Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Jansson, Torbjörn
    et al.
    Andersen, Hans Estrup
    Hasler, Berit
    Höglind, Lisa
    Gustafsson, Bo G.
    Stockholm University, Faculty of Science, Stockholm University Baltic Sea Centre. University of Helsinki, Finland.
    Can investments in manure technology reduce nutrient leakage to the Baltic Sea?2019In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 48, no 11, p. 1264-1277Article in journal (Refereed)
    Abstract [en]

    In this study, quantitative models of the agricultural sector and nutrient transport and cycling are used to analyse the impacts in the Baltic Sea of replacing the current Greening measures of the EU's Common Agricultural Policy with a package of investments in manure handling. The investments aim at improving nutrient utilization and reducing nitrogen leaching, based on the assumption that lagging farms and regions can catch up with observed good practice. Our results indicate that such investments could reduce nitrogen surpluses in agriculture by 18% and nitrogen concentrations in the Baltic Sea by 1 to 9% depending on the basin. The Greening measures, in contrast, are found to actually increase nitrogen leaching.

  • 2. Jansson, Torbjörn
    et al.
    Estrup Andersen, Hans
    Hasler, Berit
    Höglind, Lisa
    Gustafsson, Bo G.
    Stockholm University, Faculty of Science, Stockholm University Baltic Sea Centre. University of Helsinki, Finland.
    Can investments in manure technology reduce nutrient leakage to the Baltic Sea?2019In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 48, no 11Article in journal (Refereed)
    Abstract [en]

    In this study, quantitative models of the agricultural sector and nutrient transport and cycling are used to analyse the impacts in the Baltic Sea of replacing the current Greening measures of the EU's Common Agricultural Policy with a package of investments in manure handling. The investments aim at improving nutrient utilization and reducing nitrogen leaching, based on the assumption that lagging farms and regions can catch up with observed good practice. Our results indicate that such investments could reduce nitrogen surpluses in agriculture by 18% and nitrogen concentrations in the Baltic Sea by 1 to 9% depending on the basin. The Greening measures, in contrast, are found to actually increase nitrogen leaching.

  • 3. Reusch, Thorsten B. H.
    et al.
    Dierking, Jan
    Andersson, Helen C.
    Bonsdorff, Erik
    Carstensen, Jacob
    Casini, Michele
    Czajkowski, Mikolaj
    Hasler, Berit
    Hinsby, Klaus
    Hyytiäinen, Kari
    Johannesson, Kerstin
    Jomaa, Seifeddine
    Jormalainen, Veijo
    Kuosa, Harri
    Kurland, Sara
    Stockholm University, Faculty of Science, Department of Zoology.
    Laikre, Linda
    Stockholm University, Faculty of Science, Department of Zoology.
    MacKenzie, Brian R.
    Margonski, Piotr
    Melzner, Frank
    Oesterwind, Daniel
    Ojaveer, Henn
    Refsgaard, Jens Christian
    Sandström, Annica
    Schwarz, Gerald
    Tonderski, Karin
    Winder, Monika
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Zandersen, Marianne
    The Baltic Sea as a time machine for the future coastal ocean2018In: Science Advances, ISSN 0036-8156, E-ISSN 2375-2548, Vol. 4, no 5, article id eaar8195Article, review/survey (Refereed)
    Abstract [en]

    Coastal global oceans are expected to undergo drastic changes driven by climate change and increasing anthropogenic pressures in coming decades. Predicting specific future conditions and assessing the best management strategies to maintain ecosystem integrity and sustainable resource use are difficult, because of multiple interacting pressures, uncertain projections, and a lack of test cases for management. We argue that the Baltic Sea can serve as a time machine to study consequences and mitigation of future coastal perturbations, due to its unique combination of an early history of multistressor disturbance and ecosystem deterioration and early implementation of cross-border environmental management to address these problems. The Baltic Sea also stands out in providing a strong scientific foundation and accessibility to long-term data series that provide a unique opportunity to assess the efficacy of management actions to address the breakdown of ecosystem functions. Trend reversals such as the return of top predators, recovering fish stocks, and reduced input of nutrient and harmful substances could be achieved only by implementing an international, cooperative governance structure transcending its complex multistate policy setting, with integrated management of watershed and sea. The Baltic Sea also demonstrates how rapidly progressing global pressures, particularly warming of Baltic waters and the surrounding catchment area, can offset the efficacy of current management approaches. This situation calls for management that is (i) conservative to provide a buffer against regionally unmanageable global perturbations, (ii) adaptive to react to new management challenges, and, ultimately, (iii) multisectorial and integrative to address conflicts associated with economic trade-offs.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf