Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Knirck, Stefan
    et al.
    Schütte-Engel, Jan
    Millar, Alexander
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Redondo, Javier
    Reimann, Olaf
    Ringwald, Andreas
    Steffen, Frank
    A first look on 3D effects in open axion haloscopes2019In: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, no 8, article id 026Article in journal (Refereed)
    Abstract [en]

    We explore finite size 3D effects in open axion haloscopes such as a dish antenna, a dielectric disk and a minimal dielectric haloscope consisting of a mirror and one dielectric disk. Particularly dielectric haloscopes are a promising new method for detecting dark matter axions in the mass range above 40 mu eV. By using two specialized independent approaches - based on finite element methods and Fourier optics - we compute the electromagnetic fields in these settings expected in the presence of an axion dark matter field. This allows us to study diffraction and near field effects for realistically sized experimental setups in contrast to earlier idealized 1D studies with infinitely extended mirrors and disks. We also study axion velocity effects and disk tiling. Diffraction effects are found to become less relevant towards larger axion masses and for the larger disk radii for example aimed at in full size dielectric haloscopes such as MADMAX. The insights of our study not only provide a foundation for a realistic modelling of open axion dark matter search experiments in general, they are in particular also the first results taking into account 3D effects for dielectric haloscopes.

  • 2.
    Lawson, Matthew
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Millar, Alexander J.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Pancaldi, Matteo
    Stockholm University, Faculty of Science, Department of Physics.
    Vitagliano, Edoardo
    Wilczek, Frank
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Massachusetts Institute of Technology, USA; T. D. Lee Institute, China; Shanghai Jiao Tong University, China; Arizona State University, USA.
    Tunable Axion Plasma Haloscopes2019In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 123, no 14, article id 141802Article in journal (Refereed)
    Abstract [en]

    We propose a new strategy for searching for dark matter axions using tunable cryogenic plasmas. Unlike current experiments, which repair the mismatch between axion and photon masses by breaking translational invariance (cavity and dielectric haloscopes), a plasma haloscope enables resonant conversion by matching the axion mass to a plasma frequency. A key advantage is that the plasma frequency is unrelated to the physical size of the device, allowing large conversion volumes. We identify wire metamaterials as a promising candidate plasma, wherein the plasma frequency can be tuned by varying the interwire spacing. For realistic experimental sizes, we estimate competitive sensitivity for axion masses of 35-400 mu eV, at least.

  • 3.
    Millar, Alexander
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Raffelt, Georg
    Stodolsky, Leo
    Vitagliano, Edoardo
    Neutrino mass from bremsstrahlung endpoint in coherent scattering on nuclei2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 12, article id 123006Article in journal (Refereed)
    Abstract [en]

    We calculate the coherent bremsstrahlung process nu + N -> N + nu + gamma off a nucleus H with the aim of revealing the neutrino mass via the photon endpoint spectrum. Unfortunately, the large required power of a monochromatic neutrino source and/or large detector mass make it difficult to compete with traditional electron-spectrum endpoint measurements in nuclear beta decay. Our neutral-current process distinguishes between Dirac and Majorana neutrinos, but the change of the photon spectrum is of the order of m(nu)/E-nu and thus very small, despite the final-state neutrino coming to rest at the photon endpoint. So the Dirac-Majorana confusion theorem remains intact even if E-nu >> m(nu) my applies only for the initial state.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf