad frequency range, spanning the 60-600 GHz interval, to control astrophysical foreground emission. The angular resolution ranges from 2' to 18', and the aggregate CMB sensitivity is about 2 mu K.arcmin. The observations are made with a single integrated focal-plane instrument, consisting of an array of 2100 cryogenically-cooled, linearly-polarised detectors at the focus of a 1.2-m aperture cross-Dragone telescope. The mission is designed to minimise all sources of systematic effects, which must be controlled so that no more than 10(-4) of the intensity leaks into polarisation maps, and no more than about 1% of E-type polarisation leaks into B-type modes. CORE observes the sky from a large Lissajous orbit around the Sun-Earth L2 point on an orbit that offers stable observing conditions and avoids contamination from sidelobe pick-up of stray radiation originating from the Sun, Earth, and Moon. The entire sky is observed repeatedly during four years of continuous scanning, with a combination of three rotations of the spacecraft over different timescales. With about 50% of the sky covered every few days, this scan strategy provides the mitigation of systematic effects and the internal redundancy that are needed to convincingly extract the primordial B-mode signal on large angular scales, and check with adequate sensitivity the consistency of the observations in several independent data subsets. CORE is designed as a near-ultimate CMB polarisation mission which, for optimal complementarity with ground-based observations, will perform the observations that are known to be essential to CMB polarisation science and cannot be obtained by any other means than a dedicated space mission. It will provide well-characterised, highly-redundant multi-frequency observations of polarisation at all the scales where foreground emission and cosmic variance dominate the final uncertainty for obtaining precision CMB science, as well as 2' angular resolution maps of high-frequency foreground emission in the 300-600 GHz frequency range, essential for complementarity with future ground-based observations with large telescopes that can observe the CMB with the same beamsize.

  • 6. Di Valentino, E.
    et al.
    Brinckmann, T.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Poulin, V.
    Bouchet, F. R.
    Lesgourgues, J.
    Melchiorri, A.
    Chluba, J.
    Clesse, S.
    Delabrouille, J.
    Dvorkin, C.
    Forastieri, F.
    Galli, S.
    Hooper, D. C.
    Lattanzi, M.
    Martins, C. J. A. P.
    Salvati, L.
    Cabass, G.
    Caputo, A.
    Giusarma, E.
    Hivon, E.
    Natoli, P.
    Pagano, L.
    Paradiso, S.
    Rubino-Martin, J. A.
    Achucarro, A.
    Ade, P.
    Allison, R.
    Arroja, F.
    Ashdown, M.
    Ballardini, M.
    Banday, A. J.
    Banerji, R.
    Bartolo, N.
    Bartlett, J. G.
    Basak, S.
    Baumann, D.
    de Bernardis, P.
    Bersanelli, M.
    Bonaldi, A.
    Bonato, M.
    Borrill, J.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Buzzelli, A.
    Cai, Z. -Y.
    Calvo, M.
    Carvalho, C. S.
    Castellano, G.
    Challinor, A.
    Charles, I.
    Colantoni, I.
    Coppolecchia, A.
    Crook, M.
    D'Alessandro, G.
    De Petris, M.
    De Zotti, G.
    Diego, J. M.
    Errard, J.
    Feeney, S.
    Fernandez-Cobos, R.
    Ferraro, S.
    Finelli, F.
    de Gasperis, G.
    Genova-Santos, R. T.
    Gonzalez-Nuevo, J.
    Grandis, S.
    Greenslade, J.
    Hagstotz, S.
    Hanany, S.
    Handley, W.
    Hazra, D. K.
    Hernandez-Monteagudo, C.
    Hervias-Caimapo, C.
    Hills, M.
    Kiiveri, K.
    Kisner, T.
    Kitching, T.
    Kunz, M.
    Kurki-Suonio, H.
    Lamagna, L.
    Lasenby, A.
    Lewis, A.
    Liguori, M.
    Lindholm, V.
    Lopez-Caniego, M.
    Luzzi, G.
    Maffei, B.
    Martin, S.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McCarthy, D.
    Melin, J. -B.
    Mohr, J. J.
    Molinari, D.
    Monfardini, A.
    Negrello, M.
    Notari, A.
    Paiella, A.
    Paoletti, D.
    Patanchon, G.
    Piacentini, F.
    Piat, M.
    Pisano, G.
    Polastri, L.
    Polenta, G.
    Pollo, A.
    Quartin, M.
    Remazeilles, M.
    Roman, M.
    Ringeval, C.
    Tartari, A.
    Tomasi, M.
    Tramonte, D.
    Trappe, N.
    Trombetti, T.
    Tucker, C.
    Valiviita, J.
    van de Weygaert, R.
    Van Tent, B.
    Vennin, V.
    Vermeulen, G.
    Vielva, P.
    Vittorio, N.
    Young, K.
    Zannoni, M.
    Exploring cosmic origins with CORE: Cosmological parameters2018In: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, no 4, article id 017Article in journal (Refereed)
    Abstract [en]

    We forecast the main cosmological parameter constraints achievable with the CORE space mission which is dedicated to mapping the polarisation of the Cosmic Microwave Background (CMB). CORE was recently submitted in response to ESA's fifth call for medium-sized mission proposals (M5). Here we report the results from our pre-submission study of the impact of various instrumental options, in particular the telescope size and sensitivity level, and review the great, transformative potential of the mission as proposed. Specifically, we assess the impact on a broad range of fundamental parameters of our Universe as a function of the expected CMB characteristics, with other papers in the series focusing on controlling astrophysical and instrumental residual systematics. In this paper, we assume that only a few central CORE frequency channels are usable for our purpose, all others being devoted to the cleaning of astrophysical contaminants. On the theoretical side, we assume ACDM as our general framework and quantify the improvement provided by CORE over the current constraints from the Planck 2015 release. We also study the joint sensitivity of CORE and of future Baryon Acoustic Oscillation and Large Scale Structure experiments like DESI and Euclid. Specific constraints on the physics of inflation are presented in another paper of the series. In addition to the six parameters of the base ACDM, which describe the matter content of a spatially flat universe with adiabatic and scalar primordial fluctuations from inflation, we derive the precision achievable on parameters like those describing curvature, neutrino physics, extra light relics, primordial helium abundance, dark matter annihilation, recombination physics, variation of fundamental constants, dark energy, modified gravity, reionization and cosmic birefringence. In addition to assessing the improvement on the precision of individual parameters, we also forecast the post-CORE overall reduction of the allowed parameter space with figures of merit for various models increasing by as much as similar to 10(7) as compared to Planck 2015, and 10(5) with respect to Planck 2015 + future BAO measurements.

  • 7. Finelli, F.
    et al.
    Bucher, M.
    Achucarro, A.
    Ballardini, M.
    Bartolo, N.
    Baumann, D.
    Clesse, S.
    Errard, J.
    Handley, W.
    Hindmarsh, M.
    Kiiveri, K.
    Kunz, M.
    Lasenby, A.
    Liguori, M.
    Paoletti, D.
    Ringeval, C.
    Valiviita, J.
    van Tent, B.
    Vennin, V.
    Ade, P.
    Allison, R.
    Arroja, F.
    Ashdown, M.
    Banday, A. J.
    Banerji, R.
    Bartlett, J. G.
    Basak, S.
    de Bernardis, P.
    Bersanelli, M.
    Bonaldi, A.
    Borril, J.
    Bouchet, F. R.
    Boulanger, F.
    Brinckmann, T.
    Burigana, C.
    Buzzelli, A.
    Cai, Z. -Y.
    Calvo, M.
    Carvalho, C. S.
    Castellano, G.
    Challinor, A.
    Chluba, J.
    Colantoni, I.
    Coppolecchia, A.
    Crook, M.
    D'Alessandro, G.
    D'Amico, G.
    Delabrouille, J.
    Desjacques, V.
    De Zotti, G.
    Diego, J. M.
    Di Valentino, E.
    Feeney, S.
    Fergusson, J. R.
    Fernandez-Cobos, R.
    Ferraro, S.
    Forastieri, F.
    Galli, S.
    Garcia-Bellido, J.
    de Gasperis, G.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Gonzalez-Nuevo, J.
    Grandis, S.
    Greenslade, J.
    Hagstotz, S.
    Hanany, S.
    Hazra, D. K.
    Hernandez-Monteagudo, C.
    Hervias-Caimapo, C.
    Hills, M.
    Hivon, E.
    Hu, B.
    Kisner, T.
    Kitching, T.
    Kovetz, E. D.
    Kurki-Suonio, H.
    Lamagna, L.
    Lattanzi, M.
    Lesgourgues, J.
    Lewis, A.
    Lindholm, V.
    Lizarraga, J.
    Lopez-Caniego, M.
    Luzzi, G.
    Maffei, B.
    Mandolesi, N.
    Martinez-Gonzalez, E.
    Martins, C. J. A. P.
    Masi, S.
    McCarthy, D.
    Matarrese, S.
    Melchiorri, A.
    Melin, J. -B.
    Molinari, D.
    Monfardini, A.
    Natoli, P.
    Negrello, M.
    Notari, A.
    Oppizzi, F.
    Paiella, A.
    Pajer, E.
    Patanchon, G.
    Patil, S. P.
    Piat, M.
    Pisano, G.
    Polastri, L.
    Polenta, G.
    Pollo, A.
    Poulin, V.
    Quartin, M.
    Ravenni, A.
    Remazeilles, M.
    Renzi, A.
    Roest, D.
    Roman, M.
    Rubino-Martin, J. A.
    Salvati, L.
    Starobinsky, A. A.
    Tartari, A.
    Tasinato, G.
    Tomasi, M.
    Torrado, J.
    Trappe, N.
    Trombetti, T.
    Tucci, M.
    Tucker, C.
    Urrestilla, J.
    van de Weygaert, R.
    Vielva, P.
    Vittorio, N.
    Young, K.
    Zannoni, M.
    Exploring cosmic origins with CORE: Inflation2018In: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, Vol. 2018, no 4, article id 016Article in journal (Refereed)
    Abstract [en]

    We forecast the scientific capabilities to improve our understanding of cosmic inflation of CORE, a proposed CMB space satellite submitted in response to the ESA fifth call for a medium-size mission opportunity. The CORE satellite will map the CMB anisotropies in temperature and polarization in 19 frequency channels spanning the range 60-600 GHz. CORE will have an aggregate noise sensitivity of 1.7 mu K.arcmin and an angular resolution of 5' at 200 GHz. We explore the impact of telescope size and noise sensitivity on the inflation science return by making forecasts for several instrumental configurations. This study assumes that the lower and higher frequency channels suffice to remove foreground contaminations and complements other related studies of component separation and systematic effects, which will be reported in other papers of the series Exploring Cosmic Origins with CORE. We forecast the capability to determine key inflationary parameters, to lower the detection limit for the tensor-to-scalar ratio down to the 10(-3) level, to chart the landscape of single field slow-roll inflationary models, to constrain the epoch of reheating, thus connecting inflation to the standard radiation-matter dominated Big Bang era, to reconstruct the primordial power spectrum, to constrain the contribution from isocurvature perturbations to the 10(-3) level, to improve constraints on the cosmic string tension to a level below the presumptive GUT scale, and to improve the current measurements of primordial non-Gaussianities down to the f(NL)(local) < 1 level. For all the models explored, CORE alone will improve significantly on the present constraints on the physics of inflation. Its capabilities will be further enhanced by combining with complementary future cosmological observations.

  • 8. Natoli, P.
    et al.
    Ashdown, M.
    Banerji, R.
    Borrill, J.
    Buzzelli, A.
    de Gasperis, G.
    Delabrouille, J.
    Hivon, E.
    Molinari, D.
    Patanchon, G.
    Polastri, L.
    Tomasi, M.
    Bouchet, F. R.
    Henrot-Versille, S.
    Hoang, D. T.
    Keskitalo, R.
    Kiiveri, K.
    Kisner, T.
    Lindholm, V.
    McCarthy, D.
    Piacentini, F.
    Perdereau, O.
    Polenta, G.
    Tristram, M.
    Achucarro, A.
    Ade, P.
    Allison, R.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Bartlett, J.
    Bartolo, N.
    Basak, S.
    Baumann, D.
    Bersanelli, M.
    Bonaldi, A.
    Bonato, M.
    Boulanger, F.
    Brinckmann, T.
    Bucher, M.
    Burigana, C.
    Cai, Z-Y.
    Calvo, M.
    Carvalho, C-S.
    Castellano, M. G.
    Challinor, A.
    Chluba, J.
    Clesse, S.
    Colantoni, I.
    Coppolecchia, A.
    Crook, M.
    D'Alessandro, G.
    de Bernardis, P.
    De Zotti, G.
    Di Valentino, E.
    Diego, J-M.
    Errard, J.
    Feeney, S.
    Fernandez-Cobos, R.
    Finelli, F.
    Forastieri, F.
    Galli, S.
    Genova-Santos, R.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Gonzalez-Nuevo, J.
    Grandis, S.
    Greenslade, J.
    Gruppuso, A.
    Hagstotz, S.
    Hanany, S.
    Handley, W.
    Hernandez-Monteagudo, C.
    Hervias-Caimapo, C.
    Hills, M.
    Keihanen, E.
    Kitching, T.
    Kunz, M.
    Kurki-Suonio, H.
    Lamagna, L.
    Lasenby, A.
    Lattanzi, M.
    Lesgourgues, J.
    Lewis, A.
    Liguori, M.
    Lopez-Caniego, M.
    Luzzi, G.
    Maffei, B.
    Mandolesi, N.
    Martinez-Gonzalez, E.
    Martins, C. J. A. P.
    Masi, S.
    Matarrese, S.
    Melchiorri, A.
    Melin, J-B.
    Migliaccio, M.
    Monfardini, A.
    Negrello, M.
    Notari, A.
    Pagano, L.
    Paiella, A.
    Paoletti, D.
    Piat, M.
    Pisano, G.
    Pollo, A.
    Poulin, V.
    Quartin, M.
    Remazeilles, M.
    Roman, M.
    Rossi, G.
    Rubino-Martin, J-A.
    Salvati, L.
    Signorelli, G.
    Tartari, A.
    Tramonte, D.
    Trappe, N.
    Trombetti, T.
    Tucker, C.
    Valiviita, J.
    Van de Weijgaert, R.
    van Tent, B.
    Vennin, V.
    Vielva, P.
    Vittorio, N.
    Wallis, C.
    Young, K.
    Zannoni, M.
    Exploring cosmic origins with CORE: Mitigation of systematic effects2018In: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, no 4, article id 022Article in journal (Refereed)
    Abstract [en]

    We present an analysis of the main systematic effects that could impact the measurement of CMB polarization with the proposed CORE space mission. We employ timeline to-map simulations to verify that the CORE instrumental set-up and scanning strategy allow us to measure sky polarization to a level of accuracy adequate to the mission science goals. We also show how the CORE observations can be processed to mitigate the level of contamination by potentially worrying systematics, including intensity-to-polarization leakage due to bandpass mismatch, asymmetric main beams, pointing errors and correlated noise. We use analysis techniques that are well validated on data from current missions such as Planck to demonstrate how the residual contamination of the measurements by these effects can be brought to a level low enough not to hamper the scientific capability of the mission, nor significantly increase the overall error budget. We also present a prototype of the CORE photometric calibration pipeline, based on that used for Planck, and discuss its robustness to systematics, showing how CORE can achieve its calibration requirements. While a fine-grained assessment of the impact of systematics requires a level of knowledge of the system that can only be achieved in a future study phase, the analysis presented here strongly suggests that the main areas of concern for the CORE mission can be addressed using existing knowledge, techniques and algorithms.

  • 9. Remazeilles, M.
    et al.
    Banday, A. J.
    Baccigalupi, C.
    Basak, S.
    Bonaldi, A.
    De Zotti, G.
    Delabrouille, J.
    Dickinson, C.
    Eriksen, H. K.
    Errard, J.
    Fernandez-Cobos, R.
    Fuskeland, U.
    Hervias-Caimapo, C.
    Lopez-Caniego, M.
    Martinez-Gonzalez, E.
    Roman, M.
    Vielva, P.
    Wehus, I.
    Achucarro, A.
    Ade, P.
    Allison, R.
    Ashdown, M.
    Ballardini, M.
    Banerji, R.
    Bartlett, J.
    Bartolo, N.
    Baumann, D.
    Bersanelli, M.
    Bonato, M.
    Borrill, J.
    Bouchet, F.
    Boulanger, F.
    Brinckmann, T.
    Bucher, M.
    Burigana, C.
    Buzzelli, A.
    Cai, Z. -Y.
    Calvo, M.
    Carvalho, C. -S.
    Castellano, G.
    Challinor, A.
    Chluba, J.
    Clesse, S.
    Colantoni, I.
    Coppolecchia, A.
    Crook, M.
    D'Alessandro, G.
    de Bernardis, P.
    de Gasperis, G.
    Diego, J. -M.
    Di Valentino, E.
    Feeney, S.
    Ferraro, S.
    Finelli, F.
    Forastieri, F.
    Galli, S.
    Genova-Santos, R.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Gonzalez-Nuevo, J.
    Grandis, S.
    Greenslade, J.
    Hagstotz, S.
    Hanany, S.
    Handley, W.
    Hernandez-Monteagudo, C.
    Hills, M.
    Hivon, E.
    Kiiveri, K.
    Kisner, T.
    Kitching, T.
    Kunz, M.
    Kurki-Suonio, H.
    Lamagna, L.
    Lasenby, A.
    Lattanzi, M.
    Lesgourgues, J.
    Lewis, A.
    Liguori, M.
    Lindholm, V.
    Luzzi, G.
    Maffei, B.
    Martins, C. J. A. P.
    Masi, S.
    Matarrese, S.
    McCarthy, D.
    Melin, J. -B.
    Melchiorri, A.
    Molinari, D.
    Monfardini, A.
    Natoli, P.
    Negrello, M.
    Notari, A.
    Paiella, A.
    Paoletti, D.
    Patanchon, G.
    Piat, M.
    Pisano, G.
    Polastri, L.
    Polenta, G.
    Pollo, A.
    Poulin, V.
    Quartin, M.
    Rubino-Martin, J. -A.
    Salvati, L.
    Tartari, A.
    Tomasi, M.
    Tramonte, D.
    Trappe, N.
    Trombetti, T.
    Tucker, C.
    Valiviita, J.
    Van de Weijgaert, R.
    van Tent, B.
    Vennin, V.
    Vittorio, N.
    Young, K.
    Zannoni, M.
    Exploring cosmic origins with CORE: B-mode component separation2018In: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, no 4, article id 023Article in journal (Refereed)
    Abstract [en]

    We demonstrate that, for the baseline design of the CORE satellite mission, the polarized foregrounds can be controlled at the level required to allow the detection of the primordial cosmic microwave background (CMB) B-mode polarization with the desired accuracy at both reionization and recombination scales, for tensor-to-scalar ratio values of r greater than or similar to 5 x 10(-3). We consider detailed sky simulations based on state-of-the-art CMB observations that consist of CMB polarization with tau = 0.055 and tensor-to-scalar values ranging from r = 10(-2) to 10(-3), Galactic synchrotron, and thermal dust polarization with variable spectral indices over the sky, polarized anomalous microwave emission, polarized infrared and radio sources, and gravitational lensing effects. Using both parametric and blind approaches, we perform full component separation and likelihood analysis of the simulations, allowing us to quantify both uncertainties and biases on the reconstructed primordial B-modes. Under the assumption of perfect control of lensing effects, CORE would measure an unbiased estimate of r = (5 +/- 0.4) x 10(-3) after foreground cleaning. In the presence of both gravitational lensing effects and astrophysical foregrounds, the significance of the detection is lowered, with CORE achieving a 4 sigma-measurement of r = 5 x 10(-3) after foreground cleaning and 60% de lensing. For lower tensor-to-scalar ratios (r = 10(-3)) the overall uncertainty on r is dominated by foreground residuals, not by the 40% residual of lensing cosmic variance. Moreover, the residual contribution of unprocessed polarized point-sources can be the dominant foreground contamination to primordial B-modes at this r level, even on relatively large angular scales, l similar to 50. Finally, we report two sources of potential bias for the detection of the primordial B-modes by future CMB experiments: (i) the use of incorrect foreground models, e.g. a modelling error of Delta beta(s) = 0.02 on the synchrotron spectral indices may result in an excess in the recovered reionization peak corresponding to an effective Delta r > 10(-3); (ii) the average of the foreground line-of-sight spectral indices by the combined effects of pixelization and beam convolution, which adds an effective curvature to the foreground spectral energy distribution and may cause spectral degeneracies with the CMB in the frequency range probed by the experiment.

  • 10. Ritacco, A.
    et al.
    Macias-Perez, J. F.
    Ponthieu, N.
    Adam, R.
    Ade, P.
    Andre, P.
    Aumont, J.
    Beelen, A.
    Benoit, A.
    Bideaud, A.
    Billot, N.
    Bourrion, O.
    Bracco, Andrea
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Université Paris Diderot, France.
    Calvo, M.
    Catalano, A.
    Coiffard, G.
    Comis, B.
    D'Addabbo, A.
    De Petris, M.
    Desert, F. -X.
    Doyle, S.
    Goupy, J.
    Kramer, C.
    Lagache, G.
    Leclercq, S.
    Lestrade, J. -F.
    Mauskopf, P.
    Mayet, F.
    Maury, A.
    Monfardini, A.
    Pajot, F.
    Pascale, E.
    Perotto, L.
    Pisano, G.
    Rebolo-Iglesias, M.
    Reveret, V.
    Rodriguez, L.
    Romero, C.
    Roussel, H.
    Ruppin, F.
    Schuster, K.
    Sievers, A.
    Siringo, G.
    Thum, C.
    Triqueneaux, S.
    Tucker, C.
    Wiesemeyer, H.
    Zylka, R.
    NIKA 150 GHz polarization observations of the Crab nebula and its spectral energy distribution2018In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 616, article id A35Article in journal (Refereed)
    Abstract [en]

    The Crab nebula is a supernova remnant exhibiting a highly polarized synchrotron radiation at radio and millimetre wavelengths. It is the brightest source in the microwave sky with an extension of 7 by 5 arcmin, and is commonly used as a standard candle for any experiment which aims to measure the polarization of the sky. Though its spectral energy distribution has been well characterized in total intensity, polarization data are still lacking at millimetre wavelengths. We report in this paper high resolution observations (18 00 FWHM) of the Crab nebula in total intensity and linear polarization at 150 GHz with the NIKA camera. NIKA, operated at the IRAM 30 m telescope from 2012 to 2015, is a camera made of Lumped Element Kinetic Inductance Detectors (LEKIDs) observing the sky at 150 and 260 GHz. From these observations we are able to reconstruct the spatial distribution of the polarization degree and angle of the Crab nebula, which is found to be compatible with previous observations at lower and higher frequencies. Averaging across the source and using other existing data sets we find that the Crab nebula polarization angle is consistent with being constant over a wide range of frequencies with a value of -87.7 degrees +/- 0.3 in Galactic coordinates. We also present the first estimation of the Crab nebula spectral energy distribution polarized flux in a wide frequency range: 30-353 GHz. Assuming a single power law emission model we find that the polarization spectral index beta(pol) = -0.347 +/- 0.026 is compatible with the intensity spectral index beta = -0.323 +/- 0.001.

1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf