Ändra sökning
Avgränsa sökresultatet
1 - 3 av 3
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Dabelow, Lennart
    et al.
    Bo, Stefano
    Eichhorn, Ralf
    Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita).
    How irreversible are steady-state trajectories of a trapped active particle?2021Ingår i: Journal of Statistical Mechanics: Theory and Experiment, ISSN 1742-5468, E-ISSN 1742-5468, Vol. 2021, nr 3, artikel-id 033216Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The defining feature of active particles is that they constantly propel themselves by locally converting chemical energy into directed motion. This active self-propulsion prevents them from equilibrating with their thermal environment (e.g. an aqueous solution), thus keeping them permanently out of equilibrium. Nevertheless, the spatial dynamics of active particles might share certain equilibrium features, in particular in the steady state. We here focus on the time-reversal symmetry of individual spatial trajectories as a distinct equilibrium characteristic. We investigate to what extent the steady-state trajectories of a trapped active particle obey or break this time-reversal symmetry. Within the framework of active Ornstein-Uhlenbeck particles we find that the steady-state trajectories in a harmonic potential fulfill path-wise time-reversal symmetry exactly, while this symmetry is typically broken in anharmonic potentials.

  • 2. Dabelow, Lennart
    et al.
    Eichhorn, Ralf
    Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita).
    Irreversibility in Active Matter: General Framework for Active Ornstein-Uhlenbeck Particles2021Ingår i: Frontiers in Physics, E-ISSN 2296-424X, Vol. 8, artikel-id 582992Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Active matter systems are driven out of equilibrium by conversion of energy into directed motion locally on the level of the individual constituents. In the spirit of a minimal description, active matter is often modeled by so-called active Ornstein-Uhlenbeck particles an extension of passive Brownian motion where activity is represented by an additional fluctuating non-equilibrium “force” with simple statistical properties (Ornstein-Uhlenbeck process). While in passive Brownian motion, entropy production along trajectories is well-known to relate to irreversibility in terms of the log-ratio of probabilities to observe a certain particle trajectory forward in time in comparison to observing its time-reversed twin trajectory, the connection between these concepts for active matter is less clear. It is therefore of central importance to provide explicit expressions for the irreversibility of active particle trajectories based on measurable quantities alone, such as the particle positions. In this technical note we derive a general expression for the irreversibility of AOUPs in terms of path probability ratios (forward vs. backward path), extending recent results from [PRX 9, 021009 (2019)] by allowing for arbitrary initial particle distributions and states of the active driving.

  • 3.
    Manikandan, Sreekanth K.
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum.
    Dabelow, Lennart
    Eichhorn, Ralf
    Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita).
    Krishnamurthy, Supriya
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum.
    Efficiency Fluctuations in Microscopic Machines2019Ingår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 122, nr 14, artikel-id 140601Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nanoscale machines are strongly influenced by thermal fluctuations, contrary to their macroscopic counterparts. As a consequence, even the efficiency of such microscopic machines becomes a fluctuating random variable. Using geometric properties and the fluctuation theorem for the total entropy production, a universal theory of efficiency fluctuations at long times, for machines with a finite state space, was developed by Verley et al. [Nat. Commun. 5, 4721 (2014); Phys. Rev. E 90, 052145 (2014)]. We extend this theory to machines with an arbitrary state space. Thereby, we work out more detailed prerequisites for the universal features and explain under which circumstances deviations can occur. We also illustrate our findings with exact results for two nontrivial models of colloidal engines.

1 - 3 av 3
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf