Bilinear models with three types of effects are considered: fixed effects, random effects and latent variable effects. In the literature, bilinear models with random effects and bilinear models with latent variables have been discussed but there are no results available when combining random effects and latent variables. It is shown, via appropriate vector space decompositions, how to remove the random effects so that a well-known model comprising only fixed effects and latent variables is obtained. The spaces are chosen so that the likelihood function can be factored in a convenient and interpretable way. To obtain explicit estimators, an important standardization constraint on the random effects is assumed to hold. A theorem is presented where a complete solution to the estimation problem is given.
Small area estimation techniques have got a lot of attention during the last decades due to their important applications in survey studies. Mixed linear models and reduced rank regression analysis are jointly used when considering small area estimation. Estimates of parameters are presented as well as prediction of random effects and unobserved area measurements.
The general unbalanced mixed linear model with two variance components is considered. Through resampling it is demonstrated how the fixed effects can be estimated explicitly. It is shown that the obtained nonlinear estimator is unbiased and its variance is also derived. A condition is given when the proposed estimator is recommended instead of the ordinary least squares estimator.