Change search
Refine search result
12345 1 - 50 of 232
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alamsetti, Santosh Kumar
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Persson, Andreas K. A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium-Catalyzed Intramolecular Hydroamination of Propargylic Carbamates and Carbamothioates2014In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 16, no 5, p. 1434-1437Article in journal (Refereed)
    Abstract [en]

    An efficient and simple methodology was developed for the synthesis of oxazolidinones, oxazolidinthiones, imidazolidinthiones, and imidazolidinones from the corresponding propargylic starting materials using Pd(OAc)(2) and n-Bu4NOAc as catalysts in DCE at room temperature.

    Download full text (pdf)
    fulltext
  • 2.
    Alamsetti, Santosh Kumar
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Persson, Andreas K. A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Jiang, Tuo
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Scalable Synthesis of Oxazolones from Propargylic Alcohols through Multistep Palladium(II) Catalysis: beta-Selective Oxidative Heck Coupling of Cyclic Sulfonyl Enamides and Aryl Boroxines2013In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 52, no 51, p. 13745-13750Article in journal (Refereed)
  • 3.
    Babu, Beneesh P.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Endo, Yoshinori
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Biomimetic Aerobic Oxidation of Amino Alcohols to Lactams2012In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 18, no 37, p. 11524-11527Article in journal (Refereed)
  • 4.
    Babu, Beneesh P.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Meng, Xu
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Aerobic Oxidative Coupling of Arenes and Olefins through a Biomimetic Approach2013In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 19, no 13, p. 4140-4145Article in journal (Refereed)
  • 5.
    Bartholomeyzik, Teresa
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Deng, Youqian
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Selective Palladium-catalyzed oxidative carbocyclization of allenynes2013In: Abstracts of Papers of The American Chemical Society, American Chemical Society (ACS), 2013Conference paper (Other academic)
  • 6.
    Bartholomeyzik, Teresa
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mazuela, Javier
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pendrill, Robert
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Deng, Youqian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium-Catalyzed Oxidative Arylating Carbocyclization of Allenynes: Control of Selectivity and Role of H2O2014In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 53, no 33, p. 8696-8699Article in journal (Refereed)
    Abstract [en]

    Highly selective protocols for the carbocyclization/arylation of allenynes using arylboronic acids are reported. Arylated vinylallenes are obtained with the use of BF3 center dot Et2O as an additive, whereas addition of water leads to arylated trienes. These conditions provide the respective products with excellent selectivities (generally > 97:3) for a range of boronic acids and different allenynes. It has been revealed that water plays a crucial role for the product distribution.

    Download full text (pdf)
    fulltext
  • 7.
    Bartholomeyzik, Teresa
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pendrill, Robert
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Jiang, Tuo
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Complex Kinetics in a Palladium(II)-Catalyzed Oxidative Carbocyclization: Untangling of Competing Pathways, Pre-Catalyst Activation, and Product MixturesManuscript (preprint) (Other academic)
  • 8.
    Bartholomeyzik, Teresa
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pendrill, Robert
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lihammar, Richard
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Jiang, Tuo
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kinetics and Mechanism of the Palladium-Catalyzed Oxidative Arylating Carbocyclization of Allenynes2018In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 140, no 1, p. 298-309Article in journal (Refereed)
    Abstract [en]

    Pd-catalyzed C-C bond-forming reactions under oxidative conditions constitute a class of important and widely used synthetic protocols. This Article describes a mechanistic investigation of the arylating carbocyclization of allenynes using boronic acids and focuses on the correlation between reaction conditions and product selectivity. Isotope effects confirm that either allenic or propargylic C-H activation occurs directly after substrate binding. With an excess of H2O, a triene product is selectively formed via allenic C-H activation. The latter C-H activation was found to be turnover-limiting and the reaction zeroth order in reactants as well as the oxidant. A dominant feature is continuous catalyst activation, which was shown to occur even in the absence of substrate. Smaller amounts of H2O lead to mixtures of triene and vinylallene products, where the latter is formed via propargylic C-H activation. The formation of triene occurs only in the presence of ArB(OH)(2). Vinylallene, on the other hand, was shown to be formed by consumption of (ArBO)(3) as a first-order reactant. Conditions with sub-stoichiometric BF3 center dot OEt2 gave selectively the vinylallene product, and the reaction is first order in PhB(OH)(2). Both C-H activation and transmetalation influence the reaction rate. However, with electron-deficient ArB(OH)(2), C-H activation is turnover-limiting. It was difficult to establish the order of transmetalation vs C-H activation with certainty, but the results suggest that BF3 center dot OEt2 promotes an early transmetalation. The catalytically active species were found to be dependent on the reaction conditions, and H2O is a crucial parameter in the control of selectivity.

  • 9.
    Bermejo Gómez, Antonio
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Holmberg, Pär
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martin-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Transition metal-catalyzed redox isomerization of codeine and morphine in water2014In: RSC Advances, E-ISSN 2046-2069, Vol. 4, no 74, p. 39519-39522Article in journal (Refereed)
    Abstract [en]

    A water-soluble rhodium complex formed from commercially available [Rh(COD)(CH3CN)(2)]BF4 and 1,3,5-triaza-7-phosphaadamantane (PTA) catalyzes the isomerization of both codeine and morphine into hydrocodone and hydromorphone with very high efficiency. The reaction is performed in water, allowing isolation of the final products by simple filtration, which results in very high isolated yields. The reactions can be easily scaled up to 100 g.

    Download full text (pdf)
    fulltext
  • 10.
    Bermejo-López, Aitor
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kong, Wei-Jun
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tortajada, Pedro Jesus
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Posevins, Daniels
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín‐Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Iron-Catalyzed Borylation of Propargylic Acetates for the Synthesis of Multisubstituted Allenylboronates2023In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 29, no 3, article id e202203130Article in journal (Refereed)
    Abstract [en]

    A novel iron-catalyzed borylation of propargylic acetates leading to allenylboronates has been developed. The method allows the preparation of a variety of di-, tri- and tetrasubstituted allenylboronates at room temperature with good functional group compatibility. Stereochemical studies show that an anti-SN2’ displacement of acetate by boron occurs; this also allows transfer of chirality to yield enantiomerically enriched allenylboronates. The synthetic utility of this protocol was further substantiated by transformations of the obtained allenylboronates including oxidation and propargylation. 

  • 11.
    Bogár, Krisztián
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    High-yielding metalloenzymatic dynamic kinetic resolution of fluorinated aryl alcohols2007In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 48, no 31, p. 5471-5474Article in journal (Refereed)
    Abstract [en]

    Dynamic kinetic resolution (DKR) of various fluorinated aryl alcohols by a combination of lipase-catalyzed enzymatic resolution with in situ ruthenium-catalyzed alcohol racemization is described. (R)-Selective Candida antarctica lipase B (CALB) was employed for transesterification of different fluoroaryl alcohols in DKR reactions delivering the corresponding acetates in high yield (97%) with excellent enantiomeric excess (98%).

  • 12.
    Bogár, Krisztián
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hoyos Vidal, Pilar
    Alcántara León, Andrés R.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chemoenzymatic Dynamic Kinetic Resolution of Allylic Alcohols: A Highly Enantioselective Route to Acyloin Acetates2007In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 9, no 17, p. 3401-3404Article in journal (Refereed)
    Abstract [en]

    Dynamic kinetic resolution (DKR) of a series of sterically hindered allylic alcohols has been conducted with Candida antarctica lipase B (CALB) and ruthenium catalyst 1. The optically pure allylic acetates obtained were subjected to oxidative cleavage to give the corresponding acylated acyloins in high yields without loss of chiral information.

  • 13.
    Bogár, Krisztián
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Krumlinde, Patrik
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bacsik, Zoltán
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Hedin, Niklas
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Bäckvall, Jan E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Heterogenized Wilkinson's Catalyst for Transfer Hydrogenation of Carbonyl Compounds2011In: European Journal of Organic Chemistry, ISSN 1434-193X, E-ISSN 1099-0690, no 23, p. 4409-4414Article in journal (Refereed)
    Abstract [en]

    Wilkinson’s catalyst [RhCl(PPh3)3] was heterogenized on common silica by the use of a grafting/anchoring technique. The immobilized catalyst showed high activity and selectivity in transfer hydrogenation reactions of a range of carbonyl compounds in 2-propanol. Reactions carried out in 2-propanol at reflux afforded the corresponding alcohols in high yields in short reaction times. The heterogeneous feature ofthe catalyst allows for easy recovery and efficient reuse in the same reaction up to 5 times without any detectible loss of catalytic activity.

  • 14. Bogár, Krisztián
    et al.
    Krumlinde, Patrik
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hydrogenized Wilkinson´s Catalyst for Transfer Hydrogenation of Carbonyl CompoundsManuscript (preprint) (Other academic)
    Abstract [en]

    Combining the advantages of homogeneous and heterogeneous catalysis is possible by heterogenization of homogeneous transition metal complexes based on a grafting/anchoring technique. Wilkinson’s catalyst ((RhCl(PPh3)3) immobilized on common silica showed high activity and selectivity in transfer hydrogenation reactions of different carbonyl compounds in isopropanol. Reactions conducted at reflux in isopropanol afforded the corresponding carbinols in high yields in short reaction times. The heterogeneous feature of the catalyst allows easy recovery and efficient reuse in the same reaction up to 5 times without loss of catalytic activity.

  • 15.
    Bornschein, Christoph
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Universität Rostock, Germany.
    Gustafson, Karl P. J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Beller, Matthias
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Evaluation of Fe and Ru Pincer-Type Complexes as Catalysts for the Racemization of Secondary Benzylic Alcohols2016In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 22, no 33, p. 11583-11586Article in journal (Refereed)
    Abstract [en]

    Fe and Ru pincer-type catalysts are used for the racemization of benzylic alcohols. Racemization with the Fe catalyst was achieved within 30 minutes under mild reaction conditions, with a catalyst loading as low as 2 mol %. This reaction constitutes the first example of an iron-catalyzed racemization of an alcohol. The efficiency for racemization of the Fe catalyst and its Ru analogue was evaluated for a wide range of sec-benzylic alcohols. The commercially available Ru complex proved to be highly robust and even tolerated the presence of water in the reaction mixture.

  • 16.
    Borén, Linnéa
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Leijondahl, Karin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Dynamic Kinetic Asymmetric Transformation of 1,4-diols and Preparation of Trans-2,5-Disubstituted pyrrolidines2009In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 50, no 26, p. 3237-3240Article in journal (Refereed)
    Abstract [en]

    Dynamic kinetic asymmetric transformation (DYKAT) of a series of 1,4-diols is carried out with Candida antarctica lipase B (CALB), Pseudomonas cepacia lipase II (PS-C II), and a ruthenium catalyst. A β-chloro-substituted 1,4-diol is successfully transformed into an optically pure 1,4-diacetate, which is a highly useful synthetic intermediate. The usefulness of the optically pure 1,4-diacetates is demonstrated by the synthesis of enantiopure 2,5-disubstituted pyrrolidines.

  • 17. Bratt, Emma
    et al.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johansson, Magnus J.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    A General Suzuki Cross-Coupling Reaction of Heteroaromatics Catalyzed by Nanopalladium on Amino-Functionalized Siliceous Mesocellular Foam2014In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 79, no 9, p. 3946-3954Article in journal (Refereed)
    Abstract [en]

    Suzuki-Miyaura cross-coupling reactions of heteroaromatics catalyzed by palladium supported in the cavities of amino-functionalized siliceous mesocellular foam are presented. The nanopalladium catalyst effectively couples not only heteroaryl halides with boronic acids but also heteroaryl halides with boronate esters, potassium trifluoroborates, MIDA boronates, and triolborates, producing a wide range of heterobiaryls in good to excellent yields. Furthermore, the heterogeneous palladium nanocatalyst can easily be removed from the reaction mixture by filtration and recycled several times with minimal loss in activity. This catalyst provides an alternative, environmentally friendly, low-leaching process for the preparation of heterobiaryls.

    Download full text (pdf)
    fulltext
  • 18.
    Bruneau, Alexandre
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Gustafson, Karl P. J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Yuan, Ning
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Swedish University of Agricultural Sciences, Sweden.
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Persson, Ingmar
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of Benzofurans and Indoles from Terminal Alkynes and Iodoaromatics Catalyzed by Recyclable Palladium Nanoparticles Immobilized on Siliceous Mesocellular Foam2017In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 23, no 52, p. 12886-12891Article in journal (Refereed)
    Abstract [en]

    Herein, we report on the utilization of a heterogeneous catalyst, consisting of Pd nanoparticles supported on a siliceous mesocellular foam (Pd-0-AmP-MCF), for the synthesis of heterocycles. Reaction of o-iodophenols and protected o-iodoanilines with acetylenes in the presence of a Pd nanocatalyst produced 2-substituted benzofurans and indoles, respectively. In general, the catalytic protocol afforded the desired products in good to excellent yields under mild reaction conditions without the addition of ligands. Moreover, the structure of the reported Pd nanocatalyst was further elucidated with extended X-ray absorption fine-structure spectroscopy, and it was proven that the catalyst could be recycled multiple times without significant loss of activity.

    Download full text (pdf)
    fulltext
  • 19.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalytic asymmetric synthesis via combined metal and enzyme catalysis2009In: 3rd Hellenic Symposium on Organic Synthesis, October 15-17, 2009, Athens, Greece: Abstracts of papers, Athens, 2009Conference paper (Other academic)
  • 20.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Modern Oxidation Methods2010Collection (editor) (Other academic)
  • 21.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium- and ruthenium-catalyzed redox reactions in selective organic synthesis2009In: Abstract of LOST II Symposium in honour of Prof. Alain Krief, March 18-20, 2009, Namur, Belgium, 2009Conference paper (Other academic)
  • 22.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pd- and Ru-catalyzed redox reactions in catalysis. Application to the combination with enzyme catalysis2009In: Abstract of 42nd Jahrestreffen Deutscher Katalytiker, March 11-13, 2009, Weimar, Germany, 2009Conference paper (Other academic)
  • 23.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Preface2010In: Topics in catalysis, ISSN 1022-5528, E-ISSN 1572-9028, Vol. 53, no 13-14, p. 831-831Article in journal (Refereed)
  • 24.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Recent advances in the combination of metal and enzyme catalysis2009In: Abstract of the 10th Netherlands Catalysis and Chemistry Conference (NCCC-X), March 2-4, 2009, Noordwijkerhout, the Netherlands, 2009Conference paper (Other academic)
  • 25.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Selective oxidation of amines and sulfides2010In: Modern Oxidation Methods / [ed] Jan-Erling Bäckvall, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA , 2010, 2, p. 277-313Chapter in book (Other academic)
  • 26. Carballeira, José Daniel
    et al.
    Krumlinde, Patrik
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bocola, Marco
    Vogel, Andreas
    Reetz, Manfred T.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Directed evolution and axial chirality: optimization of the enantioselectivity of Pseudomonas aeruginosa lipase towards the kinetic resolution of a racemic allene2007In: Chemical Communications, ISSN 1359-7345, Vol. 20, p. 1913-1915Article in journal (Refereed)
  • 27.
    Chen, Hong
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Deng, Youqian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Yu, Zhengbao
    Zhao, Huishuang
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Yao, Qingxia
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sun, Junliang
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    3D Open-Framework Vanadoborate as a Highly Effective Heterogeneous Pre-catalyst for the Oxidation of Alkylbenzenes2013In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 25, no 24, p. 5031-5036Article in journal (Refereed)
    Abstract [en]

    Three three-dimensional (3D) open-framework vanadoborates, denoted as SUT-6-Zn, SUT-6-Mn, and SUT-6-Ni, were synthesized using diethylenetriamine as a template. SUT-6-Zn, SUT-6-Mn, and SUT-6-Ni are isostructural and built from (VO)(12)O-6 B18O36(OH)(6) clusters bridged by ZnO5, MnO6, and NiO6 polyhedra, respectively, to form the 3D frameworks. SUT-6 is the first vanadoborate with a 3D framework. The framework follows a semiregular hxg net topology with a 2-fold interpenetrated diamond-like channel system. The amount of template used in the synthesis played an important role in the dimensionality of the resulting vanadoborate structures. A small amount of diethylenetriamine led to the formation of this first 3D vanadoborate framework, while an increased amount of diethylenetriamine resulted in vanadoborates with zero-dimensional (0D) and one-dimensional (1D) structures. SUT-6-Zn was proved to be an efficient heterogeneous precatalyst for the oxidation of alkylbenzenes.

  • 28. Cotton, Hanna K.
    et al.
    Norinder, Jakob
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Screening of Ligands in the Asymmetric Metallocenethiolatocopper(I)-Catalyzed Allylic Substitution with Grignard Reagents2006In: Tetrahedron, ISSN 0040-4020, E-ISSN 1464-5416, Vol. 62, no 24, p. 5632-5640Article in journal (Refereed)
    Abstract [en]

    Screening of metallocenethiolate ligands for copper(I)-catalyzed substitution of allylic acetates with Grignard reagents has been carried out. The previously used ligand, lithium (R,Sp)-2-(1-dimethylaminoethyl)ferrocenylthiolate (4a), possessing both central and planar chirality, was the starting point for the screening. It was found that the diastereomeric ligand lithium (R,Rp)-2-(1-dimethylaminoethyl)ferrocenylthiolate (4b) exhibiting reversed planar chirality gave increased enantioselectivity in the allylic substitution, at least when cinnamyl acetate was used as a substrate. The ruthenocene-based ligand lithium (R,Sp)-2-(1-dimethylaminoethyl)ruthenocenylthiolate (4c) gave an enhanced reaction rate, but lower chiral induction. The use of disulfide bis[(R,Sp)-2-(1-dimethylaminoethyl)ferrocenyl]disulfide (7a) as a ligand precursor worked well but resulted in lower enantioselectivity.

  • 29.
    Csjernyik, Gábor
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bogár, Krisztián
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    New Efficient Ruthenium Catalysts for Racemization of Alcohols at Room Temperature2004In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 45, no 36, p. 6799-6802Article in journal (Refereed)
    Abstract [en]

    5-Pentaphenylcyclopentadienyl)RuCl(CO)2 was found to catalyze efficiently the racemization of chiral alcohols such as (S)-1-phenylethanol, (S)-1-phenylpropan-2-ol, (S)-4-phenylbutan-2-ol and (S)-4-methoxy-1-phenylethanol at room temperature in the presence of a base. The catalytic activity of three other Ru(II) complexes was also investigated. The effects of halide and solvent were studied as well.

  • 30. Deiana, Luca
    et al.
    Badali, Elham
    Rafi, Abdolrahim A.
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Mid Sweden University, Sundsvall, Sweden.
    Cordova, Armando
    Cellulose-Supported Heterogeneous Gold-Catalyzed Cycloisomerization Reactions of Alkynoic Acids and Allenynamides2023In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 13, no 15, p. 10418-10424Article in journal (Refereed)
    Abstract [en]

    Herein, we describe efficient nanogold-catalyzed cycloisomerization reactions of alkynoic acids and allenynamides to enol lactones and dihydropyrroles, respectively (the latter via an Alder-ene reaction). The gold nanoparticles were immobilized on thiol-functionalized microcrystalline cellulose and characterized by electron microscopy (HAADF-STEM) and by XPS. The thiol-stabilized gold nanoparticles (Au-0) were obtained in the size range 1.5-6 nm at the cellulose surface. The robust and sustainable cellulose-supported gold nanocatalyst can be recycled for multiple cycles without losing activity.

  • 31. Deiana, Luca
    et al.
    Rafi, Abdolrahim A.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Cordova, Armando
    Subtilisin integrated artificial plant cell walls as heterogeneous catalysts for asymmetric synthesis of (S)-amides2023In: RSC Advances, E-ISSN 2046-2069, Vol. 13, no 29, p. 19975-19980Article in journal (Refereed)
    Abstract [en]

    Subtilisin integrated artificial plant-cell walls (APCWs) were fabricated by self-assembly using cellulose or nanocellulose as the main component. The resulting APCW catalysts are excellent heterogeneous catalysts for the asymmetric synthesis of (S)-amides. This was demonstrated by the APCW-catalyzed kinetic resolution of several racemic primary amines to give the corresponding (S)-amides in high yields with excellent enantioselectivity. The APCW catalyst can be recycled for multiple reaction cycles without loss of enantioselectivity. The assembled APCW catalyst was also able to cooperate with a homogeneous organoruthenium complex, which allowed for the co-catalytic dynamic kinetic resolution (DKR) of a racemic primary amine to give the corresponding (S)-amide in high yield. The APCW/Ru co-catalysis constitutes the first examples of DKR of chiral primary amines when subtilisin is used as a co-catalyst.

  • 32. Deiana, Luca
    et al.
    Rafi, Abdolrahim A.
    Naidu, Veluru Ramesh
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Mid Sweden University, Sweden.
    Córdova, Armando
    Artificial plant cell walls as multi-catalyst systems for enzymatic cooperative asymmetric catalysis in non-aqueous media2021In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 57, no 70, p. 8814-8817Article in journal (Refereed)
    Abstract [en]

    The assembly of cellulose-based artificial plant cell wall (APCW) structures that contain different types of catalysts is a powerful strategy for the development of cascade reactions. Here we disclose an APCW catalytic system containing a lipase enzyme and nanopalladium particles that transform a racemic amine into the corresponding enantiomerically pure amide in high yield via a dynamic kinetic resolution.

  • 33. Deiana, Luca
    et al.
    Rafi, Abdolrahim A.
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Mid Sweden University, Sweden.
    Cordova, Armando
    Artificial Arthropod Exoskeletons/Fungi Cell Walls Integrating Metal and Biocatalysts for Heterogeneous Synergistic Catalysis of Asymmetric Cascade Transformations2023In: ChemCatChem, ISSN 1867-3880, E-ISSN 1867-3899, Vol. 15, no 15, article id e202300250Article in journal (Refereed)
    Abstract [en]

    A novel and sustainable tandem-catalysis system for asymmetric synthesis is disclosed, which is fabricated by bio-inspired self-assembly of artificial arthropod exoskeletons (AAEs) or artificial fungi cell walls (AFCWs) containing two different types of catalysts (enzyme and metal nanoparticles). The heterogeneous integrated enzyme/metal nanoparticle AAE/AFCW systems, which contain chitosan as the main structural component, co-catalyze dynamic kinetic resolution of primary amines via a tandem racemization/enantioselective amidation reaction process to give the corresponding amides in high yields and excellent ee. The heterogeneous AAE/AFCW systems display successful heterogeneous synergistic catalysis at the surfaces since they can catalyze multiple reaction cycles without metal leaching. The use of natural-based and biocompatible structural components makes the AAE/AFCW systems fully biodegradable and renewable, thus fulfilling important green chemistry requirements. 

  • 34.
    Deng, Youqian
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bartholomeyzik, Teresa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Persson, Andreas K. A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sun, Junliang
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium-Catalyzed Oxidative Arylating Carbocyclization of Allenynes2012In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 51, no 11, p. 2703-2707Article in journal (Refereed)
  • 35.
    Deng, Youqian
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium-Catalyzed Oxidative Acyloxylation/Carbocyclization of Allenynes2013In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 52, no 11, p. 3217-3221Article in journal (Refereed)
  • 36.
    Deng, Youqian
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Persson, Andreas K. A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium-Catalyzed Oxidative Carbocyclizations2012In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 18, no 37, p. 11498-11523Article, review/survey (Refereed)
    Abstract [en]

    Palladium-catalyzed oxidative carboncarbon bond-forming annulations, that is, carbocyclization reactions, have recently emerged as efficient and atom-economical routes to carbo- and heterocycles, whereby less functionalized substrates and fewer synthetic steps are needed to obtain a target molecule compared with traditional non-oxidative carboncarbon bond-forming reactions. In this review, the synthetic efforts in palladium-catalyzed oxidative carbocyclization reactions are summarized.

  • 37.
    Deng, Youqian
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Teresa, Bartholomeyzik
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Control of Selectivity in Palladium-Catalyzed Oxidative Carbocyclization/Borylation of Allenynes2013In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 52, no 24, p. 6283-6287Article in journal (Refereed)
    Abstract [en]

    In control: A highly selective carbocyclization/borylation of allenynes with bis(pinacolato)diboron (B2pin2) under palladium catalysis and with p-benzoquinone (BQ) as the oxidant was developed. The use of either LiOAc⋅2 H2O with 1,2-dichloroethane (DCE) as the solvent or BF3⋅Et2O together with THF is crucial for the selective formation of borylated trienes and vinylallenes, respectively.

  • 38.
    Deska, Jan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enzymatic kinetic resolution of primary allenic alcohols. Application to the total synthesis and stereochemical assignment of striatisporolide A2009In: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 7, no 17, p. 3379-3381Article in journal (Refereed)
  • 39.
    Deska, Jan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    del Pozo Ochoa, Carolina
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chemoenzymatic dynamic kinetic resolution of axially chiral allenes2010In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 16, no 15, p. 4447-4451Article in journal (Refereed)
    Abstract [en]

    Dimeric palladium bromide complexes bearing monodentate N-heterocyclic carbene ligands have been identified as efficient catalysts for the chemoselective racemization of axially chiral allenyl alcohols. In combination with porcine pancreatic lipase as biocatalyst, a dynamic kinetic resolution has been developed, giving access to optically active allenes in good yield and high enantiomeric purity (

  • 40. Dorange, Ismet
    et al.
    Löfstedt, Joakim
    Franzén, Johan
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Närhi, Katja
    Bäckvall, Jan E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Allenes as Carbon Nucleophiles in Intramolecular Attack on (π-1,3-diene)Palladium Complexes: Evidence for trans-Carbopalladation of the 1,3-Diene2003In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 9, no 14, p. 3445-3449Article in journal (Refereed)
  • 41.
    Endo, Yoshinori
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Aerobic Lactonization of Diols by Biomimetic Oxidation2011In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 17, no 45, p. 12596-12601Article in journal (Refereed)
  • 42.
    Endo, Yoshinori
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Biomimetic Oxidative Coupling of Benzylamines and 2-Aminophenols: Synthesis of Benzoxazoles2012In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 18, no 43, p. 13609-13613Article in journal (Refereed)
  • 43.
    Engelmark Cassimjee, Karim
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kadow, Maria
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Wikmark, Ylva
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Svedendahl Humble, Maria
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rothstein, M. L.
    Rothstein, D. M.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    A general protein purification and immobilization method on controlled porosity glass: biocatalytic applications2014In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 50, no 65, p. 9134-9137Article in journal (Refereed)
    Abstract [en]

    A general combined purification and immobilization method to facilitate biocatalytic process development is presented. The support material, EziG (TM), is based on controlled porosity glass (CPG) or polymer-coated versions thereof (HybCPG) and binds protein affinity tags. Biocatalytic reactions in aqueous and organic media with seven enzymes of biocatalytic interest are shown.

    Download full text (pdf)
    fulltext
  • 44.
    Engström, Karin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Gustafson, Karl P. J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shakeri, Mozaffar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Co-immobilization of an Enzyme and a Metal into the Compartments of Mesoporous Silica for Cooperative Tandem Catalysis: An Artificial Metalloenzyme2013In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 52, no 52, p. 14006-14010Article in journal (Refereed)
    Abstract [en]

    Surpassing nature: A hybrid catalyst in which Candida antarctica lipase B and a nanopalladium species are co-immobilized into the compartments of mesoporous silica is presented. The metal nanoparticles and the enzyme are in close proximity to one another in the cavities of the support. The catalyst mimics a metalloenzyme and was used for dynamic kinetic resolution of a primary amine in high yield and excellent enantioselectivity.

  • 45.
    Engström, Karin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nyhlén, Jonas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sandström, Anders G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Directed evolution of an enantioselective lipase with broad substrate scope for hydrolysis of α-substituted esters2010In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 132, no 20, p. 7038-7042Article in journal (Refereed)
    Abstract [en]

    A variant of Candida antarctica lipase A (CalA) was developed for the hydrolysis of α-substituted p-nitrophenyl esters by directed evolution. The E values of this variant for 7 different esters was 45−276, which is a large improvement compared to 2−20 for the wild type. The broad substrate scope of this enzyme variant is of synthetic use, and hydrolysis of the tested substrates proceeded with an enantiomeric excess between 95−99%. A 30-fold increase in activity was also observed for most substrates. The developed enzyme variant shows (R)-selectivity, which is reversed compared to the wild type that is (S)-selective for most substrates.

  • 46.
    Engström, Karin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nyhlén, Jonas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sandström, Anders G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enantioselective Kinetic Resolution of p-Nitrophenyl 2-Phenylpropanoate by a Variant of Candida antarctica Lipase A Developed by Directed Evolution2010In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 132, no 20, p. 7038-7042Article in journal (Refereed)
    Abstract [en]

    A variant of Candida antarctica lipase A (CalA) was developed for the hydrolysis of α-substituted p-nitrophenyl esters by directed evolution. The E values of this variant for 7 different esters was 45−276, which is a large improvement compared to 2−20 for the wild type. The broad substrate scope of this enzyme variant is of synthetic use, and hydrolysis of the tested substrates proceeded with an enantiomeric excess between 95−99%. A 30-fold increase in activity was also observed for most substrates. The developed enzyme variant shows (R)-selectivity, which is reversed compared to the wild type that is (S)-selective for most substrates.

  • 47.
    Engström, Karin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shakeri, Mozaffar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Dynamic Kinetic Resolution of β-Amino Esters by a Heterogeneous System of a Palladium Nanocatalyst and Candida antarctica Lipase A2011In: European Journal of Organic Chemistry, ISSN 1434-193X, E-ISSN 1099-0690, no 10, p. 1827-1830Article in journal (Refereed)
    Abstract [en]

    A dynamic kinetic resolution (DKR) of β-amino esters have been developed by the use of a heterogeneous racemization catalyst and an immobilized enzyme that accepts aromatic, heteroaromatic and aliphatic substrates. The reaction conditions were optimized to yield an efficient catalytic system without by-product formation. The products are obtained in 96–99 % ee and high yields

  • 48.
    Engström, Karin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Vallin, Michaela
    Hult, Karl
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kinetic resolution of diarylmethanols using a mutated variant of lipase CALB2012In: Tetrahedron, ISSN 0040-4020, E-ISSN 1464-5416, Vol. 68, no 37, p. 7613-7618Article in journal (Refereed)
    Abstract [en]

    An enzymatic kinetic resolution of diarylmethanols via acylation has been developed. This was achieved by the use of a mutated variant of CALB that accepts larger substrates compared to the wild type. By the use of diarylmethanols with two differently sized aryl groups, enantioselective transformations were achieved. A larger size-difference led to a higher enantioselectivity. In addition, substrates with electronically different aryl groups, such as phenyl and pyridyl, also gave an enantioselective reaction. The highest E value was observed with a substrate where steric and electronic effects were combined.

  • 49.
    Engström, Karin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Vallin, Michaela
    Syrén, Per-Olof
    Hult, Karl
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mutated variant of Candida antarctica lipase B in (S)-selective dynamickinetic resolution of secondary alcohols2011In: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 9, no 1, p. 81-82Article in journal (Refereed)
    Abstract [en]

    An (S)-selective dynamic kinetic resolution of secondaryalcohols, employing a mutated variant of Candida antarcticalipase B (CalB) gave products in 84–88% yield and in 90–97%ee.

  • 50.
    Ericsson, Daniel J.
    et al.
    1Department of Cell and Molecular Biology, Uppsala University, Biomedical Center.
    Kasrayan, Alex
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johansson, Patrik
    1Department of Cell and Molecular Biology, Uppsala University, Biomedical Center.
    Bergfors, Terese
    Department of Cell and Molecular Biology, Uppsala University, Biomedical Center.
    Sandström, Anders G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mowbray, Sherry L.
    Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Center.
    X-Ray structure of Candida antarctica lipase A shows a novel lid structure and a likely mode of interfacial activation2008In: Journal of Molecular Biology, ISSN 0022-2836, Vol. 376, no 1, p. 109-119Article in journal (Refereed)
    Abstract [en]

    In nature, lipases (EC 3.1.1.3) catalyze the hydrolysis of triglycerides to form glycerol and fatty acids. Under the appropriate conditions, the reaction is reversible, and so biotechnological applications commonly make use of their capacity for esterification as well as for hydrolysis of a wide variety of compounds. In the present paper, we report the X-ray structure of lipase A from Candida antarctica, solved by single isomorphous replacement with anomalous scattering, and refined to 2.2-Å resolution. The structure is the first from a novel family of lipases. Contrary to previous predictions, the fold includes a well-defined lid as well as a classic α/β hydrolase domain. The catalytic triad is identified as Ser184, Asp334 and His366, which follow the sequential order considered to be characteristic of lipases; the serine lies within a typical nucleophilic elbow. Computer docking studies, as well as comparisons to related structures, place the carboxylate group of a fatty acid product near the serine nucleophile, with the long lipid tail closely following the path through the lid that is marked by a fortuitously bound molecule of polyethylene glycol. For an ester substrate to bind in an equivalent fashion, loop movements near Phe431 will be required, suggesting the primary focus of the conformational changes required for interfacial activation. Such movements will provide virtually unlimited access to solvent for the alcohol moiety of an ester substrate. The structure thus provides a basis for understanding the enzyme's preference for acyl moieties with long, straight tails, and for its highly promiscuous acceptance of widely different alcohol and amine moieties. An unconventional oxyanion hole is observed in the present structure, although the situation may change during interfacial activation

12345 1 - 50 of 232
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf