Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Nakane, Takanori
    et al.
    Kimanius, Dari
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Lindahl, Erik
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Science for Life Laboratory (SciLifeLab). KTH Royal Institute of Technology, Sweden.
    Scheres, Sjors H. W.
    Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION2018In: eLIFE, E-ISSN 2050-084X, Vol. 7, article id e36861Article in journal (Refereed)
    Abstract [en]

    Macromolecular complexes that exhibit continuous forms of structural flexibility pose a challenge for many existing tools in cryo-EM single-particle analysis. We describe a new tool, called multi-body refinement, which models flexible complexes as a user-defined number of rigid bodies that move independently from each other. Using separate focused refinements with iteratively improved partial signal subtraction, the new tool generates improved reconstructions for each of the defined bodies in a fully automated manner. Moreover, using principal component analysis on the relative orientations of the bodies over all particle images in the data set, we generate movies that describe the most important motions in the data. Our results on two test cases, a cytoplasmic ribosome from Plasmodium falciparum, and the spliceosomal B-complex from yeast, illustrate how multi-body refinement can be useful to gain unique insights into the structure and dynamics of large and flexible macromolecular complexes.

  • 2. Zivanov, Jasenko
    et al.
    Nakane, Takanori
    Forsberg, Björn O.
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Kimanius, Dari
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Hagen, Wim J. H.
    Lindahl, Erik
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Science for Life Laboratory (SciLifeLab). KTH Royal Institute of Technology, Sweden.
    Scheres, Sjors H. W.
    New tools for automated high-resolution cryo-EM structure determination in RELION-32018In: eLIFE, E-ISSN 2050-084X, Vol. 7, article id e42166Article in journal (Refereed)
    Abstract [en]

    Here, we describe the third major release of RELION. CPU-based vector acceleration has been added in addition to GPU support, which provides flexibility in use of resources and avoids memory limitations. Reference-free autopicking with Laplacian-of-Gaussian filtering and execution of jobs from python allows non-interactive processing during acquisition, including 2D-classification, de novo model generation and 3D-classification. Per-particle refinement of CTF parameters and correction of estimated beam tilt provides higher resolution reconstructions when particles are at different heights in the ice, and/or coma-free alignment has not been optimal. Ewald sphere curvature correction improves resolution for large particles. We illustrate these developments with publicly available data sets: together with a Bayesian approach to beam-induced motion correction it leads to resolution improvements of 0.2-0.7 angstrom compared to previous RELION versions.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf