Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Gao, Yun
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. Northwest A&F University, China.
    Shabalina, Irina G.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. Stockholm Univ, Wenner Gren Inst, Dept Mol Biosci, Stockholm, Sweden.
    Braz, G. Ruda F.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Yang, Gongshe
    Nedergaard, Jan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Establishing the potency of N-acyl amino acids versus conventional fatty acids as thermogenic uncouplers in cells and mitochondria from different tissues2022In: Biochimica et Biophysica Acta - Bioenergetics, ISSN 0005-2728, E-ISSN 1879-2650, Vol. 1863, no 4, article id 148542Article in journal (Refereed)
    Abstract [en]

    The possibility that N-acyl amino acids could function as brown or brite/beige adipose tissue-derived lipokines that could induce UCP1-independent thermogenesis by uncoupling mitochondrial respiration in several peripheral tissues is of significant physiological interest. To quantify the potency of N-acyl amino acids versus conventional fatty acids as thermogenic inducers, we have examined the affinity and efficacy of two pairs of such compounds: oleate versus N-oleoyl-leucine and arachidonate versus N-arachidonoyl-glycine in cells and mitochondria from different tissues. We found that in cultures of the muscle-derived L6 cell line, as well as in primary cultures of murine white, brite/beige and brown adipocytes, the N-acyl amino acids were proficient uncouplers but that they did not systematically display higher affinity or potency than the conventional fatty acids, and they were not as efficient uncouplers as classical protonophores (FCCP). Higher concentrations of the N-acyl amino acids (as well as of conventional fatty acids) were associated with signs of deleterious effects on the cells. In liver mitochondria, we found that the N-acyl amino acids uncoupled similarly to conventional fatty acids, thus apparently via activation of the adenine nucleotide transporter-2. In brown adipose tissue mitochondria, the N-acyl amino acids were able to activate UCP1, again similarly to conventional fatty acids. We thus conclude that the formation of the acyl-amino acid derivatives does not confer upon the corresponding fatty acids an enhanced ability to induce thermogenesis in peripheral tissues, and it is therefore unlikely that the N-acyl amino acids are of specific physiological relevance as UCP1-independent thermogenic compounds.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf