Extremely low birth weight (ELBW) infants often develop an altered gut microbiota composition, which is related to clinical complications, such as necrotizing enterocolitis and sepsis. Probiotic supplementation may reduce these complications, and modulation of the gut microbiome is a potential mechanism underlying the probiotic effectiveness. In a randomized, double-blind, placebo-controlled trial, we assessed the effect of Lactobacillus reuteri supplementation, from birth to post-menstrual week (PMW)36, on infant gut microbiota. We performed 16S amplicon sequencing in 558 stool samples from 132 ELBW preterm infants at 1 week, 2 weeks, 3 weeks, 4 weeks, PMW36, and 2 years. Probiotic supplementation results in increased bacterial diversity and increased L. reuteri abundance during the 1st month. At 1 week, probiotic supplementation also results in a lower abundance of Enterobacteriaceae and Staphylococcaceae. No effects were found at 2 years. In conclusion, probiotics may exert benefits by modulating the gut microbiota composition during the 1st month in ELBW infants.
Lactobacillus reuteri DSM 17938 supplementation reduces morbidities in very low birth weight infants (<1500 g), while the effect on extremely low birth weight infants (ELBW, <1000 g) is still questioned. In a randomised placebo-controlled trial (ClinicalTrials.gov ID NCT01603368), head growth, but not feeding tolerance or morbidities, improved in L. reuteri-supplemented preterm ELBW infants. Here, we investigate colonisation with the probiotic strain in preterm ELBW infants who received L. reuteri DSM 17938 or a placebo from birth to postmenstrual week (PMW) 36. Quantitative PCR was used on 582 faecal DNA samples collected from 132 ELBW infants at one, two, three, and four weeks, at PMW 36, and at two years of age. Human milk oligosaccharides were measured in 31 milk samples at two weeks postpartum. At least 86% of the ELBW infants in the L. reuteri group were colonised with the probiotic strain during the neonatal period, despite low gestational age, high antibiotic pressure, and independent of infant feeding mode. Higher concentrations of lacto-N-tetraose, sialyl-lacto-N-neotetraose c, and 6 '-sialyllactose in mother's milk weakly correlated with lower L. reuteri abundance. Within the L. reuteri group, higher L. reuteri abundance weakly correlated with a shorter time to reach full enteral feeding. Female sex and L. reuteri colonisation improved head growth from birth to four weeks of age. In conclusion, L. reuteri DSM 17938 supplementation leads to successful colonisation in ELBW infants.