Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Mazziotta, Adriano
    et al.
    Stockholm University, Faculty of Science, Stockholm Resilience Centre.
    Granath, Gustaf
    Rydin, Håkan
    Bengtsson, Fia
    Norberg, Jon
    Stockholm University, Faculty of Science, Stockholm Resilience Centre.
    Scaling functional traits to ecosystem processes: Towards a mechanistic understanding in peat mosses2019In: Journal of Ecology, ISSN 0022-0477, E-ISSN 1365-2745, Vol. 107, no 2, p. 843-859Article in journal (Refereed)
    Abstract [en]

    The role of trait trade-offs and environmental filtering in explaining the variability in functional traits and ecosystem processes has received considerable attention for vascular plants but less so for bryophytes. Thus, we do not know whether the same forces also shape the phenotypic variability of bryophytes. Here, we assess how environmental gradients and trade-offs shape functional traits and subsequently ecosystem processes for peat mosses (Sphagnum), a globally important plant genus for carbon accumulation. We used piecewise Structural Equation Modeling (SEM) to understand how environmental gradients influence vital processes across levels of biological organization. We gathered data on functional traits for 15 globally important Sphagnum species covering a wide range of ecological preferences. Phenotypes lie along well-established axes of the plant economic spectrum characterizing trade-offs between vital physiological functions. Using SEM, we clarified the mechanisms of trait covariation and scaling to ecosystem processes. We tested whether peat mosses, like vascular plants, constrain trait variability between a fast turnover strategy based on resource acquisition via fast traits and processes, and a strategy of resource conservation, via slow traits and processes. We parameterized a process-based model estimating ecosystem processes linking environmental drivers with architectural and functional traits. In our SEM approach the amount of variance explained varied substantially (0.29 <= R-2 <= 0.82) among traits and processes in Sphagnum, and the model could predict some of them with high to intermediate accuracy for an independent dataset. R-2 variability was mainly explained by traits and species identity, and poorly by environmental filtering. Some Sphagnum species avoid the stress caused by periodic desiccation in hollows via resource acquisition based on fast photosynthesis and growth, while other species are adapted to grow high above the water-table on hummocks by slow physiological traits and processes to conserve resources. Synthesis.We contribute to a unified theory generating individual fitness, canopy dynamics and ecosystem processes from trait variation. As for vascular plants, the functional traits in the Sphagnum economic spectrum are linked into an integrated phenotypic network partly filtered by the environment and shaped by trade-offs in resource acquisition and conservation.

  • 2.
    Mazziotta, Adriano
    et al.
    University of Copenhagen, Denmark.
    Heilmann-Clausen, Jacob
    Bruun, Hans Henrik
    Fritz, Örjan
    Aude, Erik
    Tøttrup, Anders P.
    Restoring hydrology and old-growth structures in a former production forest: Modelling the long-term effects on biodiversity2016In: Forest Ecology and Management, ISSN 0378-1127, E-ISSN 1872-7042, Vol. 381, p. 125-133Article in journal (Refereed)
    Abstract [en]

    The biodiversity value of production forests is substantially lower than that of natural forests. This is related to differences in hydrology, stand age and amounts of old trees and deadwood. Using a predictive model framework we show that restoring hydrology and old-growth characteristics in a forest formerly managed for timber extraction results in changes to forest composition and structure, ultimately increasing its biodiversity value.

    We inventoried biodiversity and stand variables in 102 sample plots in a temperate mixed broadleaved forest, which is in focus of a LIFE+ programme aiming to restore hydrology and old-growth structure. We collected presence/absence data for four organism groups (vascular plants, epiphytic bryophytes and lichens, wood-inhabiting fungi) and measured environmental variables associated with species occurrence and influenced by restoration (dead or living tree characteristics, stand age, water level). We investigated biodiversity consequences of restoration towards pristine environmental characteristics by using a space-for-time substitution model. We evaluated how and through what mechanisms species richness is likely to react when pre-forestry hydrological conditions and old-growth structures are restored.

    The model results show that reversing the effects of a long history of management for timber extraction increased availability of suitable habitat, and hence the local species richness for three of four of the organism groups, compared to the pre-restoration conditions. Furthermore, the increase in soil moisture shifted the forest plots towards an alder carr, while the stand ageing process sustained the shade-tolerant beech despite its low tolerance for high soil humidity. Our prediction shows an increase in species richness for plants directly driven by the restoration of natural water level, and for fungi as an indirect effect of a change in suitable substrate availability. Lichens responded positively to both processes. Plants stabilized their richness levels earlier than tree-dwelling organisms, as water level recovered faster than old-growth structures. The projection of stable bryophytes richness values under restoration is potentially biased by their lower diversity and more limited affiliation to forest structural variation than other groups.

    We suggest applying our space-for-time approach as a tool to assess forest and biodiversity responses in similar restoration projects involving management actions of open-ended habitat creation, promoting development of natural processes in the long-term. This modelling tool turns to be especially relevant in dynamic habitats where the outcomes for biodiversity are uncertain.

  • 3.
    Mazziotta, Adriano
    et al.
    Stockholm University, Faculty of Science, Stockholm Resilience Centre. University of Jyväskylä, Finland; University of Copenhagen, Denmark.
    Podkopaev, D.
    Trivino, M.
    Miettinen, K.
    Pohjanmies, T.
    Monkkonen, M.
    Quantifying and resolving conservation conflicts in forest landscapes via multiobjective optimization2017In: Silva Fennica, ISSN 0037-5330, E-ISSN 2242-4075, Vol. 51, no 1, article id 1778Article in journal (Refereed)
    Abstract [en]

    Environmental planning for of the maintenance of different conservation objectives should take into account multiple contrasting criteria based on alternative uses of the landscape. We develop new concepts and approaches to describe and measure conflicts among conservation objectives and for resolving them via multiobjective optimization. To measure conflicts we introduce a compatibility index that quantifies how much targeting a certain conservation objective affects the capacity of the landscape for providing another objective. To resolve such conflicts we find compromise solutions defined in terms of minimax regret, i.e. minimizing the maximum percentage of deterioration among conservation objectives. Finally, we apply our approach for a case study of management for biodiversity conservation and development in a forest landscape. We study conflicts between six different forest species, and we identify management solutions for simultaneously maintaining multiple species' habitat while obtaining timber harvest revenues. We employ the method for resolving conflicts at a large landscape level across a long 50-years forest planning horizon. Our multiobjective approach can be an instrument for guiding hard choices in the conservation-development nexus with a perspective of developing decision support tools for land use planning. In our case study multiple use management and careful landscape level planning using our approach can reduce conflicts among biodiversity objectives and offer room for synergies in forest ecosystems.

  • 4. Pohjanmies, Tähti
    et al.
    Trivino, Maria
    Le Tortorec, Eric
    Mazziotta, Adriano
    Stockholm University, Faculty of Science, Stockholm Resilience Centre.
    Snäll, Tord
    Mönkkönen, Mikko
    Impacts of forestry on boreal forests: An ecosystem services perspective2017In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 46, no 7, p. 743-755Article, review/survey (Refereed)
    Abstract [en]

    Forests are widely recognized as major providers of ecosystem services, including timber, other forest products, recreation, regulation of water, soil and air quality, and climate change mitigation. Extensive tracts of boreal forests are actively managed for timber production, but actions aimed at increasing timber yields also affect other forest functions and services. Here, we present an overview of the environmental impacts of forest management from the perspective of ecosystem services. We show how prevailing forestry practices may have substantial but diverse effects on the various ecosystem services provided by boreal forests. Several aspects of these processes remain poorly known and warrant a greater role in future studies, including the role of community structure. Conflicts among different interests related to boreal forests are most likely to occur, but the concept of ecosystem services may provide a useful framework for identifying and resolving these conflicts.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf