Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Valvo, Mario
    et al.
    Chien, Yu-Chuan
    Liivat, Anti
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Detecting voltage shifts and charge storage anomalies by iron nanoparticles in three-electrode cells based on converted iron oxide and lithium iron phosphate2023In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 440, article id 141747Article in journal (Refereed)
    Abstract [en]

    Noticeable voltage shifts have been observed in the charge/discharge profiles of a three-electrode cell with a lithium metal reference electrode and having a deeply lithiated iron oxide (Fe/Li2O) negative electrode galvanostatically cycled in a limited potential range against a positive LiFePO4 counterpart. The origin of such shifts has been attributed to charge storage anomalies in the Fe/Li2O nanocomposite due to characteristic reduced Fe nanoparticle sizes. These shifts also affected the extreme points of the voltage profiles of the positive electrode, which was also independently monitored. A combined evaluation of voltage profile slippages with possible changes in internal resistance and/or Li+ inventory loss, including an aimed analysis of current interruptions at the end of each lithiation/de-lithiation half-cycle to monitor the internal resistance and diffusion resistance coefficient of the Fe/Li2O electrode, has enabled a clarification of its altered charge storage. An asymmetric behaviour of the Fe/Li2O electrode during Li+ uptake/release has been revealed, highlighting a progressive, diffusion-controlled-type voltage drift at low potentials vs. Li+/Li, and an unusual tendency to slight oxidation with capacitive variations during the reverse electrochemical processes at higher voltages, instead.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf