Change search
Refine search result
12345 1 - 50 of 225
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Aartsen, M. G.
    et al.
    Ackermann, M.
    Adams, J.
    Aguilar, J. A.
    Ahlers, M.
    Ahrens, Maryon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Altmann, D.
    Anderson, T.
    Arguelles, C.
    Arlen, T. C.
    Auffenberg, J.
    Bai, X.
    Barwick, S. W.
    Baum, V.
    Bay, R.
    Beatty, J. J.
    Tjus, J. Becker
    Becker, K. -H
    BenZvi, S.
    Berghaus, P.
    Berley, D.
    Bernardini, E.
    Bernhard, A.
    Besson, D. Z.
    Binder, G.
    Bindig, D.
    Bissok, M.
    Blaufuss, E.
    Blumenthal, J.
    Boersma, D. J.
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Bos, F.
    Bose, D.
    Boeser, S.
    Botner, O.
    Brayeur, L.
    Bretz, H. -P
    Brown, A. M.
    Brunner, J.
    Buzinsky, N.
    Casey, J.
    Casier, M.
    Cheung, E.
    Chirkin, D.
    Christov, A.
    Christy, B.
    Clark, K.
    Classen, L.
    Clevermann, F.
    Coenders, S.
    Cowen, D. F.
    Silva, A. H. Cruz
    Daughhetee, J.
    Davis, J. C.
    Day, M.
    de Andre, J. P. A. M.
    De Clercq, C.
    De Ridder, S.
    Desiati, P.
    de Vries, K. D.
    de With, M.
    De Young, T.
    Diaz-Velez, J. C.
    Dunkman, M.
    Eagan, R.
    Eberhardt, B.
    Eichmann, B.
    Eisch, J.
    Euler, S.
    Evenson, P. A.
    Fadiran, O.
    Fazely, A. R.
    Fedynitch, A.
    Feintzeig, J.
    Felde, J.
    Feusels, T.
    Filimonov, K.
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Fischer-Wasels, T.
    Flis, Samuel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Franckowiak, A.
    Frantzen, K.
    Fuchs, T.
    Gaisser, T. K.
    Gaior, R.
    Gallagher, J.
    Gerhardt, L.
    Gier, D.
    Gladstone, L.
    Gluesenkamp, T.
    Goldschmidt, A.
    Golup, G.
    Gonzalez, J. G.
    Goodman, J. A.
    Gora, D.
    Grant, D.
    Gretskov, P.
    Groh, J. C.
    Gross, A.
    Ha, C.
    Haack, C.
    Ismail, A. Haj
    Hallen, P.
    Hallgren, A.
    Halzen, F.
    Hanson, K.
    Hebecker, D.
    Heereman, D.
    Heinen, D.
    Helbing, K.
    Hellauer, R.
    Hellwig, D.
    Hickford, S.
    Hill, G. C.
    Hoffman, K. D.
    Hoffmann, R.
    Homeier, A.
    Hoshina, K.
    Huang, F.
    Huelsnitz, W.
    Hulth, Per Olof
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hussain, S.
    Ishihara, A.
    Jacobi, E.
    Jacobsen, J.
    Jagielski, K.
    Japaridze, G. S.
    Jero, K.
    Jlelati, O.
    Jurkovic, M.
    Kaminsky, B.
    Kappes, A.
    Karg, T.
    Karle, A.
    Kauer, M.
    Keivani, A.
    Kelley, J. L.
    Kheirandish, A.
    Kiryluk, J.
    Klaes, J.
    Klein, S. R.
    Koehne, J. -H
    Kohnen, G.
    Kolanoski, H.
    Koob, A.
    Koepke, L.
    Kopper, C.
    Kopper, S.
    Koskinen, D. J.
    Kowalski, M.
    Kriesten, A.
    Krings, K.
    Kroll, G.
    Kroll, M.
    Kunnen, J.
    Kurahashi, N.
    Kuwabara, T.
    Labare, M.
    Lanfranchi, J. L.
    Larsen, D. T.
    Larson, M. J.
    Lesiak-Bzdak, M.
    Leuermann, M.
    Luenemann, J.
    Madsen, J.
    Maggi, G.
    Maruyama, R.
    Mase, K.
    Matis, H. S.
    Maunu, R.
    McNally, F.
    Meagher, K.
    Medici, M.
    Meli, A.
    Meures, T.
    Miarecki, S.
    Middell, E.
    Middlemas, E.
    Milke, N.
    Miller, J.
    Mohrmann, L.
    Montaruli, T.
    Morse, R.
    Nahnhauer, R.
    Naumann, U.
    Niederhausen, H.
    Nowicki, S. C.
    Nygren, D. R.
    Obertacke, A.
    Odrowski, S.
    Olivas, A.
    Omairat, A.
    O'Murchadha, A.
    Palczewski, T.
    Paul, L.
    Penek, Oe.
    Pepper, J. A.
    de los Heros, C. Perez
    Pfendner, C.
    Pieloth, D.
    Pinat, E.
    Posselt, J.
    Price, P. B.
    Przybylski, G. T.
    Puetz, J.
    Quinnan, M.
    Raedel, L.
    Rameez, M.
    Rawlins, K.
    Redl, P.
    Rees, I.
    Reimann, R.
    Relich, M.
    Resconi, E.
    Rhode, W.
    Richman, M.
    Riedel, B.
    Robertson, S.
    Rodrigues, J. P.
    Rongen, M.
    Rott, C.
    Ruhe, T.
    Ruzybayev, B.
    Ryckbosch, D.
    Saba, S. M.
    Sander, H. -G
    Sandroos, J.
    Santander, M.
    Sarkar, S.
    Schatto, K.
    Scheriau, F.
    Schmidt, T.
    Schmitz, M.
    Schoenen, S.
    Schoeneberg, S.
    Schoenwald, A.
    Schukraft, A.
    Schulte, L.
    Schulz, O.
    Seckel, D.
    Sestayo, Y.
    Seunarine, S.
    Shanidze, R.
    Smith, M. W. E.
    Soldin, D.
    Spiczak, G. M.
    Spiering, C.
    Stamatikos, M.
    Stanev, T.
    Stanisha, N. A.
    Stasik, A.
    Stezelberger, T.
    Stokstad, R. G.
    Stoessl, A.
    Strahler, E. A.
    Strom, R.
    Strotjohann, N. L.
    Sullivan, G. W.
    Taavola, H.
    Taboada, I.
    Tamburro, A.
    Tepe, A.
    Ter-Antonyan, S.
    Terliuk, A.
    Tesic, G.
    Tilav, S.
    Toale, P. A.
    Tobin, M. N.
    Tosi, D.
    Tselengidou, M.
    Unger, E.
    Usner, M.
    Vallecorsa, S.
    van Eijndhoven, N.
    Vandenbroucke, J.
    van Santen, J.
    Vehring, M.
    Voge, M.
    Vraeghe, M.
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Wallraff, M.
    Weaver, Ch.
    Wellons, M.
    Wendt, C.
    Westerhoff, S.
    Whelan, B. J.
    Whitehorn, N.
    Wichary, C.
    Wiebe, K.
    Wiebusch, C. H.
    Williams, D. R.
    Wissing, H.
    Wolf, Martin
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Wood, T. R.
    Woschnagg, K.
    Xu, D. L.
    Xu, X. W.
    Yanez, J. P.
    Yodh, G.
    Yoshida, S.
    Zarzhitsky, P.
    Ziemann, J.
    Zierke, S.
    Zoll, Marcel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data2015In: Physical Review D, ISSN 1550-7998, E-ISSN 1550-2368, Vol. 91, no 7, article id 072004Article in journal (Refereed)
    Abstract [en]

    We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser IceCube instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 and 100 GeV, where a strong disappearance signal is expected. The IceCube detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by Delta m(32)(2) = 2.72(-0.20)(+0.19) x 10(-3) eV(2) and sin(2)theta(23) = 0.53(-0.12)(+0.09) (normal mass ordering assumed). The results are compatible, and comparable in precision, to those of dedicated oscillation experiments.

  • 2. Aartsen, M. G.
    et al.
    Ackermann, M.
    Adams, J.
    Aguilar, J. A.
    Ahlers, M.
    Ahrens, Maryon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Altmann, D.
    Anderson, T.
    Arguelles, C.
    Arlen, T. C.
    Auffenberg, J.
    Bai, X.
    Barwick, S. W.
    Baum, V.
    Beatty, J. J.
    Tjus, J. Becker
    Becker, K. -H
    BenZvi, S.
    Berghaus, P.
    Berley, D.
    Bernardini, E.
    Bernhard, A.
    Besson, D. Z.
    Binder, G.
    Bindig, D.
    Bissok, M.
    Blaufuss, E.
    Blumenthal, J.
    Boersma, D. J.
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Bos, F.
    Bose, D.
    Boeser, S.
    Botner, O.
    Brayeur, L.
    Bretz, H. -P
    Brown, A. M.
    Casey, J.
    Casier, M.
    Cheung, E.
    Chirkin, D.
    Christov, A.
    Christy, B.
    Clark, K.
    Classen, L.
    Cleverinann, F.
    Coenders, S.
    Cowen, D. F.
    Silva, A. H. Cruz
    Danninger, Matthias
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Daughhetee, J.
    Davis, J. C.
    Day, M.
    de Andre, J. P. A. M.
    De Clercq, C.
    De Ridder, S.
    Desiati, P.
    de Vries, K. D.
    de With, M.
    DeYoung, T.
    Diaz-Velez, J. C.
    Dunkman, M.
    Eagan, R.
    Eberhardt, B.
    Eichmann, B.
    Eisch, J.
    Euler, S.
    Evenson, P. A.
    Fadiran, O.
    Fazely, A. R.
    Fedynitch, A.
    Feintzeig, J.
    Felde, J.
    Feusels, T.
    Filimonov, K.
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Fischer-Wasels, T.
    Flis, Samuel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Franckowiak, A.
    Frantzen, K.
    Fuchs, T.
    Gaisser, T. K.
    Gaior, R.
    Gallagher, J.
    Gerhardt, L.
    Gier, D.
    Gladstone, L.
    Gluesenkamp, T.
    Goldschmidt, A.
    Golup, G.
    Gonzalez, J. G.
    Goodman, J. A.
    Gora, D.
    Grant, D.
    Gretskov, P.
    Groh, J. C.
    Gross, A.
    Ha, C.
    Haack, C.
    Ismail, A. Haj
    Hallen, P.
    Hallgren, A.
    Halzen, F.
    Hanson, K.
    Hebecker, D.
    Heereman, D.
    Heinen, D.
    Helbing, K.
    Hellauer, R.
    Hellwig, D.
    Hickford, S.
    Hill, G. C.
    Hoffman, K. D.
    Hoffmann, R.
    Homeier, A.
    Hoshina, K.
    Huang, F.
    Huelsnitz, W.
    Hulth, Per Olof
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hussain, S.
    Ishihara, A.
    Jacobi, E.
    Jacobsen, J.
    Jagielski, K.
    Japaridze, G. S.
    Jero, K.
    Jlelati, O.
    Jurkovic, M.
    Kaminsky, B.
    Kappes, A.
    Karg, T.
    Karle, A.
    Kauer, M.
    Kelley, J. L.
    Kheirandish, A.
    Kiryluk, J.
    Klaes, J.
    Klein, S. R.
    Koehne, J. -H
    Kohnen, G.
    Kolanoski, H.
    Koob, A.
    Koepke, L.
    Kopper, C.
    Kopper, S.
    Koskinen, D. J.
    Kowalski, M.
    Kriesten, A.
    Krings, K.
    Kroll, G.
    Kroll, M.
    Kunnen, J.
    Kurahashi, N.
    Kuwabara, T.
    Labare, M.
    Larsen, D. T.
    Larson, M. J.
    Lesiak-Bzdak, M.
    Leuermann, M.
    Leute, J.
    Luenemann, J.
    Madsen, J.
    Maggi, G.
    Maruyama, R.
    Mase, K.
    Matis, H. S.
    Maunu, R.
    McNally, F.
    Meagher, K.
    Medici, M.
    Meli, A.
    Meures, T.
    Miarecki, S.
    Middell, E.
    Middlemas, E.
    Milke, N.
    Miller, J.
    Mohrmann, L.
    Montaruli, T.
    Morse, R.
    Nahnhauer, R.
    Naumann, U.
    Niederhausen, H.
    Nowicki, S. C.
    Nygren, D. R.
    Obertacke, A.
    Odrowski, S.
    Olivas, A.
    Omairat, A.
    O'Murchadha, A.
    Palczewski, T.
    Paul, L.
    Penek, Oe.
    Pepper, J. A.
    de los Heros, C. Perez
    Pfendner, C.
    Pieloth, D.
    Pinat, E.
    Posselt, J.
    Price, P. B.
    Przybylski, G. T.
    Puetz, J.
    Quinnan, M.
    Raedel, L.
    Rameez, M.
    Rawlins, K.
    Redl, P.
    Rees, I.
    Reimann, R.
    Relich, M.
    Resconi, E.
    Rhode, W.
    Richman, M.
    Riedel, B.
    Robertson, S.
    Rodrigues, Jp.
    Rongen, M.
    Rott, C.
    Ruhe, T.
    Ruzybayev, B.
    Ryckbosch, D.
    Saba, S. M.
    Sander, H. -G
    Sandroos, J.
    Santander, M.
    Sarkar, S.
    Schatto, K.
    Scheriau, F.
    Schmidt, T.
    Schmitz, M.
    Schoenen, S.
    Schoeneberg, S.
    Schoenwald, A.
    Schukraft, A.
    Schulte, L.
    Schulz, O.
    Seckel, D.
    Sestayo, Y.
    Seunarine, S.
    Shanidze, R.
    Smith, M. W. E.
    Soldin, D.
    Spiczak, G. M.
    Spiering, C.
    Stamatikos, M.
    Stanev, T.
    Stanisha, N. A.
    Stasik, A.
    Stezelberger, T.
    Stokstad, R. G.
    Stoessl, A.
    Strahler, E. A.
    Stroem, R.
    Strotjohann, N. L.
    Sullivan, G. W.
    Taavola, H.
    Taboada, I.
    Tamburro, A.
    Tepe, A.
    Ter-Antonyan, S.
    Terliuk, A.
    Tesic, G.
    Tilav, S.
    Toale, P. A.
    Tobin, M. N.
    Tosi, D.
    Tselengidou, M.
    Unger, E.
    Usner, M.
    Vallecorsa, S.
    van Eijndhoven, N.
    Vandenbroucke, J.
    van Santen, J.
    Vehring, M.
    Voge, M.
    Vraeghe, M.
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Wallraff, M.
    Weaver, Ch.
    Wellons, M.
    Wendt, C.
    Westerhoff, S.
    Whelan, B. J.
    Whitehorn, N.
    Wichary, C.
    Wiebe, K.
    Wiebusch, C. H.
    Williams, D. R.
    Wissing, H.
    Wolf, Martin
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Wood, T. R.
    Woschnagg, K.
    Xu, D. L.
    Xu, X. W.
    Yanez, J. P.
    Yodh, G.
    Yoshida, S.
    Zarzhitsky, P.
    Ziemann, J.
    Zierke, S.
    Zoll, Marcel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Searches for small-scale anisotropies from neutrino point sources with three years of IceCube data2015In: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 66, p. 39-52Article in journal (Refereed)
    Abstract [en]

    Recently, IceCube found evidence for a diffuse signal of astrophysical neutrinos in an energy range of similar to 60 TeV to the PeV-scale [1]. The origin of those events, being a key to understanding the origin of cosmic rays, is still an unsolved question. So far, analyses have not succeeded to resolve the diffuse signal into point-like sources. Searches including a maximum-likelihood-ratio test, based on the reconstructed directions and energies of the detected down- and up-going neutrino candidates, were also performed on IceCube data leading to the exclusion of bright point sources. In this paper, we present two methods to search for faint neutrino point sources in three years of IceCube data, taken between 2008 and 2011. The first method is an autocorrelation test, applied separately to the northern and southern sky. The second method is a multipole analysis, which expands the measured data in the northern hemisphere into spherical harmonics and uses the resulting expansion coefficients to separate signal from background. With both methods, the results are consistent with the background expectation with a slightly more sparse spatial distribution, corresponding to an underfluctuation. Depending on the assumed number of sources, the resulting upper limit on the flux per source in the northern hemisphere for an E-2 energy spectrum ranges from similar to 1.5. 10(-8) GeV/cm(2) s(-1), in the case of one assumed source, to similar to 4. 10(-10) GeV/cm(2) s(-1), in the case of 3500 assumed sources.

  • 3. Abbasi, R.
    et al.
    Ahrens, Maryon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Böser, S.
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ehrhardt, T.
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lohfink, E.
    Parker, G.
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    Non-standard neutrino interactions in IceCube2021In: The European Physical Society Conference on High Energy Physics: EPS-HEP2021 26 -30 July 2021 Online conference, jointly organized by Universität Hamburg and the research center DESY, Trieste: International School for Advanced Studies , 2021, article id PoS(EPS-HEP2021)245Conference paper (Refereed)
    Abstract [en]

    Non-standard neutrino interactions (NSI) may arise in various types of new physics. Their existence would change the potential that atmospheric neutrinos encounter when traversing Earth matter and hence alter their oscillation behavior. This imprint on coherent neutrino forward scattering can be probed using high-statistics neutrino experiments such as IceCube and its low-energy extension, DeepCore. Both provide extensive data samples that include all neutrino flavors, with oscillation baselines between tens of kilometers and the diameter of the Earth.

    DeepCore event energies reach from a few GeV up to the order of 100 GeV - which marks the lower threshold for higher energy IceCube atmospheric samples, ranging up to 10 TeV.

    In DeepCore data, the large sample size and energy range allow us to consider not only flavor-violating and flavor-nonuniversal NSI in the μ−τ sector, but also those involving electron flavor.

    The effective parameterization used in our analyses is independent of the underlying model and the new physics mass scale. In this way, competitive limits on several NSI parameters have been set in the past. The 8 years of data available now result in significantly improved sensitivities. This improvement stems not only from the increase in statistics but also from substantial improvement in the treatment of systematic uncertainties, background rejection and event reconstruction.

  • 4. Abbasi, R.
    et al.
    Ahrens, Maryon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhang, Z.
    A convolutional neural network based cascade reconstruction for the IceCube Neutrino Observatory2021In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 16, no 7, article id P07041Article in journal (Refereed)
    Abstract [en]

    Continued improvements on existing reconstruction methods are vital to the success of high-energy physics experiments, such as the IceCube Neutrino Observatory. In IceCube, further challenges arise as the detector is situated at the geographic South Pole where computational resources are limited. However, to perform real-time analyses and to issue alerts to telescopes around the world, powerful and fast reconstruction methods are desired. Deep neural networks can be extremely powerful, and their usage is computationally inexpensive once the networks are trained. These characteristics make a deep learning-based approach an excellent candidate for the application in IceCube. A reconstruction method based on convolutional architectures and hexagonally shaped kernels is presented. The presented method is robust towards systematic uncertainties in the simulation and has been tested on experimental data. In comparison to standard reconstruction methods in IceCube, it can improve upon the reconstruction accuracy, while reducing the time necessary to run the reconstruction by two to three orders of magnitude.

  • 5. Abbasi, R.
    et al.
    Ahrens, Maryon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhang, Z.
    Detection of astrophysical tau neutrino candidates in IceCube2022In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 82, no 11, article id 1031Article in journal (Refereed)
    Abstract [en]

    High-energy tau neutrinos are rarely produced in atmospheric cosmic-ray showers or at cosmic particle accelerators, but are expected to emerge during neutrino propagation over cosmic distances due to flavor mixing. When high energy tau neutrinos interact inside the IceCube detector, two spatially separated energy depositions may be resolved, the first from the charged current interaction and the second from the tau lepton decay. We report a novel analysis of 7.5 years of IceCube data that identifies two candidate tau neutrinos among the 60 High-Energy Starting Events (HESE) collected during that period. The HESE sample offers high purity, all-sky sensitivity, and distinct observational signatures for each neutrino flavor, enabling a new measurement of the flavor composition. The measured astrophysical neutrino flavor composition is consistent with expectations, and an astrophysical tau neutrino flux is indicated at 2.8 sigma significance.

  • 6. Abbasi, R.
    et al.
    Ahrens, Maryon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhang, Z.
    First all-flavor search for transient neutrino emission using 3-years of IceCube DeepCore data2022In: Journal of Cosmology and Astroparticle Physics, E-ISSN 1475-7516, no 1, article id 027Article in journal (Refereed)
    Abstract [en]

    Since the discovery of a flux of high-energy astrophysical neutrinos, searches for their origins have focused primarily at TeV-PeV energies. Compared to sub-TeV searches, high-energy searches benefit from an increase in the neutrino cross section, improved angular resolution on the neutrino direction, and a reduced background from atmospheric neutrinos and muons. However, the focus on high energy does not preclude the existence of sub-TeV neutrino emission where IceCube retains sensitivity. Here we present the first all-flavor search from IceCube for transient emission of low-energy neutrinos, focusing on the energy region of 5.6-100 GeV using three years of data obtained with the IceCube-DeepCore detector. We find no evidence of transient neutrino emission in the data, thus leading to a constraint on the volumetric rate of astrophysical transient sources in the range of similar to 705- 2301Gpc(-3) yr(-1) for sources following a subphotospheric energy spectrum with a mean energy of 100 GeV and a bolometric energy of 10(52) erg.

  • 7. Abbasi, R.
    et al.
    Ahrens, Maryon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhang, Z.
    Search for Relativistic Magnetic Monopoles with Eight Years of IceCube Data2022In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 128, no 5, article id 051101Article in journal (Refereed)
    Abstract [en]

    We present an all-sky 90% confidence level upper limit on the cosmic flux of relativistic magnetic monopoles using 2886 days of IceCube data. The analysis was optimized for monopole speeds between 0.750c and 0.995c, without any explicit restriction on the monopole mass. We constrain the flux of relativistic cosmic magnetic monopoles to a level below 2.0×10−19  cm−2 s−1 sr−1 over the majority of the targeted speed range. This result constitutes the most strict upper limit to date for magnetic monopoles with β≳0.8 and up to β∼0.995 and fills the gap between existing limits on the cosmic flux of nonrelativistic and ultrarelativistic magnetic monopoles.

  • 8. Abbasi, R.
    et al.
    Ahrens, Maryon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    Density of GeV muons in air showers measured with IceTop2022In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 106, no 3, article id 032010Article in journal (Refereed)
    Abstract [en]

    We present a measurement of the density of GeV muons in near-vertical air showers using three years of data recorded by the IceTop array at the South Pole. Depending on the shower size, the muon densities have been measured at lateral distances between 200 and 1000 m. From these lateral distributions, we derive the muon densities as functions of energy at reference distances of 600 and 800 m for primary energies between 2.5 and 40 PeV and between 9 and 120 PeV, respectively. The muon densities are determined using, as a baseline, the hadronic interaction model Sibyll 2.1 together with various composition models. The measurements are consistent with the predicted muon densities within these baseline interaction and composition models. The measured muon densities have also been compared to simulations using the postLHC models EPOS-LHC and QGSJet-II.04. The result of this comparison is that the post-LHC models together with any given composition model yield higher muon densities than observed. This is in contrast to the observations above 1 EeV where all model simulations yield for any mass composition lower muon densities than the measured ones. The post-LHC models in general feature higher muon densities so that the agreement with experimental data at the highest energies is improved but the muon densities are not correct in the energy range between 2.5 and about 100 PeV.

  • 9. Abbasi, R.
    et al.
    Ahrens, Maryon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    Framework and tools for the simulation and analysis of the radio emission from air showers at IceCube2022In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 17, no 6, article id P06026Article in journal (Refereed)
    Abstract [en]

    The Surface Enhancement of the IceTop air-shower array will include the addition of radio antennas and scintillator panels, co-located with the existing ice-Cherenkov tanks and covering an area of about 1 km(2). Together, these will increase the sensitivity of the IceCube Neutrino Observatory to the electromagnetic and muonic components of cosmic-ray-induced air showers at the South Pole. The inclusion of the radio technique necessitates an expanded set of simulation and analysis tools to explore the radio-frequency emission from air showers in the 70 MHz to 350 MHz band. In this paper we describe the software modules that have been developed to work with time-and frequency-domain information within IceCube's existing software framework, IceTray, which is used by the entire IceCube collaboration. The software includes a method by which air-shower simulation, generated using CoREAS, can be reused via waveform interpolation, thus overcoming a significant computational hurdle in the field.

  • 10. Abbasi, R.
    et al.
    Ahrens, Maryon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    Graph Neural Networks for low-energy event classification & reconstruction in IceCube2022In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 17, no 11, article id P11003Article in journal (Refereed)
    Abstract [en]

    IceCube, a cubic-kilometer array of optical sensors built to detect atmospheric and astrophysical neutrinos between 1 GeV and 1 PeV, is deployed 1.45 km to 2.45 km below the surface of the ice sheet at the South Pole. The classification and reconstruction of events from the in-ice detectors play a central role in the analysis of data from IceCube. Reconstructing and classifying events is a challenge due to the irregular detector geometry, inhomogeneous scattering and absorption of light in the ice and, below 100 GeV, the relatively low number of signal photons produced per event. To address this challenge, it is possible to represent IceCube events as point cloud graphs and use a Graph Neural Network (GNN) as the classification and reconstruction method. The GNN is capable of distinguishing neutrino events from cosmic-ray backgrounds, classifying different neutrino event types, and reconstructing the deposited energy, direction and interaction vertex. Based on simulation, we provide a comparison in the 1 GeV–100 GeV energy range to the current state-of-the-art maximum likelihood techniques used in current IceCube analyses, including the effects of known systematic uncertainties. For neutrino event classification, the GNN increases the signal efficiency by 18% at a fixed background rate, compared to current IceCube methods. Alternatively, the GNN offers a reduction of the background (i.e. false positive) rate by over a factor 8 (to below half a percent) at a fixed signal efficiency. For the reconstruction of energy, direction, and interaction vertex, the resolution improves by an average of 13%–20% compared to current maximum likelihood techniques in the energy range of 1 GeV–30 GeV. The GNN, when run on a GPU, is capable of processing IceCube events at a rate nearly double of the median IceCube trigger rate of 2.7 kHz, which opens the possibility of using low energy neutrinos in online searches for transient events.

  • 11. Abbasi, R.
    et al.
    Ahrens, Maryon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    IceCube Search for Neutrinos Coincident with Gravitational Wave Events from LIGO/Virgo Run O32023In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 944, no 1, article id 80Article in journal (Refereed)
    Abstract [en]

    Using data from the IceCube Neutrino Observatory, we searched for high-energy neutrino emission from the gravitational-wave events detected by the advanced LIGO and Virgo detectors during their third observing run. We did a low-latency follow-up on the public candidate events released during the detectors' third observing run and an archival search on the 80 confident events reported in the GWTC-2.1 and GWTC-3 catalogs. An extended search was also conducted for neutrino emission on longer timescales from neutron star containing mergers. Follow-up searches on the candidate optical counterpart of GW190521 were also conducted. We used two methods; an unbinned maximum likelihood analysis and a Bayesian analysis using astrophysical priors, both of which were previously used to search for high-energy neutrino emission from gravitational-wave events. No significant neutrino emission was observed by any analysis, and upper limits were placed on the time-integrated neutrino flux as well as the total isotropic equivalent energy emitted in high-energy neutrinos.

  • 12. Abbasi, R.
    et al.
    Ahrens, Maryon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    Low energy event reconstruction in IceCube DeepCore2022In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 82, no 9, article id 807Article in journal (Refereed)
    Abstract [en]

    The reconstruction of event-level information, such as the direction or energy of a neutrino interacting in IceCube DeepCore, is a crucial ingredient to many physics analyses. Algorithms to extract this high level information from the detector's raw data have been successfully developed and used for high energy events. In this work, we address unique challenges associated with the reconstruction of lower energy events in the range of a few to hundreds of GeV and present two separate, state-of-the-art algorithms. One algorithm focuses on the fast directional reconstruction of events based on unscattered light. The second algorithm is a likelihood-based multipurpose reconstruction offering superior resolutions, at the expense of larger computational cost.

  • 13. Abbasi, R.
    et al.
    Ahrens, Maryon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    Search for Astrophysical Neutrinos from 1FLE Blazars with IceCube2022In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 938, no 1, article id 38Article in journal (Refereed)
    Abstract [en]

    The majority of astrophysical neutrinos have undetermined origins. The IceCube Neutrino Observatory has observed astrophysical neutrinos but has not yet identified their sources. Blazars are promising source candidates, but previous searches for neutrino emission from populations of blazars detected in ≳GeV gamma rays have not observed any significant neutrino excess. Recent findings in multimessenger astronomy indicate that high-energy photons, coproduced with high-energy neutrinos, are likely to be absorbed and reemitted at lower energies. Thus, lower-energy photons may be better indicators of TeV–PeV neutrino production. This paper presents the first time-integrated stacking search for astrophysical neutrino emission from MeV-detected blazars in the first Fermi Large Area Telescope low energy (1FLE) catalog using ten years of IceCube muon–neutrino data. The results of this analysis are found to be consistent with a background-only hypothesis. Assuming an E−2 neutrino spectrum and proportionality between the blazars MeV gamma-ray fluxes and TeV–PeV neutrino flux, the upper limit on the 1FLE blazar energy-scaled neutrino flux is determined to be 1.64 × 10−12 TeV cm−2 s−1 at 90% confidence level. This upper limit is approximately 1% of IceCube's diffuse muon–neutrino flux measurement.

  • 14. Abbasi, R.
    et al.
    Ahrens, Maryon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    Search for GeV-scale dark matter annihilation in the Sun with IceCube DeepCore2022In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 105, no 6, article id 062004Article in journal (Refereed)
    Abstract [en]

    The Sun provides an excellent target for studying spin-dependent dark matter-proton scattering due to its high matter density and abundant hydrogen content. Dark matter particles from the Galactic halo can elastically interact with Solar nuclei, resulting in their capture and thermalization in the Sun. The captured dark matter can annihilate into Standard Model particles including an observable flux of neutrinos. We present the results of a search for low-energy (<500  GeV) neutrinos correlated with the direction of the Sun using 7 years of IceCube data. This work utilizes, for the first time, new optimized cuts to extend IceCube’s sensitivity to dark matter mass down to 5 GeV. We find no significant detection of neutrinos from the Sun. Our observations exclude capture by spin-dependent dark matter-proton scattering with cross section down to a few times 10−41  cm2, assuming there is equilibrium with annihilation into neutrinos/antineutrinos for dark matter masses between 5 GeV and 100 GeV. These are the strongest constraints at GeV energies for dark matter annihilation directly to neutrinos.

  • 15. Abbasi, R.
    et al.
    Ahrens, Maryon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    Search for High-energy Neutrino Emission from Galactic X-Ray Binaries with IceCube2022In: Astrophysical Journal Letters, ISSN 2041-8205, E-ISSN 2041-8213, Vol. 930, no 2, article id L24Article in journal (Refereed)
    Abstract [en]

    We present the first comprehensive search for high-energy neutrino emission from high- and low-mass X-ray binaries conducted by IceCube. Galactic X-ray binaries are long-standing candidates for the source of Galactic hadronic cosmic rays and neutrinos. The compact object in these systems can be the site of cosmic-ray acceleration, and neutrinos can be produced by interactions of cosmic rays with radiation or gas, in the jet of a microquasar, in the stellar wind, or in the atmosphere of the companion star. We study X-ray binaries using 7.5 yr of IceCube data with three separate analyses. In the first, we search for periodic neutrino emission from 55 binaries in the Northern Sky with known orbital periods. In the second, the X-ray light curves of 102 binaries across the entire sky are used as templates to search for time-dependent neutrino emission. Finally, we search for time-integrated emission of neutrinos for a list of 4 notable binaries identified as microquasars. In the absence of a significant excess, we place upper limits on the neutrino flux for each hypothesis and compare our results with theoretical predictions for several binaries. In addition, we evaluate the sensitivity of the next generation neutrino telescope at the South Pole, IceCube-Gen2, and demonstrate its power to identify potential neutrino emission from these binary sources in the Galaxy.

  • 16. Abbasi, R.
    et al.
    Ahrens, Maryon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    Search for neutrino emission from cores of active galactic nuclei2022In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 106, no 2, article id 022005Article in journal (Refereed)
    Abstract [en]

    The sources of the majority of the high-energy astrophysical neutrinos observed with the IceCube neutrino telescope at the South Pole are unknown. So far, only a flaring gamma-ray blazar was compellingly associated with the emission of high-energy neutrinos. However, several studies suggest that the neutrino emission from the gamma-ray blazar population only accounts for a small fraction of the total astrophysical neutrino flux. In this work we probe the production of high-energy neutrinos in the cores of active galactic nuclei (AGN), induced by accelerated cosmic rays in the accretion disk region. We present a likelihood analysis based on eight years of IceCube data, searching for a cumulative neutrino signal from three AGN samples created for this work. The neutrino emission is assumed to be proportional to the accretion disk luminosity estimated from the soft x-ray flux. Next to the observed soft x-ray flux, the objects for the three samples have been selected based on their radio emission and infrared color properties. For the largest sample in this search, an excess of high-energy neutrino events with respect to an isotropic background of atmospheric and astrophysical neutrinos is found, corresponding to a post-trial significance of 2.60σ. If interpreted as a genuine signal with the assumptions of a proportionality of x-ray and neutrino fluxes and a model for the subthreshold flux distribution, then this observation implies that at 100 TeV, 27%–100% of the observed neutrinos arise from particle acceleration in the core of AGN at 1σ confidence interval.

  • 17. Abbasi, R.
    et al.
    Ahrens, Maryon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    Search for quantum gravity using astrophysical neutrino flavour with IceCube2022In: Nature Physics, ISSN 1745-2473, E-ISSN 1745-2481, Vol. 18, no 11, p. 1287-1292Article in journal (Refereed)
    Abstract [en]

    Along their long propagation from production to detection, neutrinos undergo flavour conversions that convert their types or flavours. High-energy astrophysical neutrinos propagate unperturbed over a billion light years in vacuum and are sensitive to small effects caused by new physics. Effects of quantum gravity are expected to appear at the Planck energy scale. Such a high-energy universe would have existed only immediately after the Big Bang and is inaccessible by human technologies. On the other hand, quantum gravity effects may exist in our low-energy vacuum, but are suppressed by inverse powers of the Planck energy. Measuring the coupling of particles to such small effects is difficult via kinematic observables, but could be observable through flavour conversions. Here we report a search with the IceCube Neutrino Observatory, using astrophysical neutrino flavours to search for new space-time structure. We did not find any evidence of anomalous flavour conversion in the IceCube astrophysical neutrino flavour data. We apply the most stringent limits of any known technologies, down to 10-42 GeV-2 with Bayes factor greater than 10 on the dimension-six operators that parameterize the space-time defects. We thus unambiguously reach the parameter space of quantum-gravity-motivated physics.

  • 18. Abbasi, R.
    et al.
    Ahrens, Maryon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    Search for Unstable Sterile Neutrinos with the IceCube Neutrino Observatory2022In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 129, no 15, article id 151801Article in journal (Refereed)
    Abstract [en]

    We present a search for an unstable sterile neutrino by looking for a resonant signal in eight years of atmospheric νμ data collected from 2011 to 2019 at the IceCube Neutrino Observatory. Both the (stable) three-neutrino and the 3+1 sterile neutrino models are disfavored relative to the unstable sterile neutrino model, though with p values of 2.8% and 0.81%, respectively, we do not observe evidence for 3+1 neutrinos with neutrino decay. The best-fit parameters for the sterile neutrino with decay model from this study are Δm=6.7  eV2, sin224=0.33, and g2=2.5π±1.5π, where g is the decay-mediating coupling. The preferred regions of the 3+1+decay model from short-baseline oscillation searches are excluded at 90% C.L.

  • 19. Abbasi, R.
    et al.
    Ahrens, Maryon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    Searches for connections between dark matter and high-energy neutrinos with IceCube2023In: Journal of Cosmology and Astroparticle Physics, E-ISSN 1475-7516, Vol. 2023, no 10, article id 003Article in journal (Refereed)
    Abstract [en]

    In this work, we present the results of searches for signatures of dark matter decay or annihilation into Standard Model particles, and secret neutrino interactions with dark matter. Neutrinos could be produced in the decay or annihilation of galactic or extragalactic dark matter. Additionally, if an interaction between dark matter and neutrinos exists then dark matter will interact with extragalactic neutrinos. In particular galactic dark matter will induce an anisotropy in the neutrino sky if this interaction is present. We use seven and a half years of the High-Energy Starting Event (HESE) sample data, which measures neutrinos in the energy range of approximately 60 TeV to 10 PeV, to study these phenomena. This all-sky event selection is dominated by extragalactic neutrinos. For dark matter of ∼ 1 PeV in mass, we constrain the velocity-averaged annihilation cross section to be smaller than 10-23 cm3/s for the exclusive μ+μ- channel and 10-22 cm3/s for the bb̅ channel. For the same mass, we constrain the lifetime of dark matter to be larger than 1028 s for all channels studied, except for decaying exclusively to bb̅ where it is bounded to be larger than 1027 s. Finally, we also search for evidence of astrophysical neutrinos scattering on galactic dark matter in two scenarios. For fermionic dark matter with a vector mediator, we constrain the dimensionless coupling associated with this interaction to be less than 0.1 for dark matter mass of 0.1 GeV and a mediator mass of 10-4 GeV. In the case of scalar dark matter with a fermionic mediator, we constrain the coupling to be less than 0.1 for dark matter and mediator masses below 1 MeV.

  • 20. Abbasi, R.
    et al.
    Ahrens, Maryon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    Searches for Neutrinos from Gamma-Ray Bursts Using the IceCube Neutrino Observatory2022In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 939, no 2, article id 116Article in journal (Refereed)
    Abstract [en]

    Gamma-ray bursts (GRBs) are considered as promising sources of ultra-high-energy cosmic rays (UHECRs) due to their large power output. Observing a neutrino flux from GRBs would offer evidence that GRBs are hadronic accelerators of UHECRs. Previous IceCube analyses, which primarily focused on neutrinos arriving in temporal coincidence with the prompt gamma-rays, found no significant neutrino excess. The four analyses presented in this paper extend the region of interest to 14 days before and after the prompt phase, including generic extended time windows and targeted precursor searches. GRBs were selected between 2011 May and 2018 October to align with the data set of candidate muon-neutrino events observed by IceCube. No evidence of correlation between neutrino events and GRBs was found in these analyses. Limits are set to constrain the contribution of the cosmic GRB population to the diffuse astrophysical neutrino flux observed by IceCube. Prompt neutrino emission from GRBs is limited to ≲1% of the observed diffuse neutrino flux, and emission on timescales up to 104 s is constrained to 24% of the total diffuse flux.

    Download full text (pdf)
    fulltext
  • 21. Abbasi, R.
    et al.
    Ahrens, Maryon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    Searching for High-energy Neutrino Emission from Galaxy Clusters with IceCube2022In: Astrophysical Journal Letters, ISSN 2041-8205, E-ISSN 2041-8213, Vol. 938, no 2, article id L11Article in journal (Refereed)
    Abstract [en]

    Galaxy clusters have the potential to accelerate cosmic rays (CRs) to ultrahigh energies via accretion shocks or embedded CR acceleration sites. The CRs with energies below the Hillas condition will be confined within the cluster and eventually interact with the intracluster medium gas to produce secondary neutrinos and gamma rays. Using 9.5 yr of muon neutrino track events from the IceCube Neutrino Observatory, we report the results of a stacking analysis of 1094 galaxy clusters with masses ≳1014 M and redshifts between 0.01 and ∼1 detected by the Planck mission via the Sunyaev–Zel’dovich effect. We find no evidence for significant neutrino emission and report upper limits on the cumulative unresolved neutrino flux from massive galaxy clusters after accounting for the completeness of the catalog up to a redshift of 2, assuming three different weighting scenarios for the stacking and three different power-law spectra. Weighting the sources according to mass and distance, we set upper limits at a 90% confidence level that constrain the flux of neutrinos from massive galaxy clusters (≳1014 M) to be no more than 4.6% of the diffuse IceCube observations at 100 TeV, assuming an unbroken E−2.5 power-law spectrum.

  • 22. Abbasi, R.
    et al.
    Ahrens, Maryon
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    Strong Constraints on Neutrino Nonstandard Interactions from TeV-Scale νμ Disappearance at IceCube2022In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 129, no 1, article id 011804Article in journal (Refereed)
    Abstract [en]

    We report a search for nonstandard neutrino interactions (NSI) using eight years of TeV-scale atmospheric muon neutrino data from the IceCube Neutrino Observatory. By reconstructing incident energies and zenith angles for atmospheric neutrino events, this analysis presents unified confidence intervals for the NSI parameter εμτ. The best-fit value is consistent with no NSI at a p value of 25.2%. With a 90% confidence interval of −0.0041≤εμτ≤0.0031 along the real axis and similar strength in the complex plane, this result is the strongest constraint on any NSI parameter from any oscillation channel to date.

  • 23. Abbasi, R.
    et al.
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hidvegi, Attila
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Nisa, M. U.
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zimmerman, M.
    Search for Extended Sources of Neutrino Emission in the Galactic Plane with IceCube2023In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 956, no 1, article id 20Article in journal (Refereed)
    Abstract [en]

    The Galactic plane, harboring a diffuse neutrino flux, is a particularly interesting target in which to study potential cosmic-ray acceleration sites. Recent gamma-ray observations by HAWC and LHAASO have presented evidence for multiple Galactic sources that exhibit a spatially extended morphology and have energy spectra continuing beyond 100 TeV. A fraction of such emission could be produced by interactions of accelerated hadronic cosmic rays, resulting in an excess of high-energy neutrinos clustered near these regions. Using 10 years of IceCube data comprising track-like events that originate from charged-current muon neutrino interactions, we perform a dedicated search for extended neutrino sources in the Galaxy. We find no evidence for time-integrated neutrino emission from the potential extended sources studied in the Galactic plane. The most significant location, at 2.6σ post-trials, is a sized region coincident with the unidentified TeV gamma-ray source 3HWC J1951+266. We provide strong constraints on hadronic emission from several regions in the galaxy.

  • 24. Abbasi, R.
    et al.
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hidvegi, Attila
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    A Search for IceCube Sub-TeV Neutrinos Correlated with Gravitational-wave Events Detected By LIGO/Virgo2023In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 959, no 2, article id 96Article in journal (Refereed)
    Abstract [en]

    The LIGO/Virgo collaboration published the catalogs GWTC-1, GWTC-2.1, and GWTC-3 containing candidate gravitational-wave (GW) events detected during its runs O1, O2, and O3. These GW events can be possible sites of neutrino emission. In this paper, we present a search for neutrino counterparts of 90 GW candidates using IceCube DeepCore, the low-energy infill array of the IceCube Neutrino Observatory. The search is conducted using an unbinned maximum likelihood method, within a time window of 1000 s, and uses the spatial and timing information from the GW events. The neutrinos used for the search have energies ranging from a few GeV to several tens of TeV. We do not find any significant emission of neutrinos, and place upper limits on the flux and the isotropic-equivalent energy emitted in low-energy neutrinos. We also conduct a binomial test to search for source populations potentially contributing to neutrino emission. We report a nondetection of a significant neutrino-source population with this test.

  • 25. Abbasi, R.
    et al.
    Deoskar, Kunal
    Stockholm Univ, Oskar Klein Ctr, Stockholm, Sweden.
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hidvegi, Attila
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    Constraints on Populations of Neutrino Sources from Searches in the Directions of IceCube Neutrino Alerts2023In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 951, no 1, article id 45Article in journal (Refereed)
    Abstract [en]

    Beginning in 2016, the IceCube Neutrino Observatory has sent out alerts in real time containing the information of high-energy (E & GSIM; 100 TeV) neutrino candidate events with moderate to high (& GSIM;30%) probability of astrophysical origin. In this work, we use a recent catalog of such alert events, which, in addition to events announced in real time, includes events that were identified retroactively and covers the time period of 2011-2020. We also search for additional, lower-energy neutrinos from the arrival directions of these IceCube alerts. We show how performing such an analysis can constrain the contribution of rare populations of cosmic neutrino sources to the diffuse astrophysical neutrino flux. After searching for neutrino emission coincident with these alert events on various timescales, we find no significant evidence of either minute-scale or day-scale transient neutrino emission or of steady neutrino emission in the direction of these alert events. This study also shows how numerous a population of neutrino sources has to be to account for the complete astrophysical neutrino flux. Assuming that sources have the same luminosity, an E (-2.5) neutrino spectrum, and number densities that follow star formation rates, the population of sources has to be more numerous than 7 x 10(-9) Mpc(-3). This number changes to 3 x 10(-7) Mpc(-3) if number densities instead have no cosmic evolution.

  • 26. Abbasi, R.
    et al.
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hidvegi, Attila
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    IceCat-1: The IceCube Event Catalog of Alert Tracks2023In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 269, no 1, article id 25Article in journal (Refereed)
    Abstract [en]

    We present a catalog of likely astrophysical neutrino track-like events from the IceCube Neutrino Observatory. IceCube began reporting likely astrophysical neutrinos in 2016, and this system was updated in 2019. The catalog presented here includes events that were reported in real time since 2019, as well as events identified in archival data samples starting from 2011. We report 275 neutrino events from two selection channels as the first entries in the catalog, the IceCube Event Catalog of Alert Tracks, which will see ongoing extensions with additional alerts. The Gold and Bronze alert channels respectively provide neutrino candidates with a 50% and 30% probability of being astrophysical, on average assuming an astrophysical neutrino power-law energy spectral index of 2.19. For each neutrino alert, we provide the reconstructed energy, direction, false-alarm rate, probability of being astrophysical in origin, and likelihood contours describing the spatial uncertainty in the alert's reconstructed location. We also investigate a directional correlation of these neutrino events with gamma-ray and X-ray catalogs, including 4FGL, 3HWC, TeVCat, and Swift-BAT.

  • 27. Abbasi, R.
    et al.
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hidvegi, Attila
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    Search for Correlations of High-energy Neutrinos Detected in IceCube with Radio-bright AGN and Gamma-Ray Emission from Blazars2023In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 954, no 1, article id 75Article in journal (Refereed)
    Abstract [en]

    The IceCube Neutrino Observatory sends realtime neutrino alerts with a high probability of being astrophysical in origin. We present a new method to correlate these events and possible candidate sources using 2089 blazars from the Fermi-LAT 4LAC-DR2 catalog and with 3413 active galactic nuclei (AGNs) from the Radio Fundamental Catalog. No statistically significant neutrino emission was found in any of the catalog searches. The result suggests that a small fraction, <1%, of the studied AGNs emit neutrinos that pass the alert criteria, and is compatible with prior evidence for neutrino emission presented by IceCube and other authors from sources such as TXS 0506 + 056 and PKS 1502 + 106. We also present cross-checks to other analyses that claim a significant correlation using similar data samples.

  • 28. Abbasi, R.
    et al.
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hidvegi, Attila
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    Search for Galactic Core-collapse Supernovae in a Decade of Data Taken with the IceCube Neutrino Observatory2024In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 961, no 1, article id 84Article in journal (Refereed)
    Abstract [en]

    The IceCube Neutrino Observatory has been continuously taking data to search for s long neutrino bursts since 2007. Even if a Galactic core-collapse supernova is optically obscured or collapses to a black hole instead of exploding, it will be detectable via the MeV neutrino burst emitted during the collapse. We discuss a search for such events covering the time between 2008 April 17 and 2019 December 31. Considering the average data taking and analysis uptime of 91.7% after all selection cuts, this is equivalent to 10.735 yr of continuous data taking. In order to test the most conservative neutrino production scenario, the selection cuts were optimized for a model based on an 8.8 solar mass progenitor collapsing to an O–Ne–Mg core. Conservative assumptions on the effects of neutrino oscillations in the exploding star were made. The final selection cut was set to ensure that the probability to detect such a supernova within the Milky Way exceeds 99%. No such neutrino burst was found in the data after performing a blind analysis. Hence, a 90% C.L. upper limit on the rate of core-collapse supernovae out to distances of ≈25 kpc was determined to be 0.23 yr−1. For the more distant Magellanic Clouds, only high neutrino luminosity supernovae will be detectable by IceCube, unless external information on the burst time is available. We determined a model-independent limit by parameterizing the dependence on the neutrino luminosity and the energy spectrum.

  • 29. Abbasi, R.
    et al.
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hidvegi, Attila
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    Search for neutrino lines from dark matter annihilation and decay with IceCube2023In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 108, no 10, article id 102004Article in journal (Refereed)
    Abstract [en]

    Dark matter particles in the Galactic Center and halo can annihilate or decay into a pair of neutrinos producing a monochromatic flux of neutrinos. The spectral feature of this signal is unique and it is not expected from any astrophysical production mechanism. Its observation would constitute a dark matter smoking gun signal. We performed the first dedicated search with a neutrino telescope for such signal, by looking at both the angular and energy information of the neutrino events. To this end, a total of five years of IceCube’s DeepCore data has been used to test dark matter masses ranging from 10 GeV to 40 TeV. No significant neutrino excess was found and upper limits on the annihilation cross section, as well as lower limits on the dark matter lifetime, were set. The limits reached are of the order of 10−24  cm3/s for an annihilation and up to 1027  s for decaying dark matter. Using the same data sample we also derive limits for dark matter annihilation or decay into a pair of Standard Model charged particles.

     

  • 30. Abbasi, R.
    et al.
    Deoskar, Kunal
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hidvegi, Attila
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    Search for sub-TeV Neutrino Emission from Novae with IceCube-DeepCore2023In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 953, no 2, article id 160Article in journal (Refereed)
    Abstract [en]

    The understanding of novae, the thermonuclear eruptions on the surfaces of white dwarf stars in binaries, has recently undergone a major paradigm shift. Though the bolometric luminosity of novae was long thought to arise directly from photons supplied by the thermonuclear runaway, recent gigaelectronvolt (GeV) gamma-ray observations have supported the notion that a significant portion of the luminosity could come from radiative shocks. More recently, observations of novae have lent evidence that these shocks are acceleration sites for hadrons for at least some types of novae. In this scenario, a flux of neutrinos may accompany the observed gamma rays. As the gamma rays from most novae have only been observed up to a few GeV, novae have previously not been considered as targets for neutrino telescopes, which are most sensitive at and above teraelectronvolt (TeV) energies. Here, we present the first search for neutrinos from novae with energies between a few GeV and 10 TeV using IceCube-DeepCore, a densely instrumented region of the IceCube Neutrino Observatory with a reduced energy threshold. We search both for a correlation between gamma-ray and neutrino emission as well as between optical and neutrino emission from novae. We find no evidence for neutrino emission from the novae considered in this analysis and set upper limits for all gamma-ray detected novae.

  • 31. Abbasi, Rasha
    et al.
    Deoskar, Kunar
    Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.
    Finley, Chad
    Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hidvegi, Attila
    Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jansson, Matti
    Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zhelnin, P.
    Limits on Neutrino Emission from GRB 221009A from MeV to PeV Using the IceCube Neutrino Observatory2023In: Astrophysical Journal Letters, ISSN 2041-8205, E-ISSN 2041-8213, Vol. 946, no 1, article id L26Article in journal (Refereed)
    Abstract [en]

    Gamma-ray bursts (GRBs) have long been considered a possible source of high-energy neutrinos. While no correlations have yet been detected between high-energy neutrinos and GRBs, the recent observation of GRB 221009A-the brightest GRB observed by Fermi-GBM to date and the first one to be observed above an energy of 10 TeV-provides a unique opportunity to test for hadronic emission. In this paper, we leverage the wide energy range of the IceCube Neutrino Observatory to search for neutrinos from GRB 221009A. We find no significant deviation from background expectation across event samples ranging from MeV to PeV energies, placing stringent upper limits on the neutrino emission from this source.

  • 32. Abdallah et al., DELPHI Collaboration: J
    et al.
    Åsman, Barbro
    Stockholm University, Faculty of Science, Department of Physics.
    Berntzon, Lisa
    Stockholm University, Faculty of Science, Department of Physics.
    Dalmau, Jörgen
    Stockholm University, Faculty of Science, Department of Physics.
    Holmgren, Sven-Olof
    Stockholm University, Faculty of Science, Department of Physics.
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, E. K.
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, P. D.
    Stockholm University, Faculty of Science, Department of Physics.
    Leinonen, Lena
    Stockholm University, Faculty of Science, Department of Physics.
    Lipniacka, Anna
    Stockholm University, Faculty of Science, Department of Physics.
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics.
    A Measurement of the Tau Hadronic Branching Ratios2006In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 46, no 1, p. 1-26Article in journal (Refereed)
  • 33. Abdallah et al., DELPHI Collaboration: J
    et al.
    Åsman, Barbro
    Stockholm University, Faculty of Science, Department of Physics.
    Berntzon, Lisa
    Stockholm University, Faculty of Science, Department of Physics.
    Dalmau, Jörgen
    Stockholm University, Faculty of Science, Department of Physics.
    Holmgren, Sven-Olof
    Stockholm University, Faculty of Science, Department of Physics.
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, E. K.
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, P. D.
    Stockholm University, Faculty of Science, Department of Physics.
    Leinonen, Lena
    Stockholm University, Faculty of Science, Department of Physics.
    Lipniacka, Anna
    Stockholm University, Faculty of Science, Department of Physics.
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics.
    Evidence for an Excess of Soft Photons in Hadronic Decays of $Z^0$2006In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 47, no 2, p. 273-294Article in journal (Refereed)
    Abstract [en]

    Soft photons inside hadronic jets converted in front of the DELPHI main tracker (TPC) in events of qq̄ disintegrations of the Z0 were studied in the kinematic range 0.2<Eγ<1 GeV and transverse momentum with respect to the closest jet direction pT<80 MeV/c. A clear excess of photons in the experimental data as compared to the Monte Carlo predictions is observed. This excess (uncorrected for the photon detection efficiency) is (1.17±0.06±0.27)×10-3 γ/jet in the specified kinematic region, while the expected level of the inner hadronic bremsstrahlung (which is not included in the Monte Carlo) is (0.340±0.001±0.038)×10-3 γ/jet. The ratio of the excess to the predicted bremsstrahlung rate is then (3.4±0.2±0.8), which is similar in strength to the anomalous soft photon signal observed in fixed target experiments with hadronic beams.

  • 34. Abdallah et al., DELPHI Collaboration: J
    et al.
    Åsman, Barbro
    Stockholm University, Faculty of Science, Department of Physics.
    Berntzon, Lisa
    Stockholm University, Faculty of Science, Department of Physics.
    Dalmau, Jörgen
    Stockholm University, Faculty of Science, Department of Physics.
    Holmgren, Sven-Olof
    Stockholm University, Faculty of Science, Department of Physics.
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, E. K.
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, P. D.
    Stockholm University, Faculty of Science, Department of Physics.
    Leinonen, Lena
    Stockholm University, Faculty of Science, Department of Physics.
    Lipniacka, Anna
    Stockholm University, Faculty of Science, Department of Physics.
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics.
    Measurement and interpretation of fermion-pair production at LEP energies above the Z resonance2006In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 45, no 3, p. 589-632Article in journal (Refereed)
  • 35. Abdallah et al., DELPHI Collaboration: J
    et al.
    Åsman, Barbro
    Stockholm University, Faculty of Science, Department of Physics.
    Berntzon, Lisa
    Stockholm University, Faculty of Science, Department of Physics.
    Dalmau, Jörgen
    Stockholm University, Faculty of Science, Department of Physics.
    Holmgren, Sven-Olof
    Stockholm University, Faculty of Science, Department of Physics.
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, E. K.
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, P. D.
    Stockholm University, Faculty of Science, Department of Physics.
    Leinonen, Lena
    Stockholm University, Faculty of Science, Department of Physics.
    Lipniacka, Anna
    Stockholm University, Faculty of Science, Department of Physics.
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics.
    Search for Excited Leptons in in e+e- Collisions at $sqrt{s}=189-209$ GeV2006In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 46, no 2, p. 277-293Article in journal (Refereed)
  • 36. Abdallah et al., DELPHI Collaboration: J
    et al.
    Åsman, Barbro
    Stockholm University, Faculty of Science, Department of Physics.
    Berntzon, Lisa
    Stockholm University, Faculty of Science, Department of Physics.
    Dalmau, Jörgen
    Stockholm University, Faculty of Science, Department of Physics.
    Holmgren, Sven-Olof
    Stockholm University, Faculty of Science, Department of Physics.
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, E. K.
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, P. D.
    Stockholm University, Faculty of Science, Department of Physics.
    Leinonen, Lena
    Stockholm University, Faculty of Science, Department of Physics.
    Lipniacka, Anna
    Stockholm University, Faculty of Science, Department of Physics.
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics.
    Search for ηb in two-photon collisions at LEP II with the DELPHI detector2006In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 634, no 4, p. 340-346Article in journal (Refereed)
  • 37. Abdallah et al., DELPHI Collaboration: J
    et al.
    Åsman, Barbro
    Stockholm University, Faculty of Science, Department of Physics.
    Berntzon, Lisa
    Stockholm University, Faculty of Science, Department of Physics.
    Dalmau, Jörgen
    Stockholm University, Faculty of Science, Department of Physics.
    Holmgren, Sven-Olof
    Stockholm University, Faculty of Science, Department of Physics.
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, K. E.
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, P. D.
    Stockholm University, Faculty of Science, Department of Physics.
    Leinonen, Lena
    Stockholm University, Faculty of Science, Department of Physics.
    Lipniacka, Anna
    Stockholm University, Faculty of Science, Department of Physics.
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics.
    Determination of the b quark mass at the MZ scale with the DELPHI detector at LEP2006In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 46, no 3, p. 569-583Article in journal (Refereed)
  • 38. Abdallah et al., DELPHI Collaboration: J
    et al.
    Åsman, Barbro
    Stockholm University, Faculty of Science, Department of Physics.
    Berntzon, Lisa
    Stockholm University, Faculty of Science, Department of Physics.
    Dalmau, Jörgen
    Stockholm University, Faculty of Science, Department of Physics.
    Holmgren, Sven-Olof
    Stockholm University, Faculty of Science, Department of Physics.
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, K. E.
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, P. D.
    Stockholm University, Faculty of Science, Department of Physics.
    Leinonen, Lena
    Stockholm University, Faculty of Science, Department of Physics.
    Lipniacka, Anna
    Stockholm University, Faculty of Science, Department of Physics.
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics.
    Study of double-tagged γγ events at LEPII2006In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 46, no 3, p. 559-568Article in journal (Refereed)
  • 39. Abdallah et al., DELPHI Collaboration: J
    et al.
    Åsman, Barbro
    Stockholm University, Faculty of Science, Department of Physics.
    Berntzon, Lisa
    Stockholm University, Faculty of Science, Department of Physics.
    Dalmau, Jörgen
    Stockholm University, Faculty of Science, Department of Physics.
    Holmgren, Sven-Olof
    Stockholm University, Faculty of Science, Department of Physics.
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, K.
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, D.
    Stockholm University, Faculty of Science, Department of Physics.
    Leinonen, Lena
    Stockholm University, Faculty of Science, Department of Physics.
    Lipniacka, Anna
    Stockholm University, Faculty of Science, Department of Physics.
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics.
    Determination of Heavy Quark Non-Perturbative Parameters from Spectral Moments in Semileptonic B Decays2006In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 45, no 1, p. 35-59Article in journal (Refereed)
  • 40. Abdallah et al., DELPHI Collaboration: J
    et al.
    Åsman, Barbro
    Stockholm University, Faculty of Science, Department of Physics.
    Berntzon, Lisa
    Stockholm University, Faculty of Science, Department of Physics.
    Dalmau, Jörgen
    Stockholm University, Faculty of Science, Department of Physics.
    Holmgren, Sven-Olof
    Stockholm University, Faculty of Science, Department of Physics.
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, K.
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, D.
    Stockholm University, Faculty of Science, Department of Physics.
    Leinonen, Lena
    Stockholm University, Faculty of Science, Department of Physics.
    Lipniacka, Anna
    Stockholm University, Faculty of Science, Department of Physics.
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics.
    Single Intermediate Vector Boson Production in e + e- Collisions * at $sqrt{s}= 183 - 209$ GeV2006In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 45, no 2, p. 273-289Article in journal (Refereed)
  • 41.
    Ahrens, Maryon
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    BenZvi, S.
    Bohm, Christian
    Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Faculty of Science, Department of Physics.
    Deoskar, Kunal
    Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Faculty of Science, Department of Physics.
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Faculty of Science, Department of Physics.
    Jansson, Matti
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    IceCube-Gen2: the window to the extreme Universe2021In: Journal of Physics G: Nuclear and Particle Physics, ISSN 0954-3899, E-ISSN 1361-6471, Vol. 48, no 6, article id 060501Article in journal (Refereed)
    Abstract [en]

    The observation of electromagnetic radiation from radio to γ-ray wavelengths has provided a wealth of information about the Universe. However, at PeV (1015 eV) energies and above, most of the Universe is impenetrable to photons. New messengers, namely cosmic neutrinos, are needed to explore the most extreme environments of the Universe where black holes, neutron stars, and stellar explosions transform gravitational energy into non-thermal cosmic rays. These energetic particles have millions of times higher energies than those produced in the most powerful particle accelerators on Earth. As neutrinos can escape from regions otherwise opaque to radiation, they allow an unique view deep into exploding stars and the vicinity of the event horizons of black holes. The discovery of cosmic neutrinos with IceCube has opened this new window on the Universe. IceCube has been successful in finding first evidence for cosmic particle acceleration in the jet of an active galactic nucleus. Yet, ultimately, its sensitivity is too limited to detect even the brightest neutrino sources with high significance, or to detect populations of less luminous sources. In this white paper, we present an overview of a next-generation instrument, IceCube-Gen2, which will sharpen our understanding of the processes and environments that govern the Universe at the highest energies. IceCube-Gen2 is designed to:

    (a) Resolve the high-energy neutrino sky from TeV to EeV energies

    (b) Investigate cosmic particle acceleration through multi-messenger observations

    (c) Reveal the sources and propagation of the highest energy particles in the Universe

    (d) Probe fundamental physics with high-energy neutrinos

    IceCube-Gen2 will enhance the existing IceCube detector at the South Pole. It will increase the annual rate of observed cosmic neutrinos by a factor of ten compared to IceCube, and will be able to detect sources five times fainter than its predecessor. Furthermore, through the addition of a radio array, IceCube-Gen2 will extend the energy range by several orders of magnitude compared to IceCube. Construction will take 8 years and cost about $350M. The goal is to have IceCube-Gen2 fully operational by 2033.

    IceCube-Gen2 will play an essential role in shaping the new era of multi-messenger astronomy, fundamentally advancing our knowledge of the high-energy Universe. This challenging mission can be fully addressed only through the combination of the information from the neutrino, electromagnetic, and gravitational wave emission of high-energy sources, in concert with the new survey instruments across the electromagnetic spectrum and gravitational wave detectors which will be available in the coming years.

  • 42.
    Ahrens, Maryon
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dumm, Jonathan P.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Flis, Samuel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    O'Sullivan, Erin
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jóhannesson, Guðlaugur
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). University of Iceland, Iceland.
    Wagner, Robert M.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A2018In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 361, no 6398, article id 1378Article in journal (Refereed)
  • 43.
    Ahrens, Maryon
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Conrad, Jan M.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dumm, Jonathan P.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Flis, Samuel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zoll, Marcel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Meyer, Manuel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stanford University, USA.
    Rosswog, Stephan
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Feindt, Ulrich
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Goobar, Ariel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Sollerman, Jesper
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barbarino, Cristina
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bulla, Mattia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Roy, Rupak
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Taddia, Francesco
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Farnier, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Linnaeus University, Sweden.
    Morå, Knut
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Wagner, Robert M.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Multi-messenger Observations of a Binary Neutron Star Merger2017In: Astrophysical Journal Letters, ISSN 2041-8205, E-ISSN 2041-8213, Vol. 848, no 2, article id L12Article in journal (Refereed)
    Abstract [en]

    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of similar to 1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40(-8)(+8) Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M-circle dot. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at similar to 40 Mpc) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over similar to 10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position similar to 9 and similar to 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.

  • 44.
    Ahrens, Maryon
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Danninger, Matthias
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dumm, Jonathan P.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Edsjö, Joakim
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Flis, Samuel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hulth, Per Olof
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Savage, Christopher
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Wolf, Martin
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zoll, Marcel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry2016In: Journal of Cosmology and Astroparticle Physics, E-ISSN 1475-7516, no 4, article id 022Article in journal (Refereed)
    Abstract [en]

    We present an improved event-level likelihood formalism for including neutrino telescope data in global fits to new physics. We derive limits on spin-dependent dark matter-proton scattering by employing the new formalism in a re-analysis of data from the 79-string IceCube search for dark matter annihilation in the Sun, including explicit energy information for each event. The new analysis excludes a number of models in the weak-scale minimal supersymmetric standard model (MSSM) for the first time. This work is accompanied by the public release of the 79-string IceCube data, as well as an associated computer code for applying the new likelihood to arbitrary dark matter models.

  • 45.
    Ahrens, Maryon
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Danninger, Matthias
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Flis, Samuel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hulth, Per Olof
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Wolf, Martin
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zoll, Marcel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube2015In: Physical Review D, ISSN 1550-7998, E-ISSN 1550-2368, Vol. 91, no 2, p. 022001-Article in journal (Refereed)
    Abstract [en]

    The IceCube Neutrino Observatory was designed primarily to search for high-energy (TeV-PeV) neutLrinos produced in distant astrophysical objects. A search for. greater than or similar to 100 TeV neutrinos interacting inside the instrumented volume has recently provided evidence for an isotropic flux of such neutrinos. At lower energies, IceCube collects large numbers of neutrinos from the weak decays of mesons in cosmic-ray air showers. Here we present the results of a search for neutrino interactions inside IceCube's instrumented volume between 1 TeV and 1 PeV in 641 days of data taken from 2010-2012, lowering the energy threshold for neutrinos from the southern sky below 10 TeV for the first time, far below the threshold of the previous high-energy analysis. Astrophysical neutrinos remain the dominant component in the southern sky down to a deposited energy of 10 TeV. From these data we derive new constraints on the diffuse astrophysical neutrino spectrum, Phi(v) = 2.06(-0.3)(+0.4) x 10(-18) (E-v = 10(5) GeV)-2.46 +/- 0.12GeV-1 cm(-2) sr(-1) s(-1) for 25 TeV < E-v < 1.4 PeV, as well as the strongest upper limit yet on the flux of neutrinos from charmed-meson decay in the atmosphere, 1.52 times the benchmark theoretical prediction used in previous IceCube results at 90% confidence.

  • 46.
    Ahrens, Maryon
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Danninger, Matthias
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Flis, Samuel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hulth, Per Olof
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Wolf, Martin
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zoll, Marcel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Development of a general analysis and unfolding scheme and its application to measure the energy spectrum of atmospheric neutrinos with IceCube2015In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 75, no 3, article id 116Article in journal (Refereed)
    Abstract [en]

    We present the development and application of a generic analysis scheme for the measurement of neutrino spectra with the IceCube detector. This scheme is based on regularized unfolding, preceded by an event selection which uses a Minimum Redundancy Maximum Relevance algorithm to select the relevant variables and a random forest for the classification of events. The analysis has been developed using IceCube data from the 59-string configuration of the detector. 27,771 neutrino candidates were detected in 346 days of livetime. A rejection of 99.9999 % of the atmospheric muon background is achieved. The energy spectrum of the atmospheric neutrino flux is obtained using the TRUEE unfolding program. The unfolded spectrum of atmospheric muon neutrinos covers an energy range from 100 GeV to 1 PeV. Compared to the previous measurement using the detector in the 40-string configuration, the analysis presented here, extends the upper end of the atmospheric neutrino spectrum by more than a factor of two, reaching an energy region that has not been previously accessed by spectral measurements.

  • 47.
    Ahrens, Maryon
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Danninger, Matthias
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Flis, Samuel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hulth, Per Olof
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Wolf, Martin
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zoll, Marcel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Multipole analysis of IceCube data to search for dark matter accumulated in the Galactic halo2015In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 75, no 1, article id 20Article in journal (Refereed)
    Abstract [en]

    Dark matter which is bound in the Galactic halo might self-annihilate and produce a flux of stable final state particles, e. g. high energy neutrinos. These neutrinos can be detected with IceCube, a cubic-kilometer sized Cherenkov detector. Given IceCube's large field of view, a characteristic anisotropy of the additional neutrino flux is expected. In this paper we describe a multipole method to search for such a large-scale anisotropy in IceCube data. This method uses the expansion coefficients of a multipole expansion of neutrino arrival directions and incorporates signal-specific weights for each expansion coefficient. We apply the technique to a high-purity muon neutrino sample from the Northern Hemisphere. The final result is compatible with the null-hypothesis. As no signal was observed, we present limits on the self-annihilation cross-section averaged over the relative velocity distribution <sigma(A)v > down to 1.9x10(-23) cm(3) s(-1) for a dark matter particle mass of 700-1,000 GeV and direct annihilation into nu(nu) over bar. The resulting exclusion limits come close to exclusion limits from gamma-ray experiments, that focus on the outer Galactic halo, for high dark matter masses of a few TeV and hard annihilation channels.

  • 48.
    Ahrens, Maryon
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Danninger, Matthias
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Flis, Samuel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hulth, Per Olof
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Wolf, Martin
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zoll, Marcel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    SEARCHES FOR EXTENDED AND POINT-LIKE NEUTRINO SOURCES WITH FOUR YEARS OF ICECUBE DATA2014In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 796, no 2, article id 109Article in journal (Refereed)
    Abstract [en]

    We present results on searches for point-like sources of neutrinos using four years of IceCube data, including the first year of data from the completed 86 string detector. The total livetime of the combined data set is 1373 days. For an E-2 spectrum, the observed 90% C. L. flux upper limits are similar to 10(-12) TeV-1 cm(-2) s(-1) for energies between 1 TeV and 1 PeV in the northern sky and similar to 10(-11) TeV-1 cm(-2) s(-1) for energies between 100 TeV and 100 PeV in the southern sky. This represents a 40% improvement compared to previous publications, resulting from both the additional year of data and the introduction of improved reconstructions. In addition, we present the first results from an all-sky search for extended sources of neutrinos. We update the results of searches for neutrino emission from stacked catalogs of sources and test five new catalogs; two of Galactic supernova remnants and three of active galactic nuclei. In all cases, the data are compatible with the background-only hypothesis, and upper limits on the flux of muon neutrinos are reported for the sources considered.

  • 49.
    Ahrens, Maryon
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Danninger, Matthias
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Flis, Samuel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hulth, Per-Olof
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Wolf, Martin
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zoll, Marcel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube2014In: Physical Review D, ISSN 1550-7998, E-ISSN 1550-2368, Vol. 90, no 10Article in journal (Refereed)
    Abstract [en]

    We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of gravitational-wave emission energy of 10(-2) M(circle dot)c(2) at similar to 150 Hz with similar to 60 ms duration, and high-energy neutrino emission of 1051 erg comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the source rate below 1.6 x 10(-2) Mpc(-3) yr(-1). We also examine how combining information from gravitational waves and neutrinos will aid discovery in the advanced gravitational-wave detector era.

  • 50.
    Ahrens, Maryon
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Danninger, Matthias
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Flis, Samuel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hulth, Per-Olof
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Wolf, Martin
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zoll, Marcel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data2014In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 113, no 10, p. 101101-Article in journal (Refereed)
    Abstract [en]

    A search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2012 provided the first evidence for a high-energy neutrino flux of extraterrestrial origin. Results from an analysis using the same methods with a third year (2012-2013) of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV-PeV range at the level of 10(-8) GeV cm(-2) s(-1) sr(-1) per flavor and reject a purely atmospheric explanation for the combined three-year data at 5.7 sigma. The data are consistent with expectations for equal fluxes of all three neutrino flavors and with isotropic arrival directions, suggesting either numerous or spatially extended sources. The three-year data set, with a live time of 988 days, contains a total of 37 neutrino candidate events with deposited energies ranging from 30 to 2000 TeV. The 2000-TeV event is the highest-energy neutrino interaction ever observed.

12345 1 - 50 of 225
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf