Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Omrak, Ayca
    et al.
    Stockholm University, Faculty of Humanities, Department of Archaeology and Classical Studies.
    Günther, Torsten
    Valdiosera, Cristina
    Svensson, Emma M.
    Malmström, Helena
    Kiesewetter, Henrike
    Aylward, William
    Storå, Jan
    Stockholm University, Faculty of Humanities, Department of Archaeology and Classical Studies.
    Jakobsson, Mattias
    Götherström, Anders
    Stockholm University, Faculty of Humanities, Department of Archaeology and Classical Studies.
    Genomic Evidence Establishes Anatolia as the Source of the European Neolithic Gene Pool2016In: Current Biology, ISSN 0960-9822, E-ISSN 1879-0445, Vol. 26, no 2, p. 270-275Article in journal (Refereed)
    Abstract [en]

    Anatolia and the Near East have long been recognized as the epicenter of the Neolithic expansion through archaeological evidence. Recent archaeogenetic studies on Neolithic European human remains have shown that the Neolithic expansion in Europe was driven westward and northward by migration from a supposed Near Eastern origin [1-5]. However, this expansion and the establishment of numerous culture complexes in the Aegean and Balkans did not occur until 8,500 before present (BP), over 2,000 years after the initial settlements in the Neolithic core area [6-9]. We present ancient genome-wide sequence data from 6,700-year-old human remains excavated from a Neolithic context in Kumtepe, located in northwestern Anatolia near the well-known (and younger) site Troy [10]. Kumtepe is one of the settlements that emerged around 7,000 BP, after the initial expansion wave brought Neolithic practices to Europe. We show that this individual displays genetic similarities to the early European Neolithic gene pool and modern-day Sardinians, as well as a genetic affinity to modern-day populations from the Near East and the Caucasus. Furthermore, modern-day Anatolians carry signatures of several admixture events from different populations that have diluted this early Neolithic farmer component, explaining why modern-day Sardinian populations, instead of modern-day Anatolian populations, are genetically more similar to the people that drove the Neolithic expansion into Europe. Anatolia's central geographic location appears to have served as a connecting point, allowing a complex contact network with other areas of the Near East and Europe throughout, and after, the Neolithic.

  • 2.
    Palkopoulou, Eleftheria
    et al.
    Stockholm University, Faculty of Science, Department of Zoology. Swedish Museum of Natural History, Sweden.
    Mallick, Swapan
    Skoglund, Pontus
    Stockholm University, Faculty of Humanities, Department of Archaeology and Classical Studies. Harvard Medical School, USA; Broad Institute of MIT and Harvard, USA.
    Enk, Jacob
    Rohland, Nadin
    Li, Heng
    Omrak, Ayca
    Stockholm University, Faculty of Humanities, Department of Archaeology and Classical Studies.
    Vartanyan, Sergey
    Poinar, Hendrik
    Götherström, Anders
    Stockholm University, Faculty of Humanities, Department of Archaeology and Classical Studies.
    Reich, David
    Dalen, Love
    Complete Genomes Reveal Signatures of Demographic and Genetic Declines in the Woolly Mammoth2015In: Current Biology, ISSN 0960-9822, E-ISSN 1879-0445, Vol. 25, no 10, p. 1395-1400Article in journal (Refereed)
    Abstract [en]

    The processes leading up to species extinctions are typically characterized by prolonged declines in population size and geographic distribution, followed by a phase in which populations are very small and may be subject to intrinsic threats, including loss of genetic diversity and inbreeding [1]. However, whether such genetic factors have had an impact on species prior to their extinction is unclear [2, 3]; examining this would require a detailed reconstruction of a species' demographic history as well as changes in genome-wide diversity leading up to its extinction. Here, we present high-quality complete genome sequences from two woolly mammoths (Mammuthus primigenius). The first mammoth was sequenced at 17.1-fold coverage and dates to similar to 4,300 years before present, representing one of the last surviving individuals on Wrangel Island. The second mammoth, sequenced at 11.2-fold coverage, was obtained from an similar to 44,800-year-old specimen from the Late Pleistocene population in northeastern Siberia. The demographic trajectories inferred from the two genomes are qualitatively similar and reveal a population bottleneck during the Middle or Early Pleistocene, and a more recent severe decline in the ancestors of the Wrangel mammoth at the end of the last glaciation. A comparison of the two genomes shows that the Wrangel mammoth has a 20% reduction in heterozygosity as well as a 28-fold increase in the fraction of the genome that comprises runs of homozygosity. We conclude that the population on Wrangel Island, which was the last surviving woolly mammoth population, was subject to reduced genetic diversity shortly before it became extinct.

  • 3.
    Palkopoulou, Eleftheria
    et al.
    Stockholm University, Faculty of Science, Department of Zoology.
    Mallick, Swapan
    Skoglund, Pontus
    Enk, Jacob
    Rohland, Nadin
    Li, Heng
    Omrak, Ayca
    Stockholm University, Faculty of Humanities, Department of Archaeology and Classical Studies.
    Vartanyan, Sergey
    Poinar, Hendrik
    Götherström, Anders
    Stockholm University, Faculty of Humanities, Department of Archaeology and Classical Studies.
    Reich, David
    Dalén, Love
    Genome-wide signatures of demographic change and Holocene genetic decline in the extinct woolly mammothManuscript (preprint) (Other academic)
  • 4. Skoglund, Pontus
    et al.
    Malmström, Helena
    Omrak, Ayca
    Stockholm University, Faculty of Humanities, Department of Archaeology and Classical Studies.
    Raghavan, Maanasa
    Valdiosera, Cristina
    Gunther, Torsten
    Hall, Per
    Tambets, Kristiina
    Parik, Jueri
    Sjögren, Karl-Göran
    Apel, Jan
    Willerslev, Eske
    Storå, Jan
    Stockholm University, Faculty of Humanities, Department of Archaeology and Classical Studies.
    Götherström, Anders
    Stockholm University, Faculty of Humanities, Department of Archaeology and Classical Studies.
    Jakobsson, Mattias
    Genomic Diversity and Admixture Differs for Stone-Age Scandinavian Foragers and Farmers2014In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 344, no 6185, p. 747-750Article in journal (Refereed)
    Abstract [en]

    Prehistoric population structure associated with the transition to an agricultural lifestyle in Europe remains a contentious idea. Population-genomic data from 11 Scandinavian Stone Age human remains suggest that hunter-gatherers had lower genetic diversity than that of farmers. Despite their close geographical proximity, the genetic differentiation between the two Stone Age groups was greater than that observed among extant European populations. Additionally, the Scandinavian Neolithic farmers exhibited a greater degree of hunter-gatherer-related admixture than that of the Tyrolean Iceman, who also originated from a farming context. In contrast, Scandinavian hunter-gatherers displayed no significant evidence of introgression from farmers. Our findings suggest that Stone Age foraging groups were historically in low numbers, likely owing to oscillating living conditions or restricted carrying capacity, and that they were partially incorporated into expanding farming groups.

  • 5. Svensson, E. M.
    et al.
    Hasler, S.
    Nussbaumer, M.
    Rehazek, A.
    Omrak, Ayca
    Stockholm University, Faculty of Humanities, Department of Archaeology and Classical Studies. Uppsala University.
    Götherström, Anders
    Stockholm University, Faculty of Humanities, Department of Archaeology and Classical Studies.
    Medieval cattle in Bern (Switzerland): An archaeozoological, genetic and historical Approach2014In: Schweizer Archiv für Tierheilkunde, ISSN 0036-7281, E-ISSN 1664-2848, Vol. 156, no 1, p. 17-26Article in journal (Refereed)
    Abstract [en]

    This study deals with genetic analyses of an assemblage of mediaeval (1361 century) cattle metapodials from Bern that had previously been osteometrically examined regarding sex, shape and wither height. The results from the genetic sexing of these small (height 100 to 120 cm) cattle correlate well with the osteometric interpretations. Some few exceptions we interpreted as cows used as draft animals with stouter bones and thus osteometrically determined as males. Two morphologically different groups of cow metatarsals however, we took as proof of the historical fact that Bern relied on livestock from different geographical origins: the town's vicinity and the alpine pastures with their favourable grazing conditions. It was not possible to distinguish them genetically. An analysis of one single nucleotide polymorphism (SNP) in the melanocortin receptor 1 (MC1R) showed that predominant coat colour most likely was red-brown. Furthermore, an analysis of the SNP in the Y-chromosomal intron UTY19 that divide modern taurine cattle in two major haplogroups (Y1 and Y2) showed that the mediaeval cattle belonged to the haplogroup Y2 with one single exception of a Yl.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf