Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Pedersen, Marie
    et al.
    Stafoggia, Massimo
    Weinmayr, Gudrun
    Andersen, Zorana J.
    Galassi, Claudia
    Sommar, Johan
    Forsberg, Bertil
    Olsson, David
    Oftedal, Bente
    Krog, Norun H.
    Aamodt, Geir
    Pyko, Andrei
    Pershagen, Goran
    Korek, Michal
    De Faire, Ulf
    Pedersen, Nancy L.
    Odiaeresi, Claes-Goran
    Fratiglioni, Laura
    Stockholm University, Faculty of Social Sciences, Aging Research Center (ARC), (together with KI).
    Sorensen, Mette
    Eriksen, Kirsten T.
    Tjonneland, Anne
    Peeters, Petra H.
    Bueno-de-Mesquita, Bas
    Vermeulen, Roel
    Eeftens, Marloes
    Plusquin, Michelle
    Key, Timothy J.
    Jaensch, Andrea
    Nagel, Gabriele
    Concin, Hans
    Wang, Meng
    Tsai, Ming-Yi
    Grioni, Sara
    Marcon, Alessandro
    Krogh, Vittorio
    Ricceri, Fulvio
    Sacerdote, Carlotta
    Ranzi, Andrea
    Cesaroni, Giulia
    Forastiere, Francesco
    Tamayo, Ibon
    Amiano, Pilar
    Dorronsoro, Miren
    Stayner, Leslie T.
    Kogevinas, Manolis
    Nieuwenhuijsen, Mark J.
    Sokhi, Ranjeet
    de Hoogh, Kees
    Beelen, Rob
    Vineis, Paolo
    Brunekreef, Bert
    Hoek, Gerard
    Raaschou-Nielsen, Ole
    Is There an Association Between Ambient Air Pollution and Bladder Cancer Incidence? Analysis of 15 European Cohorts2018In: European Urology Focus, ISSN 1540-0085, E-ISSN 1788-618X, Vol. 4, no 1, p. 113-120Article in journal (Refereed)
    Abstract [en]

    Background: Ambient air pollution contains low concentrations of carcinogens implicated in the etiology of urinary bladder cancer (BC). Little is known about whether exposure to air pollution influences BC in the general population. Objective: To evaluate the association between long-term exposure to ambient air pollution and BC incidence. Design, setting and participants: We obtained data from 15 population-based cohorts enrolled between 1985 and 2005 in eight European countries (N = 303 431; mean follow-up 14.1 yr). We estimated exposure to nitrogen oxides (NO2 and NOx), particulate matter (PM) with diameter <10 mu m (PM10), <2.5 mu m (PM2.5). between 2.5 and 10 mu m (PM2.5-10). PM2.5 absorbance (soot), elemental constituents of PM, organic carbon, and traffic density at baseline home addresses using standardized land-use regression models from the European Study of Cohorts for Air Pollution Effects project. Outcome measurements and statistical analysis: We used Cox proportional-hazards models with adjustment for potential confounders for cohort-specific analyses and meta-analyses to estimate summary hazard ratios (HRS) for BC incidence. Results and limitations: During follow-up, 943 incident BC cases were diagnosed. In the meta-analysis, none of the exposures were associated with BC risk. The summary HRs associated with a 10-mu g/m(3) increase in NO2 and 51-mu g/m(3) increase in PM2.5 were 0.98 (95% confidence interval [CI] 0.89-1.08) and 0.86 (95% CI 0.63-1.18), respectively. Limitations include the lack of information about lifetime exposure. Conclusions: There was no evidence of an association between exposure to outdoor air pollution levels at place of residence and risk of BC. Patient summary: We assessed the link between outdoor air pollution at place of residence and bladder cancer using the largest study population to date and extensive assessment of exposure and comprehensive data on personal risk factors such as smoking. We found no association between the levels of outdoor air pollution at place of residence and bladder cancer risk.

  • 2. Raaschou-Nielsen, O.
    et al.
    Beelen, R.
    Wang, M.
    Hoek, G.
    Andersen, Z. J.
    Hoffmann, B.
    Stafoggia, M.
    Samoli, E.
    Weinmayr, G.
    Dimakopoulou, K.
    Nieuwenhuijsen, M.
    Xun, W. W.
    Fischer, P.
    Eriksen, K. T.
    Sorensen, M.
    Tjonneland, A.
    Ricceri, F.
    De Hoogh, K.
    Key, T.
    Eeftens, M.
    Peeters, P. H.
    Bueno-de-Mesquita, H. B.
    Meliefste, K.
    Oftedal, B.
    Schwarze, P. E.
    Nafstad, P.
    Galassi, C.
    Migliore, E.
    Ranzi, A.
    Cesaroni, G.
    Badaloni, C.
    Forastiere, F.
    Penell, J.
    De Faire, U.
    Korek, M.
    Pedersen, N.
    Ostenson, C. -G.
    Pershagen, G.
    Fratiglioni, Laura
    Stockholm University, Faculty of Social Sciences, Aging Research Center (ARC), (together with KI).
    Concin, H.
    Nagel, G.
    Jaensch, A.
    Ineichen, A.
    Naccarati, A.
    Katsoulis, M.
    Trichpoulou, A.
    Keuken, M.
    Jedynska, A.
    Kooter, I. M.
    Kukkonen, J.
    Brunekreef, B.
    Sokhi, R. S.
    Katsouyanni, K.
    Vineis, P.
    Particulate matter air pollution components and risk for lung cancer2016In: Environment International, ISSN 0160-4120, E-ISSN 1873-6750, Vol. 87, p. 66-73Article in journal (Refereed)
    Abstract [en]

    Background: Particulate matter (PM) air pollution is a human lung carcinogen; however, the components responsible have not been identified. We assessed the associations between PM components and lung cancer incidence. Methods: We used data from 14 cohort studies in eight European countries. We geocoded baseline addresses and assessed air pollution with land-use regression models for eight elements (Cu, Fe, K, Ni, S, Si, V and Zn) in size fractions of PM2.5 and PM10. We used Cox regression models with adjustment for potential confounders for cohort-specific analyses and random effect models for meta-analysis. Results: The 245,782 cohort members contributed 3,229,220 person-years at risk. During follow-up (mean, 13.1 years), 1878 incident cases of lung cancer were diagnosed. In the meta-analyses, elevated hazard ratios (HRs) for lung cancer were associated with all elements except V; none was statistically significant In analyses restricted to participants who did not change residence during follow-up, statistically significant associations were found for PM2.5 Cu (HR, 125; 95% Cl, 1.01-1.53 per 5 ng/m(3)), PM10 Zn (1.28; 1.02-1.59 per 20 ng/m3), PMio S (1.58; 1.03-2.44 per 200 ng/m(3)), PM10 Ni (1.59; 1.12-2.26 per 2 ng/m(3)) and PM10K (1.17; 1.02-1.33 per 100 ng/m(3)). In two-pollutant models, associations between PMio and PM2.5 and lung cancer were largely explained by PM2.5 S. Conclusions: This study indicates that the association between PM in air pollution and lung cancer can be attributed to various PM components and sources. PM containing S and Ni might be particularly important.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf