Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Norell, Jesper
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Ljungdahl, Anton
    Stockholm University, Faculty of Science, Department of Physics.
    Odelius, Michael
    Stockholm University, Faculty of Science, Department of Physics.
    Interdependent Electronic Structure, Protonation, and Solvatization of Aqueous 2-Thiopyridone2019In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 123, no 26, p. 5555-5567Article in journal (Refereed)
    Abstract [en]

    2-Thiopyridone (2-TP), a common model system for excited-state proton transfer, has been simulated in aqueous solution with ab initio molecular dynamics. The interplay of electronic structure, protonation, and solvatization is investigated by comparison of three differently protonated molecular forms and between the lowest singlet and triplet electronic states. An interdependence clearly manifests in the mixed-character T-1 state for the 2-TP form, systematic structural distortions of the 2-mercaptopyridine (2-MP) form, and photobase protolysis of the 2-TP- form, in the aqueous phase. In comparison, simplified continuum models for the solvatization are found to be significantly inaccurate for several of the species. To facilitate future computational studies, we therefore present a minimal representative solvatization complex for each stable form and electronic state. Our findings demonstrate the importance of explicit solvatization of the compound and sets the studies. stage for including it also in future studies.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf