Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Lehtipalo, Katrianne
    et al.
    Yan, Chao
    Dada, Lubna
    Bianchi, Federico
    Xiao, Mao
    Wagner, Robert
    Stolzenburg, Dominik
    Ahonen, Lauri R.
    Amorim, Antonio
    Baccarini, Andrea
    Bauer, Paulus S.
    Baumgartner, Bernhard
    Bergen, Anton
    Bernhammer, Anne-Kathrin
    Breitenlechner, Martin
    Brilke, Sophia
    Buchholz, Angela
    Mazon, Stephany Buenrostro
    Chen, Dexian
    Chen, Xuemeng
    Dias, Antonio
    Dommen, Josef
    Draper, Danielle C.
    Duplissy, Jonathan
    Ehn, Mikael
    Finkenzeller, Henning
    Fischer, Lukas
    Frege, Carla
    Fuchs, Claudia
    Garmash, Olga
    Gordon, Hamish
    Hakala, Jani
    He, Xucheng
    Heikkinen, Liine
    Heinritzi, Martin
    Helm, Johanna C.
    Hofbauer, Victoria
    Hoyle, Christopher R.
    Jokinen, Tuija
    Kangasluoma, Juha
    Kerminen, Veli-Matti
    Kim, Changhyuk
    Kirkby, Jasper
    Kontkanen, Jenni
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry. University of Helsinki, Finland.
    Kuerten, Andreas
    Lawler, Michael J.
    Mai, Huajun
    Mathot, Serge
    Mauldin, Roy L.
    Molteni, Ugo
    Nichman, Leonid
    Nie, Wei
    Nieminen, Tuomo
    Ojdanic, Andrea
    Onnela, Antti
    Passananti, Monica
    Petaja, Tuukka
    Piel, Felix
    Pospisilova, Veronika
    Quelever, Lauriane L. J.
    Rissanen, Matti P.
    Rose, Clemence
    Sarnela, Nina
    Schallhart, Simon
    Schuchmann, Simone
    Sengupta, Kamalika
    Simon, Mario
    Sipila, Mikko
    Tauber, Christian
    Tome, Antonio
    Trostl, Jasmin
    Vaisanen, Olli
    Vogel, Alexander L.
    Volkamer, Rainer
    Wagner, Andrea C.
    Wang, Mingyi
    Weitz, Lena
    Wimmer, Daniela
    Ye, Penglin
    Ylisirnio, Arttu
    Zha, Qiaozhi
    Carslaw, Kenneth S.
    Curtius, Joachim
    Donahue, Neil M.
    Flagan, Richard C.
    Hansel, Armin
    Riipinen, Ilona
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry. Tampere University of Technology, Finland.
    Virtanen, Annele
    Winkler, Paul M.
    Baltensperger, Urs
    Kulmala, Markku
    Worsnop, Douglas R.
    Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors2018In: Science Advances, E-ISSN 2375-2548, Vol. 4, no 12, article id eaau5363Article in journal (Refereed)
    Abstract [en]

    A major fraction of atmospheric aerosol particles, which affect both air quality and climate, form from gaseous precursors in the atmosphere. Highly oxygenated organic molecules (HOMs), formed by oxidation of biogenic volatile organic compounds, are known to participate in particle formation and growth. However, it is not well understood how they interact with atmospheric pollutants, such as nitrogen oxides (NOx) and sulfur oxides (SOx) from fossil fuel combustion, as well as ammonia (NH3) from livestock and fertilizers. Here, we show how NOx suppresses particle formation, while HOMs, sulfuric acid, and NH3 have a synergistic enhancing effect on particle formation. We postulate a novel mechanism, involving HOMs, sulfuric acid, and ammonia, which is able to closely reproduce observations of particle formation and growth in daytime boreal forest and similar environments. The findings elucidate the complex interactions between biogenic and anthropogenic vapors in the atmospheric aerosol system.

  • 2. Rizzo, Luciana Varanda
    et al.
    Roldin, Pontus
    Brito, Joel
    Backman, John
    Swietlicki, Erik
    Krejci, Radovan
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Tunved, Peter
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Petäjä, Tukka
    Kulmala, Markku
    Artaxo, Paulo
    Multi-year statistical and modeling analysis of submicrometer aerosol number size distributions at a rain forest site in Amazonia2018In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 18, no 14, p. 10255-10274Article in journal (Refereed)
    Abstract [en]

    The Amazon Basin is a unique region to study atmospheric aerosols, given their relevance for the regional hydrological cycle and the large uncertainty of their sources. Multi-year datasets are crucial when contrasting periods of natural conditions and periods influenced by anthropogenic emissions. In the wet season, biogenic sources and processes prevail, and the Amazonian atmospheric composition resembles preindustrial conditions. In the dry season, the basin is influenced by widespread biomass burning emissions. This work reports multi-year observations of high time resolution submicrometer (10-600 nm) particle number size distributions at a rain forest site in Amazonia (TT34 tower, 60 km NW from Manaus city), between 2008 and 2010 and 2012 and 2014. The median particle number concentration was 403 cm(-3) in the wet season and 1254 cm(-3) in the dry season. The Aitken mode (similar to 30-100 nm in diameter) was prominent during the wet season, while the accumulation mode (similar to 100-600 nm in diameter) dominated the particle size spectra during the dry season. Cluster analysis identified groups of aerosol number size distributions influenced by convective downdrafts, nucleation events and fresh biomass burning emissions. New particle formation and subsequent growth was rarely observed during the 749 days of observations, similar to previous observations in the Amazon Basin. A stationary 1-D column model (ADCHEM Aerosol Dynamics, gas and particle phase CHEMistry and radiative transfer model) was used to assess the importance of the processes behind the observed diurnal particle size distribution trends. Three major particle source types are required in the model to reproduce the observations: (i) a surface source of particles in the evening, possibly related to primary biological emissions; (ii) entrainment of accumulation mode aerosols in the morning; and (iii) convective downdrafts transporting Aitken mode particles into the boundary layer mostly during the afternoon. The latter process has the largest influence on the modeled particle number size distributions. However, convective downdrafts are often associated with rain and, thus, act as both a source of Aitken mode particles and a sink of accumulation mode particles, causing a net reduction in the median total particle number concentrations in the surface layer. Our study shows that the combination of the three mentioned particle sources is essential to sustain particle number concentrations in Amazonia.

  • 3. Yao, Lei
    et al.
    Garmash, Olga
    Bianchi, Federico
    Zheng, Jun
    Yan, Chao
    Kontkanen, Jenni
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry. University of Helsinki, Finland.
    Junninen, Heikki
    Mazon, Stephany Buenrostro
    Ehn, Mikael
    Paasonen, Pauli
    Sipilä, Mikko
    Wang, Mingyi
    Wang, Xinke
    Xiao, Shan
    Chen, Hangfei
    Lu, Yiqun
    Zhang, Bowen
    Wang, Dongfang
    Fu, Qingyan
    Geng, Fuhai
    Li, Li
    Wang, Hongli
    Qiao, Liping
    Yang, Xin
    Chen, Jianmin
    Kerminen, Veli-Matti
    Petäjä, Tuukka
    Worsnop, Douglas R.
    Kulmala, Markku
    Wang, Lin
    Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity2018In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 361, no 6399, p. 278-281Article in journal (Refereed)
    Abstract [en]

    Atmospheric new particle formation (NPF) is an important global phenomenon that is nevertheless sensitive to ambient conditions. According to both observation and theoretical arguments, NPF usually requires a relatively high sulfuric acid (H2SO4) concentration to promote the formation of new particles and a low preexisting aerosol loading to minimize the sink of new particles. We investigated NPF in Shanghai and were able to observe both precursor vapors (H2SO4) and initial clusters at a molecular level in a megacity. High NPF rates were observed to coincide with several familiar markers suggestive of H2SO4-dimethylamine (DMA)water (H2O) nucleation, including sulfuric acid dimers and H2SO4-DMA clusters. In a cluster kinetics simulation, the observed concentration of sulfuric acid was high enough to explain the particle growth to similar to 3 nanometers under the very high condensation sink, whereas the subsequent higher growth rate beyond this size is believed to result fromthe added contribution of condensing organic species. These findings will help in understanding urban NPF and its air quality and climate effects, as well as in formulating policies to mitigate secondary particle formation in China.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf