Change search
Refine search result
1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aleksis, Rihards
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Nedumkandathil, Reji
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Papawassiliou, Wassilios
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Carvalho, José P.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Jaworski, Aleksander
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Häussermann, Ulrich
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Pell, Andrew J.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Université de Lyon, France.
    Probing the electronic structure and hydride occupancy in barium titanium oxyhydride through DFT-assisted solid-state NMR2022In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 24, no 46, p. 28164-28173Article in journal (Refereed)
    Abstract [en]

    Perovskite-type oxhydrides such as BaTiO3−xHy exhibit mixed hydride ion and electron conduction and are an attractive class of materials for developing energy storage devices. However, the underlying mechanism of electric conductivity and its relation to the composition of the material remains unclear. Here we report detailed insights into the hydride local environment, the electronic structure and hydride conduction dynamics of barium titanium oxyhydride. We demonstrate that DFT-assisted solid-state NMR is an excellent tool for differentiating between the different feasible electronic structures in these solids. Our results indicate that upon reduction of BaTiO3 the introduced electrons are delocalized among all Ti atoms forming a bandstate. Furthermore, each vacated anion site is reoccupied by at most a single hydride, or else remains vacant. This single occupied bandstate structure persists at different hydrogen concentrations (y = 0.13–0.31) and a wide range of temperatures (∼100–300 K).

  • 2.
    Carvalho, José P.
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Physical Chemistry.
    Papawassiliou, Wassilios
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Pell, Andrew J.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Université de Lyon, France.
    Half-integer-spin quadrupolar nuclei in magic-angle spinning paramagnetic NMR: The case of NaMnO2Manuscript (preprint) (Other academic)
    Abstract [en]

    A combination of solid-state NMR methods for the extraction of shift and quadrupolar parameters for half-integer nuclei in the structurally complex NaMnO2 Na-ion cathode material, under magic-angle spinning (MAS) is presented. We show that the integration of the Magic-Angle Turning experiment with Rotor-Assisted Population transfer can be used both to identify shifts and to extract a range of magnitudes for their quadrupolar coupling. We also demonstrate the applicability of the the two-dimensional one pulse (TOP) based double-sheared Satellite Transition Magic-Angle Spinning (TOP-STMAS) showing how it can yield a spectrum with separated shift and second-order quadrupolar anisotropies, which in turn can be used to analyse a quadrupolar lineshape free of bulk magnetic susceptibility induced shift dispersion and determine both isotropic shift and quadrupolar products. Combining all these experiments, the shift and quadrupolar parameters for all observed Na environments were extracted and yielded excellent agreement with the density functional theory (DFT) based models that were reported in previous literature. We expect these methods to open the door for new possibilities for solid-state NMR to probe half-integer quadrupolar nuclei in paramagnetic materials and other systems exhibiting large shift dispersion. 

  • 3.
    Carvalho, José P.
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Papawassiliou, Wassilios
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Pell, Andrew J.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Université de Lyon, France.
    Half-integer-spin quadrupolar nuclei in magic-angle spinning paramagnetic NMR: The case of NaMnO22022In: Journal of magnetic resonance, ISSN 1090-7807, E-ISSN 1096-0856, Vol. 340, article id 107235Article in journal (Refereed)
    Abstract [en]

    A combination of solid-state NMR methods for the extraction of 23Na shift and quadrupolar parameters in the as-synthesized, structurally complex NaMnO2 Na-ion cathode material, under magic-angle spinning (MAS) is presented. We show that the integration of the Magic-Angle Turning experiment with Rotor-Assisted Population transfer (RAPT) can be used both to identify shifts and to extract a range of magnitudes for their quadrupolar couplings. We also demonstrate the applicability of the two-dimensional one pulse (TOP) based double-sheared Satellite Transition Magic-Angle Spinning (TOP-STMAS) showing how it can yield a spectrum with separated shift and second-order quadrupolar anisotropies, which in turn can be used to analyze a quadrupolar lineshape free of anisotropic bulk magnetic susceptibility (ABMS) induced shift dispersion and determine both isotropic shift and quadrupolar products. Combining all these experiments, the shift and quadrupolar parameters for all observed Na environments were extracted and yielded excellent agreement with the density functional theory (DFT) based models that were reported in previous literature. We expect these methods to open the door for new possibilities for solid-state NMR to probe half-integer quadrupolar nuclei in paramagnetic materials and other systems exhibiting large shift dispersion.

  • 4.
    Georgouvelas, Dimitrios
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Jalvo, Blanca
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Valencia, Luis
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Papawassiliou, Wassilios
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Pell, Andrew J.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Edlund, Ulrica
    Mathew, Aji P.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Residual Lignin and Zwitterionic Polymer Grafts on Cellulose Nanocrystals for Antifouling and Antibacterial Applications2020In: ACS applied polymer materials, E-ISSN 2637-6105, Vol. 2, no 8, p. 3060-3071Article in journal (Refereed)
    Abstract [en]

    Hybrid materials from nanocellulose, lignin, and surface- grafted zwitterionic poly(sulfobetaine methacrylate) (PSBMA) chains are prepared to attain antifouling bio-based nanomaterials with enhanced antibacterial performance. The grafting of PSBMA from both cellulose and lignocellulose nanocrystals (CNC and LCNC, respectively) is attempted; however, the materials' analysis with FTIR, XPS, and solid-state C-13 NMR reveals that the grafting on LCNC is negligible. Antifouling and antibacterial performances of CNC and LCNC, as well as PSBMA-grafted CNC, are evaluated by using quartz crystal microbalance with dissipation monitoring, confocal microscopy, and the agar diffusion method using bovine serum albumin and E. coli ACTT 8937 as protein model and bacterial model, respectively. The results demonstrate that the grafting of CNC with PSBMA improves the antifouling and antibacterial activity of the material compared to pristine CNC and LCNC.

  • 5. Lu, Xinnan
    et al.
    Baker, Mark A.
    Anjum, Dalaver H.
    Basina, Georgia
    Hinder, Steven J.
    Papawassiliou, Wassilios
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Pell, Andrew J.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Université Claude Bernard Lyon, France.
    Karagianni, Marina
    Papavassiliou, Georgios
    Shetty, Dinesh
    Gaber, Dina
    Gaber, Safa
    Al Wahedi, Yasser
    Polychronopoulou, Kyriaki
    Ni2P Nanoparticles Embedded in Mesoporous SiO2 for Catalytic Hydrogenation of SO2 to Elemental S2021In: ACS Applied Nano Materials, E-ISSN 2574-0970, Vol. 4, no 6, p. 5665-5676Article in journal (Refereed)
    Abstract [en]

    Highly active nickel phosphide (Ni2P) nanoclusters confined in a mesoporous SiO2 catalyst were synthesized by a two-step process targeting tight control over the Ni2P size and phase. The Ni precursor was incorporated into the MCM-41 matrix by one-pot synthesis, followed by the phosphorization step, which was accomplished in oleylamine with trioctylphosphine at 300 °C so to achieve the phase transformation from Ni to Ni2P. For benchmarking, Ni confined by the mesoporous SiO2 (absence of phosphorization) and 11 nm Ni2P nanoparticles (absence of SiO2) was also prepared. From the microstructural analysis, it was found that the growth of Ni2P nanoclusters was restricted by the mesoporous channels, thus forming ultrafine and highly dispersed Ni2P nanoclusters (<2 nm). The above approach led to promising catalytic performance following the order u-Ni2P@m-SiO2 > n-Ni2P > u-Ni@m-SiO2 > c-Ni2P in the selective hydrogenation of SO2 to S. In particular, u-Ni2P@m-SiO2 exhibited SO2 conversions of 94% at 220 °C and ∼99% at 240 °C, which are higher than the 11 nm stand-alone Ni2P particles (43% at 220 °C and 94% at 320 °C), highlighting the importance of the role played by SiO2 in stabilizing ultrafine nanoparticles of Ni2P. The reaction activation energy Ea over u-Ni2P@m-SiO2 is ∼33 kJ/mol, which is lower than those over n-Ni2P (∼36 kJ/mol) and c-Ni2P (∼66 kJ/mol), suggesting that the reaction becomes energetically favored over the ultrafine Ni2P nanoclusters.

  • 6. Lu, Xinnan
    et al.
    Baker, Mark A.
    Anjum, Dalaver H.
    Papawassiliou, Wassilios
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Pell, Andrew J.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Université Claude Bernard Lyon, France.
    Fardis, Michael
    Papavassiliou, Georgios
    Hinder, Steven J.
    Abdullah Ali Gaber, Safa
    Abdullah Ali Gaber, Dina
    Al Wahedi, Yasser
    Polychronopoulou, Kyriaki
    Nickel Phosphide Nanoparticles for Selective Hydrogenation of SO2 to H2S2021In: ACS Applied Nano Materials, E-ISSN 2574-0970, Vol. 4, no 7, p. 6568-6582Article in journal (Refereed)
    Abstract [en]

    Highly mesoporous SiO2-encapsulated NixPy crystals, where (x, y) = (5, 4), (2, 1), and (12, 5), were successfully synthesized by adopting a thermolytic method using oleylamine (OAm), trioctylphosphine (TOP), and trioctylphosphine oxide (TOPO). The Ni5P4@SiO2 system shows the highest reported activity for the selective hydrogenation of SO2 toward H2S at 320 degrees C (96% conversion of SO2 and 99% selectivity to H2S), which was superior to the activity of the commercial CoMoS@Al2O3 catalyst (64% conversion of SO2 and 71% selectivity to H2S at 320 degrees C). The morphology of the Ni5P4 crystal was finely tuned via adjustment of the synthesis parameters receiving a wide spectrum of morphologies (hollow, macroporous-network, and SiO2-confined ultrafine clusters). Intrinsic characteristics of the materials were studied by Xray diffraction, high-resolution transmission electron microscopy/scanning transmission electron microscopy-high-angle annular dark-field imaging, energydispersive X-ray spectroscopy, the Brunauer-Emmett-Teller method, H-2 temperature-programmed reduction, X-ray photoelectron spectroscopy, and experimental and calculated P-31 magic-angle spinning solid-state nuclear magnetic resonance toward establishing the structure-performance correlation for the reaction of interest. Characterization of the catalysts after the SO2 hydrogenation reaction proved the preservation of the morphology, crystallinity, and Ni/P ratio for all the catalysts.

  • 7.
    Mitoudi-Vagourdi, Eleni
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Papawassiliou, Wassilios
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Müllner, Silvia
    Jaworski, Aleksander
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Pell, Andrew J.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Lemmens, Peter
    Kremer, Reinhard K.
    Johnsson, Mats
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Synthesis and Physical Properties of the Oxofluoride Cu-2(SeO3)F-22018In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 57, no 8, p. 4640-4648Article in journal (Refereed)
    Abstract [en]

    Single crystals of the new compound Cu-2(SeO3)F-2 were successfully synthesized via a hydrothermal method, and the crystal structure was determined from single-crystal X-ray diffraction data. The compound crystallizes in the orthorhombic space group Pnma with the unit cell parameters a = 7.066(4) (A) over circle, b = 9.590(4) (A) over circle, and c = 5.563(3) (A) over circle. Cu-2(SeO3)F-2 is isostructural with the previously described compounds Co2TeO3F2 and CoSeO3F2. The crystal structure comprises a framework of corner- and edge-sharing distorted [CuO3F3] octahedra, within which [SeO3] trigonal pyramids are present in voids and are connected to [CuO3F3] octahedra by corner sharing. The presence of a single local environment in both the F-19 and Se-77 solid-state MAS NMR spectra supports the hypothesis that O and F do not mix at the same crystallographic positions. Also the specific phonon modes observed with Raman scattering support the coordination around the cations. At high temperatures the magnetic susceptibility follows the Curie-Weiss law with Curie temperature of Theta = -173(2) K and an effective magnetic moment of mu(eff) similar to 2.2 mu(B). Antiferromagnetic ordering below similar to 44 K is indicated by a peak in the magnetic susceptibility. A second though smaller peak at similar to 16 K is tentatively ascribed to a magnetic reorientation transition. Both transitions are also confirmed by heat capacity measurements. Raman scattering experiments propose a structural phase instability in the temperature range 6-50 K based on phonon anomalies. Further changes in the Raman shift of modes at similar to 46 K and similar to 16 K arise from transitions of the magnetic lattice in accordance with the susceptibility and heat capacity measurements.

  • 8.
    Papawassiliou, Wassilios
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Evaluation of NMR Knight shifts in metallic nanoparticles and topological matter2022Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Elucidating the surface electron states of transition metal compounds is of primary importance in main heterogeneous catalytic processes, such as the hydrogen and oxygen evolution reactions.  Key property in all these processes is the position of the energy of the d-band center relative to the Fermi-level of the catalyst; it must be shifted close to the Fermi level to achieve balance between adsorption and desorption of the catalyst and the adsorbate. Often, these processes involve expensive metals such as Ru or Pt, limiting their applicability. The Nickel Phosphide (NixPy) family has recently emerged as an important catalyst family replacing noble metals; in these systems the surface electronic properties, may be tailored by doping with different transition metals, decreasing size, or by controlling the nanoparticle shape (facet engineering). It is thus crucial to be able to simultaneously monitor the evolution of the morphology as well as the electronic structure of the NP particles while scaling down the size.

    In most of these materials, surface electron states are extremely sensitive to local disturbances, such as impurities, surface defects, as well as surface termination. In contrast, 3D topological insulators like Bi2Se3, or Bi2Te3, exhibit exceptionally robust metallic surface electron states while the bulk interior is insulating. These extraordinary properties, which become dominant by reducing the system size to the nanometers, have been tied to enhancement of the Seebeck effect, i.e., the conversion of heat into electricity, catalytic activity, and electrochemical performance, the latter of these effects has been pursed in this thesis as well. An important question that has eluded however is the presence of the Dirac electrons themselves and to which extend the Dirac electrons penetrate the nanoparticles, controlling thus the overall electronic properties.

    In contrast to the TIs, Weyl semimetals (WSMs), another category of topological materials, host protected electron states in the bulk interior. The bulk conduction and valence bands of these systems cross linearly in pairs of conjugate nodal points, the so-called Weyl points, forming characteristic double cones. Remarkably, in specific WSMs, such as the WTe2 and MoTe2, known as type-II WSMs, the Weyl cones are strongly tilted, leading to the formation of electron and hole pockets at the Fermi level, strongly influencing their electronic properties. However, energy bands in these systems are shown to disperse in a very tiny region, rendering standard experimental techniques, such as Angle Resolved Photoemission Spectroscopy obsolete in detecting the Weyl bands. 

    In this thesis all the issues mentioned for each case, were tackled by employing solid-state nuclear magnetic resonance (ssNMR) spectroscopy under various temperatures and magnetic fields, combined with high-resolution transmission electron microscopy and density functional theory calculations.

    Download full text (pdf)
    Evaluation of NMR Knight shifts in metallic nanoparticles and topological matter
    Download (jpg)
    Omslagsframsida
  • 9. Papawassiliou, Wassilios
    Insights into the phase evolution during an electrochemical cycle of the Na-ion battery anode Bi2Te3 through solid-state NMR crystallographyManuscript (preprint) (Other academic)
    Abstract [en]

    Tetradymite-type (Bi2Te2S) structures and their analogues (P2X3, where P = Sb,Bi and X = S, Se, Te) have recently garnered attention as interesting materials as potential anodes in Li- and Na-ion batteries. As of now, potential mechanisms of the electrochemical cycle are conflicting, as both intercalation of the ion followed by a conversion and an alloying reaction, or a conversion followed by an alloying reaction straight up have been reported. It is, thus, of importance to determine the exact phases that are being produced during each reaction step, in order to optimize the conditions, under which these structures can thrive as anodes. In this study, we succeed this, by employing a combination of ex-situ solid-state nuclear magnetic resonance (ssNMR) and transmission electron microscopy (TEM), during various points during the first discharge and subsequent charge of microcrystalline Bi2Te3. The results are aided by density functional theory calculations (DFT) of the NMR Knight shifts and the electronic structure of all phases present during the cycle. This highlights the ability of solid-state NMR to monitor the phase evolution during cycling of electronically non-trivial systems.

  • 10.
    Papawassiliou, Wassilios
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Carvalho, José P.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Kim, H. J.
    Kim, C. Y.
    Yoo, S. J.
    Lee, J. B.
    Alhassan, S.
    Orfanidis, S.
    Psycharis, V.
    Karagianni, M.
    Fardis, M.
    Panopoulos, N.
    Papavassiliou, G.
    Pell, A. J.
    Detection of Weyl fermions and the metal to Weyl-semimetal phase transition in WTe2via broadband high resolution NMR2022In: Physical Review Research, E-ISSN 2643-1564, Vol. 4, no 3, article id 033133Article in journal (Refereed)
    Abstract [en]

    Weyl fermions (WFs) in the type-II Weyl semimetal (WSM) WTe2 are difficult to resolve experimentally because the Weyl bands disperse in an extremely narrow region of the (E−k) space. Here, by using DFT-assisted high-resolution 125Te solid-state nuclear magnetic resonance (ssNMR) in the temperature range 50–700 K, we succeeded in detecting low energy WF excitations and monitoring their evolution with temperature. Remarkably, WFs are observed to emerge at T∼120 K, while at lower temperatures WTe2 behaves as a trivial metal. This intriguing phenomenon is induced by the rapid raise of the Fermi level upon heating, which crosses the Weyl bands only for T>120 K. The abrupt change of the NMR parameters at this temperature is signature of a topological Lifshitz transition instead of a cursive energy-bands crossing.

  • 11.
    Papawassiliou, Wassilios
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Carvalho, José P.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Kim, H. J.
    Papavassiliou, G.
    Pell, A. J.
    Emergent Weyl Fermions and the Metal to Weyl-Semimetal phase transition in WTe2,via broadband High Resolution NMRManuscript (preprint) (Other academic)
    Abstract [en]

    Weyl Fermions (WFs) in the type-II Weyl Semimetal (WSM) WTe2 are difficult to resolve experimentally because the Weyl bands disperse in an extremely narrow region of the (E-k) space. Here, by using DFT-assisted high-resolution 125Te solid-state NMR (ssNMR) in the temperature range 50K - 700K, we succeeded in detecting low energy WF excitations and monitor their evolution with temperature. Remarkably, WFs appear to emerge at T∼120K; at lower temperatures WTe2 behaves as a metal. This intriguing metal-to-WSM phase transition is shown to be induced by the rapid raise of the Fermi level with temperature, crossing solely the electron and hole pockets in the low-T metallic phase, while crossing the Weyl bands near the nodal points - a prerequisite for the emergence of WFs - only for T>120K.

    Download full text (pdf)
    fulltext
  • 12.
    Papawassiliou, Wassilios
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Carvalho, José P.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Panopoulos, Nikolaos
    Al Wahedi, Yasser
    Shankarayya Wadi, Vijay Kumar
    Lu, Xinnan
    Polychronopoulou, Kyriaki
    Lee, Jin Bae
    Lee, Sanggil
    Kim, Chang Yeon
    Kim, Hae Jin
    Katsiotis, Marios
    Tzitzios, Vasileios
    Karagianni, Marina
    Fardis, Michael
    Papavassiliou, Georgios
    Pell, Andrew J.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Université de Lyon, France.
    Crystal and electronic facet analysis of ultrafine Ni2P particles by solid-state NMR nanocrystallography2021In: Nature Communications, E-ISSN 2041-1723, Vol. 12, no 1, article id 4334Article in journal (Refereed)
    Abstract [en]

    Structural and morphological control of crystalline nanoparticles is crucial in the field of heterogeneous catalysis and the development of reaction specific catalysts. To achieve this, colloidal chemistry methods are combined with ab initio calculations in order to define the reaction parameters, which drive chemical reactions to the desired crystal nucleation and growth path. Key in this procedure is the experimental verification of the predicted crystal facets and their corresponding electronic structure, which in case of nanostructured materials becomes extremely difficult. Here, by employing P-31 solid-state nuclear magnetic resonance aided by advanced density functional theory calculations to obtain and assign the Knight shifts, we succeed in determining the crystal and electronic structure of the terminating surfaces of ultrafine Ni2P nanoparticles at atomic scale resolution. Our work highlights the potential of ssNMR nanocrystallography as a unique tool in the emerging field of facet-engineered nanocatalysts. Structural and morphological control of crystalline nanoparticles is crucial in heterogeneous catalysis. Applying DFT-assisted solid-state NMR spectroscopy, we determine the surface crystal and electronic structure of Ni2P nanoparticles, unveiling NMR nanocrystallography as an emerging tool in facet-engineered nanocatalysts.

  • 13.
    Papawassiliou, Wassilios
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Jaworski, Aleksander
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Pell, Andrew J.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Jang, Jae Hyuck
    Kim, Yeonho
    Lee, Sang-Chul
    Kim, Hae Jin
    Alwahedi, Yasser
    Alhassan, Saeed
    Subrati, Ahmed
    Fardis, Michael
    Karagianni, Marina
    Panopoulos, Nikolaos
    Dolinšek, Janez
    Papavassiliou, Georgios
    Resolving Dirac electrons with broadband high-resolution NMR2020In: Nature Communications, E-ISSN 2041-1723, Vol. 11, article id 1285Article in journal (Refereed)
    Abstract [en]

    Detecting the metallic Dirac electronic states on the surface of Topological Insulators (TIs) is critical for the study of important surface quantum properties (SQPs), such as Majorana zero modes, where simultaneous probing of the bulk and edge electron states is required. However, there is a particular shortage of experimental methods, showing at atomic resolution how Dirac electrons extend and interact with the bulk interior of nanoscaled TI systems. Herein, by applying advanced broadband solid-state 125Te nuclear magnetic resonance (NMR) methods on Bi2Te3 nanoplatelets, we succeeded in uncovering the hitherto invisible NMR signals with magnetic shielding that is influenced by the Dirac electrons, and we subsequently showed how the Dirac electrons spread inside the nanoplatelets. In this way, the spin and orbital magnetic susceptibilities induced by the bulk and edge electron states were simultaneously measured at atomic scale resolution, providing a pertinent experimental approach in the study of SQPs.

  • 14.
    Siebeneichler, Stefanie
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Dorn, Katharina V.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Ovchinnikov, Alexander
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Papawassiliou, Wassilios
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    da Silva, Ivan
    Smetana, Volodymyr
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Pell, Andrew J.
    Mudring, Anja-Verena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Aarhus University, Denmark.
    Frustration and 120° Magnetic Ordering in the Layered Triangular Antiferromagnets AFe(PO3F)2 (A = K, (NH4)2Cl, NH4, Rb, and Cs)2022In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 34, no 17, p. 7982-7994Article in journal (Refereed)
    Abstract [en]

    A new family of oxofluorophoshates, AFe(PO3F)2 (A = K, (NH4)2Cl, NH4, Rb, and Cs), was synthesized via ionothermal methods using PF6 ionic liquids. Single-crystal and powder X-ray diffraction reveal that AFe(PO3F)2 with A = (NH4)2Cl crystallizes in a trigonal structure, while AFe(PO3F)2 with A = NH4, Rb, and Cs crystallizes in a triclinic structure. Dimorphic KFe(PO3F)2 crystallizes in both the trigonal and triclinic forms. The structures of all compounds feature Yavapaiite-like Fe(PO3F)2 slabs, which are characterized by triangular Fe layers, planar in the case of the trigonal structure and undulated in the case of the triclinic one. Magnetization measurements reveal all compounds to order antiferromagnetically at low temperatures. The trigonal phases AFe(PO3F)2 (A = K and (NH4)2Cl) display complex magnetic HT phase diagrams. The observation of magnetization plateaus at Msat/3 (Msat = saturation magnetization) indicates the existence of the up–up–down (UUD) and V-phases at applied magnetic fields in the magnetically ordered state. Powder neutron diffraction measurements of KFe(PO3F)2 confirm the 120° spin structure at zero fields. Along c, the magnetic moments form a commensurate spiral since the spins in each plane are rotated by 90° with respect to the adjacent one. To our knowledge, this is the first time such a non-centrosymmetric version of the 120° spin structure with a 90° rotation between nearest planes has been reported.

  • 15.
    Siebeneichler, Stefanie
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Dorn, Katharina V.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Ovchinnikov, Alexander
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Papawassiliou, Wassilios
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    da Silva, Ivan
    ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom.
    Smetana, Volodymyr
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Pell, Andrew J.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Mudring, Anja-Verena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Ionothermal syntheses of six layered, triangular antiferromagnets AFe(PO3F)2 (A = K, (NH4)2Cl, NH4 , Rb, Cs) with realization of the magnetic 120 stateManuscript (preprint) (Other academic)
  • 16. Stamou, Christina
    et al.
    Papawassiliou, Wassilios
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Carvalho, José P.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Konidaris, Konstantis F.
    Bekiari, Vlasoula
    Dechambenoit, Pierre
    Pell, Andrew J.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Université de Lyon, France.
    Perlepes, Spyros P.
    Indium(III) in the "Periodic Table" of Di(2-pyridyl) Ketone: An Unprecedented Transformation of the Ligand and Solid-State In-115 NMR Spectroscopy as a Valuable Structural Tool2021In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 60, no 7, p. 4829-4840Article in journal (Refereed)
    Abstract [en]

    Reactions of di(2-pyridyl) ketone, (py)(2)CO, with indium(III) halides in CH3NO2 have been studied, and a new transformation of the ligand has been revealed. In the presence of In-III, the C=O bond of (py)(2)CO is subjected to nucleophilic attack by the carbanion -:CH2NO2, yielding the dinuclear complexes [In2X4{(py)(2)C(CH2NO2)(O)}(2)] (X = Cl, 1; X = Br, 2; X = I, 3) in moderate to good yields. The alkoxo oxygens of the two eta(1):eta(2):eta(1)-(py)(2)C(CH2NO2)(O)- ligands doubly bridge the In-III centers and create a {In-2(mu(2)-OR)(2)}(4+) core. Two pyridyl nitrogens of different organic ligands and two terminal halogeno ions complete a distorted-octahedral stereochemistry around each In(III) ion. After maximum excitation at 360 or 380 nm, the solid chloro complex 1 emits blue light at 420 and 440 nm at room temperature, the emission being attributed to charge transfer within the coordinated organic ligand. Solid-state In-115 NMR spectra, in combination with DFT calculations, of 1-3 have been studied in detail at both 9.4 and 14.1 T magnetic fields. The nuclear quadrupolar and chemical shift parameters provide valuable findings concerning the electric field gradients and magnetic shielding at the nuclei of indium, respectively. The experimentally derived C-Q values are 40 +/- 3 MHz for 1, 46 +/- 5 MHz for 2, and 50 +/- 10 and 64 +/- 7 MHz for the two crystallographically independent InIII sites for 3, while the diso values fall in the range 130 +/- 30 to -290 +/- 60 ppm. The calculated C-Q and asymmetry parameter (eta(Q)) values are fully consistent with the experimental values for 1 and 2 and are in fairly good agreement for 3. The results have been analyzed and discussed in terms of the known (1, 3) and proposed (2) structural features of the complexes, demonstrating that In-115 NMR is an effective solid-state technique for the study of indium(III) complexes.

  • 17. Winterlich, Meghan
    et al.
    Efthymiou, Constantinos G.
    Papawassiliou, Wassillios
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Carvalho, José P.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Pell, Andrew J.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Mayans, Julia
    Escuer, Albert
    Carty, Michael P.
    McArdle, Patrick
    Tylianakis, Emmanuel
    Morrison, Liam
    Froudakis, George
    Papatriantafyllopoulou, Constantina
    A biocompatible ZnNa2-based metal-organic framework with high ibuprofen, nitric oxide and metal uptake capacity2020In: Materials Advances, E-ISSN 2633-5409, Vol. 1, no 7, p. 2248-2260Article in journal (Refereed)
    Abstract [en]

    Metal organic frameworks (MOFs) have received significant attention in recent years in the areas of biomedical and environmental applications. Among them, mixed metal MOFs, although promising, are relatively few in number in comparison with their homometallic analogues. The employment of benzophenone-4,4'-dicarboxylic acid (bphdcH(2)) in mixed metal MOF chemistry provided access to a 3D MOF, [Na2Zn(bphdc)(2)(DMF)(2)](n) (NUIG1). NUIG1 displays a new topology and is a rare example of a mixed metal MOF based on 1D rod secondary building units. UV-vis, HPLC, TGA, XRPD, solid state NMR and computational studies indicated that NUIG1 exhibits an exceptionally high Ibuprofen (Ibu) and nitric oxide adsorption capacity. The MCF-7 cell line was used to assess the toxicity of NUIG1 and Ibu@NUIG1, revealing that both species are non-toxic (cell viability > 70%). NUIG1 exhibits good performance in the adsorption of metal ions (Co-II, Ni-II, Cu-II) from aqueous environments, as was demonstrated by UV-vis, EDX, ICP, SEM and direct and alternate current magnetic susceptibility studies. The colour and the magnetic properties of the M@NUIG1 species depend strongly on the kind and the amount of the encapsulated metal ion in the MOF pores.

1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf