Change search
Refine search result
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Dahlberg, C. Johan
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    The role of microclimate for the performance and distribution of forest plants2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Microclimatic gradients may have large influence on individual vital rates and population growth rates of species, and limit their distributions. Therefore, I focused on the influence of microclimate on individual performance and distribution of species. Further, I examined differences in how microclimate affect species with contrasting distributions or different ecophysiological traits, and populations within species. More specifically, I investigated the performance of northern and southern distributed forest bryophytes that were transplanted across microclimatic gradients, and the timing of vegetative and reproductive development among northern, marginal and more southern populations of a forest herb in a common garden. Also, I compared the landscape and continental distributions across forest bryophytes and vascular plants and, thus, their distribution limiting factors at different spatial scales. Lastly, I examined the population dynamics across microclimatic gradients of transplants from northern and southern populations of a forest moss. The effects of microclimatic conditions on performance differed among bryophytes with contrasting distributions. There were no clear differences between northern and southern populations in the timing of development of a forest herb or in the population dynamics of a moss. However, within each region there was a differentiation of the forest herb populations, related to variation in local climatic conditions and in the south also to proportion of deciduous trees. The continental distributions of species were reflected in their landscape distributions and vice versa, in terms of their occurrence optima for climatic variables. The variation in landscape climatic optima was, however, larger than predicted, which limit the precision for predictions of microrefugia. Probably, the distributions of vascular plants were more affected by temperature than the distributions of bryophytes. Bryophytes are sensitive to moisture conditions, which was demonstrated by a correlation between evaporation and the population growth rate of a forest moss. We might be able to predict species’ landscape scale distributions by linking microclimatic conditions to their population growth rates, via their vital rates, and infer larger scale distribution patterns.

    Download full text (pdf)
    The role of microclimate for the performance and distribution of forest plants
    Download (jpg)
    Omslagsframsida
  • 2.
    Dahlberg, C. Johan
    et al.
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Ehrlén, Johan
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Hylander, Kristoffer
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Performance of Forest Bryophytes with Different Geographical Distributions Transplanted across a Topographically Heterogeneous Landscape2014In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 9, no 11, article id e112943Article in journal (Refereed)
    Abstract [en]

    Most species distribution models assume a close link between climatic conditions and species distributions. Yet, we know little about the link between species’ geographical distributions and the sensitivity of performance to local environmental factors. We studied the performance of three bryophyte species transplanted at south- and north-facing slopes in a boreal forest landscape in Sweden. At the same sites, we measured both air and ground temperature. We hypothesized that the two southerly distributed species Eurhynchium angustirete and Herzogiella seligeri perform better on south-facing slopes and in warm conditions, and that the northerly distributed species Barbilophozia lycopodioides perform better on north-facing slopes and in relatively cool conditions. The northern, but not the two southern species, showed the predicted relationship with slope aspect. However, the performance of one of the two southern species was still enhanced by warm temperatures. An important reason for the inconsistent results can be that microclimatic gradients across landscapes are complex and influenced by many climate-forcing factors. Therefore, comparing only north- and south-facing slopes might not capture the complexity of microclimatic gradients. Population growth rates and potential distributions are the integrated results of all vital rates. Still, the study of selected vital rates constitutes an important first step to understand the relationship between population growth rates and geographical distributions and is essential to better predict how climate change influences species distributions.

    Download full text (pdf)
    fulltext
  • 3.
    Dahlberg, C. Johan
    et al.
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Ehrlén, Johan
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Hylander, Kristoffer
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Population dynamics of moss transplants across microclimatic gradientsManuscript (preprint) (Other academic)
    Abstract [en]

    In order to determine the response of a species to climatic change it is important to study how climatic factors influence its vital rates and population growth rate across climatic gradients. We investigated how microclimate influence the population dynamics of transplants from northern and more southern populations of the forest bryophyte Hylocomiastrum umbratum. We predicted that its population growth rate is favored by moist microclimates with colder maximum temperatures, longer snow cover duration and less evaporation, and that annual shoots (segments) will be shorter under drier conditions. We also predicted that northern populations will have higher population growth rate and larger segments than southern populations when transplanted to the northern range. We placed transplants from three northern and three southern populations of H. umbratum at 30 forested sites in central Sweden differing in microclimate. We marked and followed the growth of individual shoots during two years, and calculated population growth rates and stable stage distributions of segment size classes using transition matrix models for northern and southern transplants, respectively, at each locality. Population growth rate was lower and shorter segments developed at sites with higher evaporation, corresponding to our hypothesis. There were no significant difference in population growth rate and stable stage segment length between southern and northern populations. Higher evaporation during the summer result in lower population growth rates of H. umbratum by affecting vital rates, in terms of less segment growth. Both climate change and forestry may alter evaporation conditions across the landscape and, thus, the future distribution of the species.

  • 4.
    Dahlberg, C. Johan
    et al.
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Ehrlén, Johan
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Meineri, Eric
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Plant landscape climatic optima correlate with their continental range optimaManuscript (preprint) (Other academic)
    Abstract [en]

    Aim

    Factors determining species’ distributions at smaller scales may inform us about larger scale distributions, and vice versa. We predicted that landscape and continental climatic optima for plants are positively correlated, and that species that have their optima outside a given focal landscape will cluster at the warmest or coldest landscape patches. Also, we predicted that the correlations of temperature optima are stronger for vascular plants than for bryophytes, since bryophytes may be regulated also by air moisture.

    Location

    Ångermanland, Sweden (landscape scale); Europe (continental scale).

    Methods

    We derived landscape optima from fine-grained temperature models (50 m) and species inventories, and continental optima from MaxEnt niche modelling based on GBIF occurrences and Worldclim temperatures (c. 1000 m), for 96 bryophytes and 50 vascular plants. Optima were derived for growing degree days, and maximum and minimum temperature.

    Results

    The landscape and continental optima of all species were positively correlated for growing degree days and maximum temperature (r = 0.19 and r = 0.44), but not for minimum temperature (r = -0.010). Species with their continental optima outside the focal landscape did not clearly cluster in the most extreme parts of the landscape. For vascular plants the correlation was positive for both growing degree days and maximum temperature (r = 0.50 and r = 0.64), but for bryophytes only for maximum temperature (r = 0.34).

    Main conclusions

    The optima correlations for maximum temperature and growing degree days indicate that we can infer large scale distribution patterns of plants from their local scale distributions, and suggest in which environments species occur if we only know their continental scale optima. The lack of clustering of southern and northern species limits the possibility for conservation actions targeting microrefugia. Lastly, the correlations indicate that the distributions of vascular plants were more influenced by temperature than bryophytes.

  • 5.
    Dahlberg, C. Johan
    et al.
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Fogelström, Elsa
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Hylander, Kristoffer
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Population differentiation in timing of development in a forest herb associated with local climate and canopy closureManuscript (preprint) (Other academic)
    Abstract [en]

    Our knowledge of how plant seasonal development is related to local versus larger-scale environmental variation is limited. We investigated differentiation in the timing of vegetative and reproductive development among populations of the forest herb Lathyrus vernus over different spatial scales. We predicted earlier development and shorter development time for populations from a colder, northern region compared to populations from a warmer, southern region. Also, we predicted earlier and shorter development within regions to be associated with colder temperatures and higher proportions of deciduous trees at their sites of origin. Lastly, we predicted that earlier flowering is strongly correlated with earlier start of development. To examine these predictions, we conducted a common garden study, and compared the development of 10 northern and 10 southern Swedish L. vernus populations. Start of development, development time and start of flowering did not differ between populations from the two regions in contrast to our prediction. Within the southern region, start of flowering was earlier in populations from colder sites, while start of development was earlier with colder temperatures within the northern region. Start of flowering occurred earlier in southern populations from sites with higher proportion of deciduous trees. Thus, the prediction for the timing of development within regions was partly confirmed. However, vegetative and reproductive development was not simultaneously influenced by temperature and proportion of deciduous trees within regions, possibly due to the negative correlation between vegetative growth and development time. This implies that earlier start of development or shorter development time not necessarily correspond to earlier start of flowering or vice versa. Overall, the results suggest that smaller scale effects within region, such as temperature and interspecific competition for light, was more important for the timing of development than the larger scale gradients between regions. Lastly, the population differentiation across gradients of temperature and proportion of deciduous trees implies that populations may adapt to long-term changes in light or climatic conditions, and differ in their short-term response to climate change.

  • 6.
    Dahlberg, Johan
    Stockholm University, Faculty of Science, Department of Botany.
    Range margins and refugia2013Report (Other academic)
    Abstract [en]

    Species ranges are restricted in distribution by physical barriers, dispersal ability, abiotic factors such as climate and interspecific interactions. The responses of a species to environmental conditions and biotic factors determine its abundance, distribution and range limits. There are four possible responses for populations facing global climate change. They can acclimate, adapt, shift their ranges or go extinct. During unfavorable conditions populations may shift their ranges and survive in refugia with favorable environmental features. Thereafter they might be able to return to their former distribution when the conditions get favorable again. The term refugium has been used for large scale refugia such as interglacial and glacial refugia (macrorefugia), and for small scale refugia such as microrefugia. The existence of microrefugia is promoted by decoupling of the local climate from the regional climate because this buffers against climate change. Such decoupling is most likely to occur in heterogeneous landscapes. At a range shift, new microrefugia may arise at the eroding edge, while macrorefugia may form from a contracting main (continuous) range.

    Download full text (pdf)
    Range margins and refugia
  • 7.
    Fogelström, Elsa
    et al.
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Dahlberg, Johan
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Hylander, Kristoffer
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Ehrlén, Johan
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Population differentiation of flowering time in Lathyrus vernusManuscript (preprint) (Other academic)
  • 8. Lenoir, Jonathan
    et al.
    Graae, Bente Jessen
    Aarrestad, Per Arild
    Alsos, Inger Greve
    Armbruster, W. Scott
    Austrheim, Gunnar
    Bergendorff, Claes
    Birks, H. John B.
    Brathen, Kari Anne
    Brunet, Jorg
    Bruun, Hans Henrik
    Dahlberg, Carl Johan
    Stockholm University, Faculty of Science, Department of Botany.
    Decocq, Guillaume
    Diekmann, Martin
    Dynesius, Mats
    Ejrnaes, Rasmus
    Grytnes, John-Arvid
    Hylander, Kristoffer
    Stockholm University, Faculty of Science, Department of Botany.
    Klanderud, Kari
    Luoto, Miska
    Milbau, Ann
    Moora, Mari
    Nygaard, Bettina
    Odland, Arvid
    Ravolainen, Virve Tuulia
    Reinhardt, Stefanie
    Sandvik, Sylvi Marlen
    Schei, Fride Hoistad
    Speed, James David Mervyn
    Tveraabak, Liv Unn
    Vandvik, Vigdis
    Velle, Liv Guri
    Virtanen, Risto
    Zobel, Martin
    Svenning, Jens-Christian
    Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe2013In: Global Change Biology, ISSN 1354-1013, E-ISSN 1365-2486, Vol. 19, no 5, p. 1470-1481Article in journal (Refereed)
    Abstract [en]

    Recent studies from mountainous areas of small spatial extent (<2500km2) suggest that fine-grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate-change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine-grained thermal variability across a 2500-km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1000-m2 units (community-inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1-km2 units; (2) the relationship between CiT range and topographically and geographically derived predictors at 1-km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100-km2 units. Ellenberg temperature indicator values in combination with plant assemblages explained 4672% of variation in LmT and 9296% of variation in GiT during the growing season (June, July, August). Growing-season CiT range within 1-km2 units peaked at 6065 degrees N and increased with terrain roughness, averaging 1.97 degrees C (SD=0.84 degrees C) and 2.68 degrees C (SD=1.26 degrees C) within the flattest and roughest units respectively. Complex interactions between topography-related variables and latitude explained 35% of variation in growing-season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing-season CiT within 100-km2 units was, on average, 1.8 times greater (0.32 degrees Ckm1) than spatial turnover in growing-season GiT (0.18 degrees Ckm1). We conclude that thermal variability within 1-km2 units strongly increases local spatial buffering of future climate warming across Northern Europe, even in the flattest terrains.

  • 9.
    Meineri, Eric
    et al.
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Dahlberg, C. Johan
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Hylander, Kristoffer
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution2015In: Ecological Modelling, ISSN 0304-3800, E-ISSN 1872-7026, Vol. 313, p. 127-136Article in journal (Refereed)
    Abstract [en]

    Landscape physiography affects temperature, soil moisture and solar radiation. In turn, these variables are thought to determine how species are distributed across landscapes. Systems involving direct and indirect associations between variables can be described using path models. However, studies applying these to species distribution modelling are rare. Bayesian Networks are path models designed to represent associations across observed variables. Here, we demonstrate the use of Bayesian Networks to disentangle the direct and indirect associations between landscape physiography, soil moisture, solar radiation, temperature and the distribution patterns of four plants at their northern range limit in Sweden. Fine scale variations in maximum temperatures were associated with variations in elevation, distance to coast and solar radiation. In contrast, fine scale variations in minimum temperature were associated with distance to coast, cold air drainage and soil moisture. These associations between landscape physiography and minimum and maximum temperature were predicted, furthermore, to be associated with growing season length, growing degree day and ultimately species distributions. All species were indirectly associated with aspect through their responses to either solar radiation or temperature. The models demonstrated strong indirect associations between landscape physiography and species distributions. The models suggested that local variation in light can be as important as temperature for species distributions. Disentangling the direct and indirect associations between landscape physiography, environmental variables and species distribution can provide new and important insights into how landscape components are linked to species distributions.

  • 10. Tyler, Torbjorn
    et al.
    Bengtsson, Fia
    Dahlberg, Carl Johan
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Lonnell, Niklas
    Hallingback, Tomas
    Reitalu, Triin
    Determinants of bryophyte species composition and diversity on the Great Alvar of oland, Sweden2018In: Journal of Bryology, ISSN 0373-6687, E-ISSN 1743-2820, Vol. 40, no 1, p. 12-30Article in journal (Refereed)
    Abstract [en]

    Factors driving the species richness and distribution of bryophytes are poorly studied and not well understood, particularly in grasslands. We analysed the occurrence of bryophyte species and variation in species richness across 674 plots (0.5 m x 0.5 m) in alvar vegetation (grassland on limestone pavement with thin or no soil) on oland (Sweden) in relation to substrate characteristics and chemistry, inundation frequency, grazing pressure and geographical variables. We found 148 taxa, including 11 nationally red-listed ones. Species richness per plot was significantly associated with substrate type, positively associated with pH and grazing intensity, but negatively associated with soil depth. However, richness of species typical of, or restricted to, alvar habitats responded differently to richness of species more common in other habitats. Typical alvar species were favoured by high pH, shallow soil and low phosphate availability, while generalists preferred relatively low pH, higher phosphate availability and organic or mull soil types. Distance from the alvar margin had only weak effects. Concerning the effects on individual species and community composition, inundation frequency and pH were found to have the largest effects, although other factors (substrate type, soil depth, bare soil, bare stone, phosphate availability and grazing pressure) were more important for some individual species, stressing the importance of microsite variability and variability in management for regional species richness. From a conservation perspective, it is concluded that grazing is generally positive whilst factors increasing phosphate availability may disadvantage the typical alvar species, and proximity to the alvar margin is not a major problem.

  • 11.
    Vercauteren, Nikki
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Destouni, Georgia
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Dahlberg, Carl Johan
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Hylander, Kristoffer
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Fine-Resolved, Near-Coastal Spatiotemporal Variation of Temperature in Response to Insolation2013In: Journal of Applied Meteorology and Climatology, ISSN 1558-8424, E-ISSN 1558-8432, Vol. 52, no 5, p. 1208-1220Article in journal (Refereed)
    Abstract [en]

    This study uses GIS-based modeling of incoming solar radiation to quantify fine-resolved spatiotemporal responses of monthly average temperature, and diurnal temperature variation, at different times and locations within a field study area located on the eastern coast of Sweden. Near-surface temperatures are measured by a network of temperature sensors during the spring and summer of 2011 and then used as the basis for model development and testing. The modeling of finescale spatiotemporal variation considers topography, distance from the sea, and observed variations in atmospheric conditions, accounting for site latitude, elevation, surface orientation, daily and seasonal shifts in sun angle, and effects of shadows from surrounding topography. The authors find a lag time between insolation and subsequent temperature response that follows an exponential decay from coastal to inland locations. They further develop a linear regression model that accounts for this lag time in quantifying fine-resolved spatiotemporal temperature evolution. This model applies in the considered growing season for spatial distribution across the studied near-coastal landscape.

  • 12. Wasof, Safaa
    et al.
    Lenoir, Jonathan
    Aarrestad, Per Arild
    Alsos, Inger Greve
    Armbruster, W. Scott
    Austrheim, Gunnar
    Bakkestuen, Vegar
    Birks, H. John B.
    Bråthen, Kari Anne
    Broennimann, Olivier
    Brunet, Jörg
    Bruun, Hans Henrik
    Dahlberg, Carl Johan
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Diekmann, Martin
    Dullinger, Stefan
    Dynesius, Mats
    Ejrnaes, Rasmus
    Gegout, Jean-Claude
    Graae, Bente Jessen
    Grytnes, John-Arvid
    Guisan, Antoine
    Hylander, Kristoffer
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Jonsdottir, Ingibjörg S.
    Kapfer, Jutta
    Klanderud, Kari
    Luoto, Miska
    Milbau, Ann
    Moora, Mari
    Nygaard, Bettina
    Odland, Arvid
    Pauli, Harald
    Ravolainen, Virve
    Reinhardt, Stefanie
    Sandvik, Sylvi Marlen
    Schei, Fride Hoistad
    Speed, James D. M.
    Svenning, Jens-Christian
    Thuiller, Wilfried
    Tveraabak, Liv Unn
    Vandvik, Vigdis
    Velle, Liv Guri
    Virtanen, Risto
    Vittoz, Pascal
    Willner, Wolfgang
    Wohlgemuth, Thomas
    Zimmermann, Niklaus E.
    Zobel, Martin
    Decocq, Guillaume
    Disjunct populations of European vascular plant species keep the same climatic niches2015In: Global Ecology and Biogeography, ISSN 1466-822X, E-ISSN 1466-8238, Vol. 24, no 12, p. 1401-1412Article in journal (Refereed)
    Abstract [en]

    Aim Previous research on how climatic niches vary across species ranges has focused on a limited number of species, mostly invasive, and has not, to date, been very conclusive. Here we assess the degree of niche conservatism between distant populations of native alpine plant species that have been separated for thousands of years. Location European Alps and Fennoscandia. Methods Of the studied pool of 888 terrestrial vascular plant species occurring in both the Alps and Fennoscandia, we used two complementary approaches to test and quantify climatic-niche shifts for 31 species having strictly disjunct populations and 358 species having either a contiguous or a patchy distribution with distant populations. First, we used species distribution modelling to test for a region effect on each species' climatic niche. Second, we quantified niche overlap and shifts in niche width (i.e. ecological amplitude) and position (i.e. ecological optimum) within a bi-dimensional climatic space. Results Only one species (3%) of the 31 species with strictly disjunct populations and 58 species (16%) of the 358 species with distant populations showed a region effect on their climatic niche. Niche overlap was higher for species with strictly disjunct populations than for species with distant populations and highest for arctic-alpine species. Climatic niches were, on average, wider and located towards warmer and wetter conditions in the Alps. Main conclusion Climatic niches seem to be generally conserved between populations that are separated between the Alps and Fennoscandia and have probably been so for 10,000-15,000 years. Therefore, the basic assumption of species distribution models that a species' climatic niche is constant in space and time-at least on time scales 104 years or less-seems to be largely valid for arctic-alpine plants.

1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf