Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Daver, Henrik
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Harvey, Jeremy N.
    Rebek, Jr., Julius
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Quantum Chemical Modeling of Cycloaddition Reaction in a Self-Assembled Capsule2017In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 139, no 43, p. 15494-15503Article in journal (Refereed)
    Abstract [en]

    Dispersion-corrected density functional theory is used to study the cycloaddition reaction between phenyl acetylene and phenyl azide inside a synthetic, self-assembled capsule. The capsule is first characterized computationally and a previously unrecognized structure is identified as being the most stable. Next, an examination of the free energies of host-guest complexes is conducted, considering all possible reagent, solvent and solvent impurity combinations as guests. The experimentally observed relative stabilities of host-guest complexes are quite well reproduced, when the experimental concentrations are taken into account. Experimentally, the presence of the host capsule has been shown to accelerate the cycloaddition reaction and to yield exclusively the 1,4-regioisomer product. Both these observations are reproduced by the calculations. A detailed energy decomposition analysis shows that reduction of the entropic cost of bringing together the reactants along with a geometric destabilization of the reactant supercomplex are the major contributors to the rate acceleration compared to the background reaction. Finally, a sensitivity analysis is conducted to assess the stability of the results with respect to the choice of methodology.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf