Change search
Refine search result
12 1 - 50 of 71
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abreu-Vieira, Gustavo
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Fischer, Alexander W.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. University of Hamburg, Germany.
    Mattsson, Charlotte
    de Jong, Jasper M. A.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Shabalina, Irina G.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Ryden, Mikael
    Laurencikiene, Jurga
    Arner, Peter
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Petrovic, Natasa
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Cidea improves the metabolic profile through expansion of adipose tissue2015In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 6, article id 7433Article in journal (Refereed)
    Abstract [en]

    In humans, Cidea (cell death-inducing DNA fragmentation factor alpha-like effector A) is highly but variably expressed in white fat, and expression correlates with metabolic health. Here we generate transgenic mice expressing human Cidea in adipose tissues (aP2-hCidea mice) and show that Cidea is mechanistically associated with a robust increase in adipose tissue expandability. Under humanized conditions (thermoneutrality, mature age and prolonged exposure to high-fat diet), aP2-hCidea mice develop a much more pronounced obesity than their wild-type littermates. Remarkably, the malfunctioning of visceral fat normally caused by massive obesity is fully overcome-perilipin 1 and Akt expression are preserved, tissue degradation is prevented, macrophage accumulation is decreased and adiponectin expression remains high. Importantly, the aP2-hCidea mice display enhanced insulin sensitivity. Our data establish a functional role for Cidea and suggest that, in humans, the association between Cidea levels in white fat and metabolic health is not only correlative but also causative.

  • 2.
    Abreu-Vieira, Gustavo
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Hagberg, Carolina E.
    Spalding, Kirsty L.
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Adrenergically-stimulated blood flow in brown adipose tissue is not dependent on thermogenesis: Regulation of brown adipose tissue blood flow2015In: American Journal of Physiology. Endocrinology and Metabolism, ISSN 0193-1849, E-ISSN 1522-1555, Vol. 308, no 9, p. E822-E829Article in journal (Refereed)
    Abstract [en]

    Brown adipose tissue (BAT) thermogenesis relies on blood flow to be supplied with nutrients and oxygen, and for the distribution of the generated heat to the rest of the body. It is therefore fundamental to understand the mechanisms by which blood flow is regulated and its relation to thermogenesis. Here we present high-resolution laser-Doppler imaging (HR-LDR) as a novel method for noninvasive, in vivo measurement of BAT blood flow in mice. Using HR-LDR, we found that norepinephrine stimulation increases BAT blood flow in a dose-dependent manner, and that this response is profoundly modulated by environmental temperature acclimation. Surprisingly, we found that mice lacking uncoupling protein 1 (UCP1) have fully preserved BAT blood flow response to norepinephrine, despite failing to perform thermogenesis. BAT blood flow was not directly correlated to systemic glycaemia, but glucose injections could transiently increase tissue perfusion. Inguinal white adipose tissue, also known as a brite/beige adipose tissue, was also sensitive to cold acclimation and similarly increased blood flow in response to norepinephrine. In conclusion, using a novel non-invasive method to detect BAT perfusion, we demonstrate that adrenergically-stimulated BAT blood flow is qualitatively and quantitatively fully independent of thermogenesis, and is therefore not a reliable parameter for the estimation of BAT activation and heat generation.

  • 3.
    Abreu-Vieira, Gustavo
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Kalinovich, Anastasia
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Novel thiazolidinediones distinguish between (UCP1-independent) antidiabetic effects (MSDC-0602) and adipogenic and browning-inducing effects (MSDC-0160) of classical thiazolidinediones (rosiglitazone)Manuscript (preprint) (Other academic)
    Abstract [en]

    Thiazolinediones (TZDs), also called glitazones, are a class of drugs traditionally used forimproving glucose tolerance in type II diabetes mellitus. The beneficial effects ofthiazolidinedione are believed to be caused by the drug binding to the nuclear receptor PPARγ,which in turn triggers a general adipogenic program in white adipose tissue, and apparentthermogenic recruitment of brown and brite/beige fat. Here, we present a comparison of thephysiological effects of three thiazolidinediones (rosiglitazone, MSDC-0602, and MSDC-0160)in C57BL/6 mice fed high-fat diet and housed at thermoneutrality. Rosiglitazone and MSDC-0160 caused the classically-described thiazolidinedione effects of increased fat mass,hyperphagia, and increased UCP1 levels in brown adipose tissue. MSDC-0602 and rosiglitazoneimproved glucose tolerance but MSDC-0602 did not induce increased fat mass, hyperphagia, orincreased UCP1 levels in brown fat. The beneficial effects of thiazolidinediones were fullypresent even in UCP1-KO mice, providing evidence for a dissociation between thiazolidinedioneinducedadipose tissue browning and their antidiabetic effects. We conclude that even structurallysimilar thiazolidinediones can act through distinct pathways, and that the glucose-loweringeffects of this class do not seem to rely on PPAR-γ-induced browning of adipose tissues.

  • 4. Alvarez-Crespo, Mayte
    et al.
    Csikasz, Robert I.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Martinez-Sanchez, Noelia
    Dieguez, Carlos
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Lopez, Miguel
    Essential role of UCP1 modulating the central effects of thyroid hormones on energy balance2016In: Molecular metabolism, ISSN 2212-8778, Vol. 5, no 4, p. 271-282Article in journal (Refereed)
    Abstract [en]

    Objective: Classically, metabolic effects of thyroid hormones (THs) have been considered to be peripherally mediated, i.e. different tissues in the body respond directly to thyroid hormones with an increased metabolism. An alternative view is that the metabolic effects are centrally regulated. We have examined here the degree to which prolonged, centrally infused triiodothyronine (T3) could in itself induce total body metabolic effects and the degree to which brown adipose tissue (BAT) thermogenesis was essential for such effects, by examining uncoupling protein 1 (UCP1) KO mice. Methods: Wildtype and UPC1 KO mice were centrally-treated with T3 by using minipumps. Metabolic measurements were analyzed by indirect calorimetry and expression analysis by RT-PCR or western blot. BAT morphology and histology were studied by immunohistochemistry. Results: We found that central T3-treatment led to reduced levels of hypothalamic AMP-activated protein kinase (AMPK) and elevated body temperature (0.7 degrees C). UCP1 was essential for the T3-induced increased rate of energy expenditure, which was only observable at thermoneutrality and notably only during the active phase, for the increased body weight loss, for the increased hypothalamic levels of neuropeptide Y (NPY) and agouti-related peptide (AgRP) and for the increased food intake induced by central T3-treatment. Prolonged central T3-treatment also led to recruitment of BAT and britening/beiging (browning) of inguinal white adipose tissue (iWAT). Conclusions: We conclude that UCP1 is essential for mediation of the central effects of thyroid hormones on energy balance, and we suggest that similar UCP1-dependent effects may underlie central energy balance effects of other agents.

  • 5.
    Cannon, Barbara
    et al.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, The Wenner-Gren Institute.
    Cell biology: Neither brown nor white.2012In: Nature, ISSN 1476-4687, Vol. 488, no 7411, p. 286-287Article in journal (Refereed)
  • 6.
    Cannon, Barbara
    et al.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    Metabolic and angiogenic consequences of the presence or absence of UCP12010In: Research and Perspectives in Endocrine Interactions, p. 111-120Article in journal (Refereed)
    Abstract [en]

    Adaptive adrenergic thermogenesis – both the form that develops subsequent to cold acclimation and the form that develops subsequent to a palatable diet challenge – is entirely dependent on the presence and activity of the brown fat uncoupling protein, UCP1. In a cold environment, the absence of UCP1 can be compensated by alternative means, such as shivering or exercise. Upon a challenge with a palatable diet, similar alternatives are not available, and mice become obese in the absence of UCP1. The recent identification of active brown fat in adult humans raises questions as to its role in protection from obesity and in a potential therapeutic context.

  • 7.
    Cannon, Barbara
    et al.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    Metabolic consequences of the presence or absence of the thermogenic capacity of brown adipose tissue in mice (and probably in humans)2010In: International Journal of Obesity, ISSN 0307-0565, E-ISSN 1476-5497, Vol. 34, no 1, p. S7-S16Article in journal (Refereed)
    Abstract [en]

    Only with the development of the uncoupling protein 1 (UCP1)-ablated mouse has it become possible to strictly delineate the physiological significance of the thermogenic capacity of brown adipose tissue. Considering the presence of active brown adipose tissue in adult humans, these insights may have direct human implications. In addition to classical nonshivering thermogenesis, all adaptive adrenergic thermogeneses, including diet-induced thermogenesis, is fully dependent on brown adipocyte activity. Any weight-reducing effect of β(3)-adrenergic agonists is fully dependent on UCP1 activity, as is any weight-reducing effect of leptin (in excess of its effect on reduction of food intake). Consequently, in the absence of the thermogenic activity of brown adipose tissue, obesity develops spontaneously. The ability of brown adipose tissue to contribute to glucose disposal is also mainly related to thermogenic activity. However, basal metabolic rate, cold-induced thermogenesis, acute cold tolerance, fevers, nonadaptive adrenergic thermogenesis and processes such as angiogenesis in brown adipose tissue itself are not dependent on UCP1 activity. Whereas it is likely that these conclusions are also qualitatively valid for adult humans, the quantitative significance of brown adipose tissue for human metabolism--and the metabolic consequences for a single individual possessing more or less brown adipose tissue--awaits clarification.

  • 8.
    Cannon, Barbara
    et al.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Nedergaard, Jan
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Nonshivering thermogenesis and its adequate measurement in metabolic studies2011In: Journal of Experimental Biology, ISSN 0022-0949, E-ISSN 1477-9145, Vol. 214, no Pt 2, p. 242-53Article in journal (Refereed)
    Abstract [en]

    Alterations in nonshivering thermogenesis are presently discussed as being both potentially causative of and able to counteract obesity. However, the necessity for mammals to defend their body temperature means that the ambient temperature profoundly affects the outcome and interpretation of metabolic experiments. An adequate understanding and assessment of nonshivering thermogenesis is therefore paramount for metabolic studies. Classical nonshivering thermogenesis is facultative, i.e. it is only activated when an animal acutely requires extra heat (switched on in minutes), and adaptive, i.e. it takes weeks for an increase in capacity to develop. Nonshivering thermogenesis is fully due to brown adipose tissue activity; adaptation corresponds to the recruitment of this tissue. Diet-induced thermogenesis is probably also facultative and adaptive and due to brown adipose tissue activity. Although all mammals respond to injected/infused norepinephrine (noradrenaline) with an increase in metabolism, in non-adapted mammals this increase mainly represents the response of organs not involved in nonshivering thermogenesis; only the increase after adaptation represents nonshivering thermogenesis. Thermogenesis (metabolism) should be expressed per animal, and not per body mass [not even to any power (0.75 or 0.66)]. A 'cold tolerance test' does not examine nonshivering thermogenesis capacity; rather it tests shivering capacity and endurance. For mice, normal animal house temperatures are markedly below thermoneutrality, and the mice therefore have a metabolic rate and food consumption about 1.5 times higher than their intrinsic requirements. Housing and examining mice at normal house temperatures carries a high risk of identifying false positives for intrinsic metabolic changes; in particular, mutations/treatments that affect the animal's insulation (fur, skin) may lead to such problems. Correspondingly, true alterations in intrinsic metabolic rate remain undetected when metabolism is examined at temperatures below thermoneutrality. Thus, experiments with animals kept and examined at thermoneutrality are likely to yield an improved possibility of identifying agents and genes important for human energy balance.

  • 9.
    Cannon, Barbara
    et al.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    Thermogenesis challenges the adipostat hypothesis for body-weight control.2009In: Proceedings of the Nutrition Society, ISSN 0029-6651, E-ISSN 1475-2719, Vol. 68, no 4, p. 401-7Article in journal (Refereed)
    Abstract [en]

    According to the adipostat hypothesis for body-weight control, alterations in body weight should always be compensated by adequate alterations in food intake and thermogenesis. Thus, increased thermogenesis should not be able to counteract obesity because food intake would be increased. However evidence is presented here that thermogenesis in different forms (through artificial uncouplers, exercise, cold exposure) may counteract obesity and is not always fully compensated by increased food intake. Correspondingly, a decreased capacity for metaboloregulatory thermogenesis (i.e. non-functional brown adipose tissue) may in itself lead to obesity. This is evident in mice and may be valid for human subjects, as a substantial proportion of adults possess brown adipose tissue, and those with less or without brown adipose tissue would seem to be more prone to obesity. Thus, increased thermogenesis may counteract obesity, without dietary intervention.

  • 10.
    Cannon, Barbara
    et al.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    Thyroid hormones: igniting brown fat via the brain.2010In: Nature medicine, ISSN 1546-170X, Vol. 16, no 9, p. 965-7Article in journal (Refereed)
  • 11.
    Cannon, Barbara
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    What Ignites UCP1?2017In: Cell Metabolism, ISSN 1550-4131, E-ISSN 1932-7420, Vol. 26, no 5, p. 697-698Article in journal (Refereed)
    Abstract [en]

    We thought we knew how the heat-producing uncoupling protein 1 in brown adipose tissue was activated: by fatty acids released upon lipid droplet breakdown in the brown adipocytes. However, two studies in this issue (Schreiber et al., 2017; Shin et al., 2017) imply that this classical model may not be valid: heat can be produced in brown fat without intracellular lipolysis.

  • 12.
    Cannon, Barbara
    et al.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, The Wenner-Gren Institute.
    Yes, even human brown fat is on fire!2012In: Journal of Clinical Investigation, ISSN 0021-9738, E-ISSN 1558-8238, Vol. 122, no 2, p. 486-489Article in journal (Refereed)
    Abstract [en]

    That adult humans possess brown fat is now accepted - but is the brown fat metabolically active? Does human brown fat actually combust fat to release heat? In this issue of the JCI, Ouellet et al. demonstrate that metabolism in brown fat really is increased when adult humans are exposed to cold. This boosts the possibility that calorie combustion in brown fat may be of significance for our metabolism and, correspondingly, that the absence of brown fat may increase our proneness to obesity - provided that brown fat becomes activated not only by cold but also through food-related stimuli.

  • 13.
    de Jong, Jasper
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    In primary brown adipose cultures, fetal and newborn bovine sera differently affect triglyceride storage and thermocompetenceManuscript (preprint) (Other academic)
  • 14.
    de Jong, Jasper
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Dethlefsen, Olga
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Utilization of fetal and newborn serum to uncover novel regulators of subcutaneous adipocyte differentiationManuscript (preprint) (Other academic)
  • 15.
    de Jong, Jasper
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Fischer, Alexander
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. University Medical Center Hamburg-Eppendorf, Germany.
    von Essen, Gabriella
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Petrovic, Natasa
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Brown adipose tissue in physiologically humanized mice phenocopies human brown fatManuscript (preprint) (Other academic)
  • 16.
    de Jong, Jasper M. A.
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Promotion of lipid storage rather than of thermogenic competence by fetal versus newborn calf serum in primary cultures of brown adipocytes2018In: Adipocyte, ISSN 2162-3945, E-ISSN 2162-397X, Vol. 7, no 3, p. 166-179Article in journal (Refereed)
    Abstract [en]

    Much current understanding of brown adipocyte development comes from in-vitro cell models. Serum type may affect the behavior of cultured cells and thus conclusions drawn. Here, we investigate effects of serum type (fetal bovine versus newborn calf) on responses to differentiation inducers (the PPAR agonist rosiglitazone or the neurotransmitter norepinephrine) in cultured primary brown adipocytes. Lipid storage was enhanced by fetal versus newborn serum. However, molecular adipose conversion (Pparg2 and Fabp4 expression) was not affected by serum type. Rosiglitazone-induced (7-days) expression of thermogenic genes (i.e. Ucp1, Pgc1a, Dio2 and Elovl3) was not systematically affected by serum type. However, importantly, acute (2h) norepinephrine-induced thermogenic gene expression was overall markedly higher (and adipose genes somewhat lower) in cells cultured in newborn serum. Thus, newborn serum promotes thermogenic competence, and the use of fetal serum in brown adipocyte cultures (as is often routine) counteracts adequate differentiation. Agents that counteract this inhibition may therefore confoundingly be ascribed genuine thermogenic competence-inducing properties.

  • 17.
    de Jong, Jasper M. A.
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Larsson, Ola
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    A stringent validation of mouse adipose tissue identity markers2015In: American Journal of Physiology. Endocrinology and Metabolism, ISSN 0193-1849, E-ISSN 1522-1555, Vol. 308, no 12, p. E1085-E1105Article in journal (Refereed)
    Abstract [en]

    The nature of brown adipose tissue in humans is presently debated: whether it is classical brown or of brite/beige nature. The dissimilar developmental origins and proposed distinct functions of the brown and brite/beige tissues make it essential to ascertain the identity of human depots with the perspective of recruiting and activating them for the treatment of obesity and type 2 diabetes. For identification of the tissues, a number of marker genes have been proposed, but the validity of the markers has not been well documented. We used established brown (interscapular), brite (inguinal), and white (epididymal) mouse adipose tissues and corresponding primary cell cultures as validators and examined the informative value of a series of suggested markers earlier used in the discussion considering the nature of human brown adipose tissue. Most of these markers unexpectedly turned out to be noninformative concerning tissue classification (Car4, Cited1, Ebf3, Eva1, Fbxo31, Fgf21, Lhx8, Hoxc8, and Hoxc9). Only Zic1 (brown), Cd137, Epsti1, Tbx1, Tmem26 (brite), and Tcf21 (white) proved to be informative in these three tissues. However, the expression of the brite markers was not maintained in cell culture. In a more extensive set of adipose depots, these validated markers provide new information about depot identity. Principal component analysis supported our single-gene conclusions. Furthermore, Zic1, Hoxc8, Hoxc9, and Tcf21 displayed anteroposterior expression patterns, indicating a relationship between anatomic localization and adipose tissue identity (and possibly function). Together, the observed expression patterns of these validated marker genes necessitates reconsideration of adipose depot identity in mice and humans.

  • 18.
    de Jong, Jasper M. A.
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Wouters, René T. F.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Boulet, Nathalie
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Petrovic, Natasa
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    The β3-adrenergic receptor is dispensable for browning of adipose tissues2017In: American Journal of Physiology. Endocrinology and Metabolism, ISSN 0193-1849, E-ISSN 1522-1555, Vol. 312, no 6, p. E508-E518Article in journal (Refereed)
    Abstract [en]

    Brown and brite/beige adipocytes are attractive therapeutic targets to treat metabolic diseases. To maximally utilize their functional potential, further understanding is required about their identities and their functional differences. Recent studies with β3-adrenergic receptor knockout mice reported that brite/beige adipocytes, but not classical brown adipocytes, require the β3-adrenergic receptor for cold-induced transcriptional activation of thermogenic genes. We aimed to further characterize this requirement of the β3-adrenergic receptor as a functional distinction between classical brown and brite/beige adipocytes. However, when comparing wild-type and β3-adrenergic receptor knockout mice, we observed no differences in cold-induced thermogenic gene expression (Ucp1, Pgc1a, Dio2 and Cidea) in brown or white (brite/beige) adipose tissues. Irrespective of the duration of the cold exposure or the sex of the mice, we observed no effect of the absence of the β3-adrenergic receptor. Experiments with the β3-adrenergic receptor agonist CL-316,243 verified the functional absence of β3-adrenergic signaling in these knockout mice. The β3-adrenergic receptor knockout model in the present study was maintained on a FVB/N background, whereas earlier reports used C57BL/6 and 129Sv mice. Thus, our data imply background-dependent differences in adrenergic signaling mechanisms in response to cold exposure. Nonetheless, the present data indicate that the β3-adrenergic receptor is dispensable for cold-induced transcriptional activation in both classical brown and, as opposed to earlier studies, brite/beige cells. This should be taken into account in the increasing number of studies on the induction of browning and their extrapolation to human physiology.

  • 19. Edgar, Daniel
    et al.
    Shabalina, Irina
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    Camara, Yolanda
    Wredenberg, Anna
    Calvaruso, Maria Antonietta
    Nijtmans, Leo
    Nedergaard, Jan
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    Cannon, Barbara
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    Larsson, Nils-Göran
    Trifunovic, Aleksandra
    Random point mutations with major effects on protein-coding genes are the driving force behind premature aging in mtDNA mutator mice.2009In: Cell metabolism, ISSN 1932-7420, Vol. 10, no 2, p. 131-8Article in journal (Refereed)
    Abstract [en]

    The mtDNA mutator mice have high levels of point mutations and linear deletions of mtDNA causing a progressive respiratory chain dysfunction and a premature aging phenotype. We have now performed molecular analyses to determine the mechanism whereby these mtDNA mutations impair respiratory chain function. We report that mitochondrial protein synthesis is unimpaired in mtDNA mutator mice consistent with the observed minor alterations of steady-state levels of mitochondrial transcripts. These findings refute recent claims that circular mtDNA molecules with large deletions are driving the premature aging phenotype. We further show that the stability of several respiratory chain complexes is severely impaired despite normal synthesis of the corresponding mtDNA-encoded subunits. Our findings reveal a mechanism for induction of aging phenotypes by demonstrating a causative role for amino acid substitutions in mtDNA-encoded respiratory chain subunits, which, in turn, leads to decreased stability of the respiratory chain complexes and respiratory chain deficiency.

  • 20.
    Feldmann, Helena M
    et al.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    Golozoubova, Valeria
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Cannon, Barbara
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality.2009In: Cell metabolism, ISSN 1932-7420, Vol. 9, no 2, p. 203-9Article in journal (Refereed)
    Abstract [en]

    As original studies of UCP1-ablated mice failed to demonstrate an obesogenic effect, alternative mechanisms for adaptive adrenergic thermogenesis have been sought. However, we demonstrate here that in C57Bl6 mice exempt from thermal stress (i.e., kept at thermoneutrality), UCP1 ablation in itself induced obesity, even in mice fed control diet, and vastly augmented diet-induced obesity (high-fat diet); i.e., the mice exhibited increased metabolic efficiency. In wild-type mice, high-fat diet increased norepinephrine-induced thermogenesis; i.e., diet-induced thermogenesis was observed, but no such effect was observed in UCP1-ablated mice, demonstrating that diet-induced thermogenesis fully emanates from UCP1 activity. We conclude that ambient temperature is qualitatively determinative for the outcome of metabolic studies, that no other protein and no other mechanism can substitute for UCP1 in mediating diet-induced adrenergic thermogenesis, and that UCP1 activity can be determinative for obesity development in mice and possibly in humans.

  • 21.
    Fischer, Alexander W.
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. University Medical Center Hamburg-Eppendorf, Germany.
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Optimal housing temperatures for mice to mimic the thermal environment of humans: An experimental study2018In: Molecular metabolism, ISSN 2212-8778, Vol. 7, p. 161-170Article in journal (Refereed)
    Abstract [en]

    Objectives: The laboratory mouse is presently the most common model for examining mechanisms of human physiology and disease. Housing temperatures can have a large impact on the outcome of such experiments and on their translatability to the human situation. Humans usually create for themselves a thermoneutral environment without cold stress, while laboratory mice under standard conditions (approximate to 20 degrees C) are under constant cold stress. In a well-cited, theoretical paper by Speakman and Keijer in Molecular Metabolism, it was argued that housing mice under close to standard conditions is the optimal way of modeling the human metabolic situation. This tenet was mainly based on the observation that humans usually display average metabolic rates of about 1.6 times basal metabolic rate. The extra heat thereby produced would also be expected to lead to a shift in the 'lower critical temperature' towards lower temperatures.

    Methods: To examine these tenets experimentally, we performed high time-resolution indirect calorimetry at different environmental temperatures on mice acclimated to different housing temperatures.

    Results: Based on the high time-resolution calorimetry analysis, we found that mice already under thermoneutral conditions display mean diurnal energy expenditure rates 1.8 times higher than basal metabolism, remarkably closely resembling the human situation. At any temperature below thermoneutrality, mice metabolism therefore exceeds the human equivalent: Mice under standard conditions display energy expenditure 3.1 times basal metabolism. The discrepancy to previous conclusions is probably attributable to earlier limitations in establishing true mouse basal metabolic rate, due to low time resolution. We also found that the fact that mean energy expenditure exceeds resting metabolic rate does not move the apparent thermoneutral zone (the lower critical temperature) downwards.

    Conclusions: We show that housing mice at thermoneutrality is an advantageous step towards aligning mouse energy metabolism to human energy metabolism.

  • 22.
    Fischer, Alexander W.
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. University Medical Center Hamburg-Eppendorf, Germany.
    Csikasz, Robert I.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    von Essen, Gabriella
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    No insulating effect of obesity2016In: American Journal of Physiology. Endocrinology and Metabolism, ISSN 0193-1849, E-ISSN 1522-1555, Vol. 311, no 1, p. e202-e213Article in journal (Refereed)
    Abstract [en]

    The development of obesity may be aggravated if obesity itself insulates against heat loss and thus diminishes the amount of food burnt for body temperature control. This would be particularly important under normal laboratory conditions where mice experience a chronic cold stress (at approximate to 20 degrees C). We used Scholander plots (energy expenditure plotted against ambient temperature) to examine the insulation (thermal conductance) of mice, defined as the inverse of the slope of the Scholander curve at subthermoneutral temperatures. We verified the method by demonstrating that shaved mice possessed only half the insulation of non-shaved mice. We examined a series of obesity models [mice fed high-fat diets and kept at different temperatures, classical diet-induced obese mice, ob/ob mice, and obesity-prone (C57BL/6) vs. obesity-resistant (129S)mice]. We found that neither acclimation temperature nor any kind or degree of obesity affected the thermal insulation of the mice when analyzed at the whole mouse level or as energy expenditure per lean weight. Calculation per body weight erroneously implied increased insulation in obese mice. We conclude that, in contrast to what would be expected, obesity of any kind does not increase thermal insulation in mice, and therefore, it does not in itself aggravate the development of obesity. It may be discussed as to what degree of effect excess adipose tissue has on insulation in humans and especially whether significant metabolic effects are associated with insulation in humans.

  • 23.
    Fischer, Alexander W.
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. University Medical Center Hamburg-Eppendorf, Germany.
    Csikasz, Robert I.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    von Essen, Gabriella
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Reply to letter to the editor: at thermoneutrality, neither the lean nor the obese freeze2016In: American Journal of Physiology. Endocrinology and Metabolism, ISSN 0193-1849, E-ISSN 1522-1555, Vol. 311, no 3, p. E639-E639Article in journal (Refereed)
  • 24.
    Fischer, Alexander W.
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. University Medical Center Hamburg-Eppendorf, Germany.
    Hoefig, Carolin S.
    Abreu-Vieira, Gustavo
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    de Jong, Jasper M. A.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Petrovic, Natasa
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Mittag, Jens
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Leptin Raises Defended Body Temperature without Activating Thermogenesis2016In: Cell reports, ISSN 2211-1247, E-ISSN 2211-1247, Vol. 14, no 7, p. 1621-1631Article in journal (Refereed)
    Abstract [en]

    Leptin has been believed to exert its weight-reducing action not only by inducing hypophagia but also by increasing energy expenditure/thermogenesis. Leptin-deficient ob/ob mice have correspondingly been thought to be thermogenically limited and to show hypothermia, mainly due to atrophied brown adipose tissue (BAT). In contrast to these established views, we found that BAT is fully functional and that leptin treatment did not increase thermogenesis in wildtype or in ob/ob mice. Rather, ob/ob mice showed a decreased but defended body temperature (i. e., were anapyrexic, not hypothermic) that was normalized to wild-type levels after leptin treatment. This was not accompanied by increased energy expenditure or BAT recruitment but, instead, was mediated by decreased tail heat loss. The weight-reducing hypophagic effects of leptin are, therefore, not augmented through a thermogenic effect of leptin; leptin is, however, pyrexic, i. e., it alters centrally regulated thresholds of thermoregulatory mechanisms, in parallel to effects of other cytokines.

  • 25.
    Fischer, Alexander W.
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. University Medical Center Hamburg-Eppendorf, Germany.
    Shabalina, Irina G.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Mattsson, Charlotte L.
    Abreu-Vieira, Gustavo
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Petrovic, Natasa
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    UCP1 inhibition in Cidea-overexpressing mice is physiologically counteracted by brown adipose tissue hyperrecruitment2017In: American Journal of Physiology. Endocrinology and Metabolism, ISSN 0193-1849, E-ISSN 1522-1555, Vol. 312, no 1, p. e72-E87Article in journal (Refereed)
    Abstract [en]

    Cidea is a gene highly expressed in thermogenesis- competent (UCP1-containing) adipose cells, both brown and brite/beige. Here, we initially demonstrate a remarkable adipose-depot specific regulation of Cidea expression. In classical brown fat, Cidea mRNA is expressed continuously and invariably, irrespective of tissue recruitment. However, Cidea protein levels are regulated posttranscriptionally, being conspicuously induced in the thermogenically recruited state. In contrast, in brite fat, Cidea protein levels are regulated at the transcriptional level, and Cidea mRNA and protein levels are proportional to tissue briteness. Although routinely followed as a thermogenic molecular marker, Cidea function is not clarified. Here, we employed a gain-of-function approach to examine a possible role of Cidea in the regulation of thermogenesis. We utilized transgenic aP2-hCidea mice that overexpress human Cidea in all adipose tissues. We demonstrate that UCP1 activity is markedly suppressed in brown-fat mitochondria isolated from aP2-hCidea mice. However, mitochondrial UCP1 protein levels were identical in wildtype and transgenic mice. This implies a regulatory effect of Cidea on UCP1 activity, but as we demonstrate that Cidea itself is not localized to mitochondria, we propose an indirect inhibitory effect. The Cidea-induced inhibition of UCP1 activity (observed in isolated mitochondria) is physiologically relevant since the mice, through an appropriate homeostatic compensatory mechanism, increased the total amount of UCP1 in the tissue to exactly match the diminished thermogenic capacity of the UCP1 protein and retain unaltered nonshivering thermogenic capacity. Thus, we verified Cidea as being a marker of thermogenesis-competent adipose tissues, but we conclude that Cidea, unexpectedly, functions molecularly as an indirect inhibitor of thermogenesis.

  • 26. Fischer, Katrin
    et al.
    Ruiz, Henry H.
    Jhun, Kevin
    Finan, Brian
    Oberlin, Douglas J.
    van der Heide, Verena
    Kalinovich, Anastasia V.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Petrovic, Natasa
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Wolf, Yochai
    Clemmensen, Christoffer
    Shin, Andrew C.
    Divanovic, Senad
    Brombacher, Frank
    Glasmacher, Elke
    Keipert, Susanne
    Jastroch, Martin
    Nagler, Joachim
    Schramm, Karl-Werner
    Medrikova, Dasa
    Collden, Gustav
    Woods, Stephen C.
    Herzig, Stephan
    Homann, Dirk
    Jung, Steffen
    Nedergaard, Jan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Tschoep, Matthias H.
    Mueller, Timo D.
    Buettner, Christoph
    Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis2017In: Nature Medicine, ISSN 1078-8956, E-ISSN 1546-170X, Vol. 23, no 5, p. 623-630Article in journal (Refereed)
    Abstract [en]

    Adaptive thermogenesis is the process of heat generation in response to cold stimulation. It is under the control of the sympathetic nervous system, whose chief effector is the catecholamine norepinephrine (NE). NE enhances thermogenesis through beta 3-adrenergic receptors to activate brown adipose tissue and by 'browning' white adipose tissue. Recent studies have reported that alternative activation of macrophages in response to interleukin (IL)-4 stimulation induces the expression of tyrosine hydroxylase (TH), a key enzyme in the catecholamine synthesis pathway, and that this activation provides an alternative source of locally produced catecholamines during the thermogenic process. Here we report that the deletion of Th in hematopoietic cells of adult mice neither alters energy expenditure upon cold exposure nor reduces browning in inguinal adipose tissue. Bone marrow-derived macrophages did not release NE in response to stimulation with IL-4, and conditioned media from IL-4-stimulated macrophages failed to induce expression of thermogenic genes, such as uncoupling protein 1 (Ucp1), in adipocytes cultured with the conditioned media. Furthermore, chronic treatment with IL-4 failed to increase energy expenditure in wild-type, Ucp1(-/-) and interleukin-4 receptor-alpha double-negative (Il4ra(-/-)) mice. In agreement with these findings, adipose-tissue-resident macrophages did not express TH. Thus, we conclude that alternatively activated macrophages do not synthesize relevant amounts of catecholamines, and hence, are not likely to have a direct role in adipocyte metabolism or adaptive thermogenesis.

  • 27. Gburcik, Valentina
    et al.
    Cawthorn, William P.
    Nedergaard, Jan
    Timmons, James A.
    Cannon, Barbara
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    An essential role for Tbx15 in the differentiation of brown and "brite" but not white adipocytes2012In: American Journal of Physiology. Endocrinology and Metabolism, ISSN 0193-1849, E-ISSN 1522-1555, Vol. 303, no 8, p. e1053-E1060Article in journal (Refereed)
    Abstract [en]

    The transcription factor Tbx15 is expressed predominantly in brown adipose tissue and in those white adipose depots that are capable of giving rise to brown-in-white ("brite"/"beige") adipocytes. Therefore, we have investigated a possible role here of Tbx15 in brown and brite adipocyte differentiation in vitro. Adipocyte precursors were isolated from interscapular and axilliary brown adipose tissues, inguinal white ("brite") adipose tissue, and epididymal white adipose tissue in 129/Sv mouse pups and differentiated in culture. Differentiation was enhanced by chronic treatment with the PPAR gamma agonist rosiglitazone plus the sympathetic neurotransmitter norepinephrine. Using short interfering RNAs (siRNA) directed toward Tbx15 in these primary adipocyte cultures, we decreased Tbx15 expression >90%. This resulted in reduced expression levels of adipogenesis markers (PPAR gamma, aP2). Importantly, Tbx15 knockdown reduced the expression of brown phenotypic marker genes (PRDM16, PGC-1 alpha, Cox8b/Cox4, UCP1) in brown adipocytes and even more markedly in inguinal white adipocytes. In contrast, Tbx15 knockdown had no effect on white adipocytes originating from a depot that is not brite competent in vivo (epididymal). Therefore, Tbx15 may be essential for the development of the adipogenic and thermogenic programs in adipocytes/adipomyocytes capable of developing brown adipocyte features.

  • 28.
    Hansen, Ida
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Effects of differentiation on gene expression of certain brown adipocyte-secreted factorsManuscript (preprint) (Other academic)
    Abstract [en]

    The possibility that brown adipose tissue can secrete factors to affect overall metabolism is a subject that attracts attention. Previous studies from our laboratory suggest that chemerin and collagen type III a1 (Col3a1) could be interesting factors secreted from brown adipose tissue.

    To evaluate chemerin and Col3a1 gene expression regulation, primary brown adipocyte cultures were stimulated with norepinephrine at different stages of differentiation. The present study shows that there was an effect of differentiation on gene expression of these factors but there was no effect of norepinephrine treatment.

    There has been a suggestion that different adenylate cyclases are responsible for regulating gene expression in brown adipocytes. However, neither differentiation nor norepinephrine treatment affected adenylate cyclase gene expression dramatically.

    The results suggest that norepinephrine is not the main regulator of gene expression of either of the two possible brown adipocyte-secreted factors, chemerin and Col3a1. Surprisingly, norepinephrine had no major effect on adenylate cyclase expression at any stage of differentiation.

  • 29.
    Hansen, Ida
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Jansson, Kim
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Contrasting effects of cold acclimation versus obesogenic diets onchemerin gene expression in brown and brite adipose tissuesManuscript (preprint) (Other academic)
    Abstract [en]

    Based on results from a signal sequence trap, we investigated chemerin gene expression in brown adipose tissue. Male NMRI mice were exposed to 30, 22 or 4 °C for 3 weeks, or were fed control (chow) diet, cafeteria diet or high-fat diet at thermoneutrality for the same time. In brown adipose tissue, cold acclimation strongly diminished chemerin gene expression, whereas obesogenic diets augmented expression. Qualitatively, changes in expression were paralleled in brite/beige adipose tissues (e.g. inguinal), whereas white adipose tissue (epididymal) did not react to these cues. Changes in tissue expression were not paralleled by alterations in plasma levels. The cellular regulation was not congruent with a sympathetic/adrenergic control of expression. The data are discussed in relation to suggested endocrine, paracrine and autocrine effects of this adipokine.

  • 30.
    Hansen, Ida
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Jansson, Kim
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Physiological effects on gene expression of some brown adipose tissue secreted factorsManuscript (preprint) (Other academic)
    Abstract [en]

    Background: To investigate the role of brown adipose tissue as a secretory organ, a signal-sequence trap and microarray study were performed. Results indicated that adrenomedullin, collagen type 3 a1, lipocalin 2 and Niemann Pick type C 2 could be possible brown adipocyte-secreted proteins.

    Method: To investigate the physiological regulation of the gene expression of the adrenomedullin, collagen 3 a1, lipocalin 2 and Niemann Pick type C2 in brown adipose tissue, the following study was performed. Mice were exposed to cold or different high-caloric diets (high-fat diet and cafeteria diet) for three weeks and qPCR studies were performed of the genes of interest.

    Results & Conclusion: The study indicates that cold acclimation significantly suppressed gene expression of adrenomedullin, collagen type 3a and lipocalin 2 (P < 0.05). There was also an effect of the different diets but the results were not cohesive between the two high-caloric diets. However, none of the expression patterns between the cold-acclimated mice or the diet studies overlapped, suggesting that norepinephrine is not the key regulator of the gene expression of any of the investigated genes

  • 31.
    Hansen, Ida
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Ohgiya, Satoru
    National Institute of Advanced Industrial Science and Technology, Sapporo, Hokkaido, Japan.
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    A partial secretome of brown adipose tissueManuscript (preprint) (Other academic)
    Abstract [en]

    To identify brown adipocyte secreted proteins a signal-sequence trap method was used. All genes identified were cloned and studied with microarray technique.

    The aim of this study was to evaluate how these genes were influenced under different physiological conditions, both

    in vivo and in vitro. Microarray studies were performed comparing primary brown adipocytes stimulated with norepinephrine to non-stimulated, and primary brown adipocytes compared to primary white adipocytes. In vivo studies were performed to evaluate physiological effects on gene expression in brown adipose tissue. Male NMRI mice were placed in cold or at thermoneutrality for 3 weeks and compared. Mice kept at room temperature were exposed to cafeteria diet for three weeks compared to regular diet.

    Results show that norepinephrine had effects on the expression of these potentially secreted genes. However, gene expression from physiological studies

    in vivo that could be expected to show similar expression patterns as norepinephrine-treated brown adipocytes did not do so. This indicates that other factors than norepinephrine can regulate gene expression of possible brown adipose tissue-secreted factors.

  • 32.
    Hansen, Ida R.
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Jansson, Kim M.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Contrasting effects of cold acclimation versus obesogenic diets on chemerin gene expression in brown and brite adipose tissues2014In: Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, ISSN 1388-1981, E-ISSN 1879-2618, Vol. 1841, no 12, p. 1691-1699Article in journal (Refereed)
    Abstract [en]

    Based on results from a signal sequence trap, we investigated chemerin gene expression in brown adipose tissue. Male NMRI mice were exposed to 30, 22 or 4 degrees C for 3 weeks, or were fed control (chow) diet, cafeteria diet or high-fat diet at thermoneutrality for the same time. In brown adipose tissue, cold acclimation strongly diminished chemerin gene expression, whereas obesogenic diets augmented expression. Qualitatively, changes in expression were paralleled in brite/beige adipose tissues (e.g. inguinal), whereas white adipose tissue (epididymal) and muscle did not react to these cues. Changes in tissue expression were not directly paralleled by alterations in plasma levels. Both these intact animal studies and brown adipocyte cell culture studies indicated that the gene expression regulation was not congruent with a sympathetic/adrenergic control. The data are discussed in relation to suggested endocrine, paracrine and autocrine effects of chemerin.

  • 33. Isidor, Marie S.
    et al.
    Winther, Sally
    Basse, Astrid L.
    Petersen, M. Christine H.
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Hansen, Jacob B.
    An siRNA-based method for efficient silencing of gene expression in mature brown adipocytes2016In: Adipocyte, ISSN 2162-3945, E-ISSN 2162-397X, Vol. 5, no 2, p. 175-185Article in journal (Refereed)
    Abstract [en]

    Brown adipose tissue is a promising therapeutic target for opposing obesity, glucose intolerance and insulin resistance. The ability to modulate gene expression in mature brown adipocytes is important to understand brown adipocyte function and delineate novel regulatory mechanisms of non-shivering thermogenesis. The aim of this study was to optimize a lipofection-based small interfering RNA (siRNA) transfection protocol for efficient silencing of gene expression in mature brown adipocytes. We determined that a critical parameter was to deliver the siRNA to mature adipocytes by reverse transfection, i.e. transfection of non-adherent cells. Using this protocol, we effectively knocked down both high-and low-abundance transcripts in a model of mature brown adipocytes (WT-1) as well as in primary mature mouse brown adipocytes. A functional consequence of the knockdown was confirmed by an attenuated increase in uncoupled respiration (thermogenesis) in response to beta-adrenergic stimulation of mature WT-1 brown adipocytes transfected with uncoupling protein 1 siRNA. Efficient gene silencing was also obtained in various mouse and human white adipocyte models (3T3-L1, primary mouse white adipocytes, hMADS) with the ability to undergo browning. In summary, we report an easy and versatile reverse siRNA transfection protocol to achieve specific silencing of gene expression in various models of mature brown and browning-competent white adipocytes, including primary cells.

  • 34.
    Kalinovich, Anastasia V.
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    de Jong, Jasper M. A.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    UCP1 in adipose tissues: two steps to full browning2017In: Biochimie, ISSN 0300-9084, E-ISSN 1638-6183, Vol. 134, p. 127-137Article in journal (Refereed)
    Abstract [en]

    The possibility that brown adipose tissue thermogenesis can be recruited in order to combat the development of obesity has led to a high interest in the identification of "browning agents", i.e. agents that increase the amount and activity of UCP1 in brown and brite/beige adipose tissues. However, functional analysis of the browning process yields confusingly different results when the analysis is performed in one of two alternative steps. Thus, in one of the steps, using cold acclimation as a potent model browning agent, we find that if the browning process is followed in mice initially housed at 21 °C (the most common procedure), there is only weak molecular evidence for increases in UCP1 gene expression or UCP1 protein abundance in classical brown adipose tissue; however, in brite/beige adipose depots, there are large increases, apparently associating functional browning with events only in the brite/beige tissues. Contrastingly, in another step, if the process is followed starting with mice initially housed at 30 °C (thermoneutrality for mice, thus similar to normal human conditions), large increases in UCP1 gene expression and UCP1 protein abundance are observed in the classical brown adipose tissue depots; there is then practically no observable UCP1 gene expression in brite/beige tissues. This apparent conundrum can be resolved when it is realized that the classical brown adipose tissue at 21 °C is already essentially fully differentiated and thus expands extensively through proliferation upon further browning induction, rather than by further enhancing cellular differentiation. When the limiting factor for thermogenesis, i.e. the total amount of UCP1 protein per depot, is analyzed, classical brown adipose tissue is by far the predominant site for the browning process, irrespective of which of the two steps is analyzed. There are to date no published data demonstrating that alternative browning agents would selectively promote brite/beige tissues versus classical brown tissue to a higher degree than does cold acclimation. Thus, to restrict investigations to examine adipose tissue depots where only a limited part of the adaptation process occurs (i.e. the brite/beige tissues) and to use initial conditions different from the thermoneutrality normally experienced by adult humans may seriously hamper the identification of therapeutically valid browning agents. The data presented here have therefore important implications for the analysis of the potential of browning agents and the nature of human brown adipose tissue.

  • 35. Keller, Pernille
    et al.
    Gburcik, Valentina
    Petrovic, Natasa
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    Gallagher, Iain J
    Nedergaard, Jan
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    Cannon, Barbara
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    Timmons, James A
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    Gene-chip studies of adipogenesis-regulated microRNAs in mouse primary adipocytes and human obesity2011In: BMC Endocrine Disorders, ISSN 1472-6823, E-ISSN 1472-6823, Vol. 11, p. 7-Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Adipose tissue abundance relies partly on the factors that regulate adipogenesis, i.e. proliferation and differentiation of adipocytes. While components of the transcriptional program that initiates adipogenesis is well-known, the importance of microRNAs in adipogenesis is less well studied. We thus set out to investigate whether miRNAs would be actively modulated during adipogenesis and obesity.

    METHODS: Several models exist to study adipogenesis in vitro, of which the cell line 3T3-L1 is the most well known, albeit not the most physiologically appropriate. Thus, as an alternative, we produced EXIQON microarray of brown and white primary murine adipocytes (prior to and following differentiation) to yield global profiles of miRNAs.

    RESULTS: We found 65 miRNAs regulated during in vitro adipogenesis in primary adipocytes. We evaluated the similarity of our responses to those found in non-primary cell models, through literature data-mining. When comparing primary adipocyte profiles, with those of cell lines reported in the literature, we found a high degree of difference in 'adipogenesis' regulated miRNAs suggesting that the model systems may not be accurately representing adipogenesis. The expression of 10 adipogenesis-regulated miRNAs were studied using real-time qPCR and then we selected 5 miRNAs, that showed robust expression, were profiled in subcutaneous adipose tissue obtained from 20 humans with a range of body mass indices (BMI, range = 21-48, and all samples have U133+2 Affymetrix profiles provided). Of the miRNAs tested, mir-21 was robustly expressed in human adipose tissue and positively correlated with BMI (R2 = 0.49, p < 0.001).

    CONCLUSION: In conclusion, we provide a preliminary analysis of miRNAs associated with primary cell in vitro adipogenesis and demonstrate that the inflammation-associated miRNA, mir-21 is up-regulated in subcutaneous adipose tissue in human obesity. Further, we provide a novel transcriptomics database of EXIQON and Affymetrix adipocyte profiles to facilitate data mining.

  • 36. Kramarova, Tatiana V
    et al.
    Shabalina, Irina G
    Andersson, Ulf
    Westerberg, Rolf
    Carlberg, Inger
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Houstek, Josef
    Nedergaard, Jan
    Cannon, Barbara
    Mitochondrial ATP synthase levels in brown adipose tissue are governed by the c-Fo subunit P1 isoform.2007In: FASEB J, ISSN 1530-6860Article in journal (Refereed)
  • 37.
    Kramarova, Tatiana V.
    et al.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Shabalina, Irina G.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Andersson, Ulf
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Westerberg, Rolf
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Carlberg, Inger
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Houstek, Josef
    Nedergaard, Jan
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Cannon, Barbara
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Mitochondrial ATP synthase levels in brown adipose tissue are governed by the c-Fo subunit P1 isoform2008In: The FASEB Journal, ISSN 0892-6638, E-ISSN 1530-6860, Vol. 22, no 1, p. 55-63Article in journal (Refereed)
    Abstract [en]

    Despite the significance of mitochondrial ATP synthase for mammalian metabolism, the regulation of the amount of ATP synthase in mammalian systems is not understood. As brown adipose tissue mitochondria contain very low amounts of ATP synthase, relative to respiratory chain components, they constitute a physiological system that allows for examination of the control of ATP synthase assembly. To examine the role of the expression of the P1-isoform of the c-F-o subunit in the biogenesis of ATP synthase, we made transgenic mice that express the P1-c subunit isoform under the promoter of the brown adipose tissue-specific protein UCP1. In the resulting UCP1p1 transgenic mice, total P1-c subunit mRNA levels were increased; mRNA levels of other F1F(o)-ATPase subunits were unchanged. In isolated brown-fat mitochondria, protein levels of the total c-Fo subunit were increased. Remarkably, protein levels of ATP synthase subunits that are part of the F-1-ATPase complex were also increased, as was the entire Complex V. Increased ATPase and ATP synthase activities demonstrated an increased functional activity of the F1Fo-ATPase. Thus, the levels of the c-F-o subunit P1-isoform are crucial for defining the final content of the ATP synthase in brown adipose tissue. The level of c-F-o subunit may be a determining factor for F1Fo-ATPase assembly in all higher eukaryotes.-Kramarova, T. V., Shabalina, I. G., Andersson, U., Westerberg, R., Carlberg, I., Houstek, J., Nedergaard, J., Cannon, B. Mitochondrial ATP synthase levels in brown adipose tissue are governed by the c-F-o subunit P1 isoform.

  • 38. Logan, Angela
    et al.
    Shabalina, Irina G.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Prime, Tracy A.
    Rogatti, Sebastian
    Kalinovich, Anastasia V.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Hartley, Richard C.
    Budd, Ralph C.
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Murphy, Michael P.
    In vivo levels of mitochondrial hydrogen peroxide increase with age in mtDNA mutator mice2014In: Aging Cell, ISSN 1474-9718, E-ISSN 1474-9726, Vol. 13, no 4, p. 765-768Article in journal (Refereed)
    Abstract [en]

    In mtDNA mutator mice, mtDNA mutations accumulate leading to a rapidly aging phenotype. However, there is little evidence of oxidative damage to tissues, and when analyzed ex vivo, no change in production of the reactive oxygen species (ROS) superoxide and hydrogen peroxide by mitochondria has been reported, undermining the mitochondrial oxidative damage theory of aging. Paradoxically, interventions that decrease mitochondrial ROS levels in vivo delay onset of aging. To reconcile these findings, we used the mitochondria-targeted mass spectrometry probe MitoB to measure hydrogen peroxide within mitochondria of living mice. Mitochondrial hydrogen peroxide was the same in young mutator and control mice, but as the mutator mice aged, hydrogen peroxide increased. This suggests that the prolonged presence of mtDNA mutations in vivo increases hydrogen peroxide that contributes to an accelerated aging phenotype, perhaps through the activation of pro-apoptotic and pro-inflammatory redox signaling pathways.

  • 39. Madsen, Lise
    et al.
    Pedersen, Lone M
    Lillefosse, Haldis Haukaas
    Fjaere, Even
    Bronstad, Ingeborg
    Hao, Qin
    Petersen, Rasmus K
    Hallenborg, Philip
    Ma, Tao
    De Matteis, Rita
    Araujo, Pedro
    Mercader, Josep
    Bonet, M Luisa
    Hansen, Jacob B
    Cannon, Barbara
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    Wang, Jun
    Cinti, Saverio
    Voshol, Peter
    Døskeland, Stein Ove
    Kristiansen, Karsten
    UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity.2010In: PloS one, ISSN 1932-6203, Vol. 5, no 6, p. e11391-Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: The uncoupling protein 1 (UCP1) is a hallmark of brown adipocytes and pivotal for cold- and diet-induced thermogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that cyclooxygenase (COX) activity and prostaglandin E(2) (PGE(2)) are crucially involved in induction of UCP1 expression in inguinal white adipocytes, but not in classic interscapular brown adipocytes. Cold-induced expression of UCP1 in inguinal white adipocytes was repressed in COX2 knockout (KO) mice and by administration of the COX inhibitor indomethacin in wild-type mice. Indomethacin repressed beta-adrenergic induction of UCP1 expression in primary inguinal adipocytes. The use of PGE(2) receptor antagonists implicated EP(4) as a main PGE(2) receptor, and injection of the stable PGE(2) analog (EP(3/4) agonist) 16,16 dm PGE(2) induced UCP1 expression in inguinal white adipose tissue. Inhibition of COX activity attenuated diet-induced UCP1 expression and increased energy efficiency and adipose tissue mass in obesity-resistant mice kept at thermoneutrality. CONCLUSIONS/SIGNIFICANCE: Our findings provide evidence that induction of UCP1 expression in white adipose tissue, but not in classic interscapular brown adipose tissue is dependent on cyclooxygenase activity. Our results indicate that cyclooxygenase-dependent induction of UCP1 expression in white adipose tissues is important for diet-induced thermogenesis providing support for a surprising role of COX activity in the control of energy balance and obesity development.

  • 40.
    Mattsson, Charlotte L.
    et al.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Csikasz, Robert I.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Shabalina, Irina G.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Nedergaard, Jan
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Cannon, Barbara
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Caveolin-1-ablated mice survive cold by nonshivering thermogenesis, despite desensitized adrenergic receptorsManuscript (preprint) (Other academic)
  • 41.
    Mattsson, Charlotte L
    et al.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    Csikasz, Robert I
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    Shabalina, Irina G
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    Nedergaard, Jan
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    Cannon, Barbara
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    Caveolin-1-ablated mice survive in cold by nonshivering thermogenesis despite desensitized adrenergic responsiveness2010In: American Journal of Physiology. Endocrinology and Metabolism, ISSN 0193-1849, E-ISSN 1522-1555, Vol. 299, no 3, p. E374-83Article in journal (Refereed)
    Abstract [en]

    Caveolin-1 (Cav1)-ablated mice display impaired lipolysis in white adipose tissue. They also seem to have an impairment in brown adipose tissue function, implying that Cav1-ablated mice could encounter problems in surviving longer periods in cold temperatures. To investigate this, Cav1-ablated mice and wild-type mice were transferred to cold temperatures for extended periods of time, and parameters related to metabolism and thermogenesis were investigated. Unexpectedly, the Cav1-ablated mice survived in the cold. There were no differences between Cav1-ablated and wild-type mice with regard to food intake, in behavior related to shivering, or in body temperature. The Cav1-ablated mice had a halved total fat content independently of acclimation temperature. There was no difference in brown adipose tissue uncoupling protein-1 (UCP1) protein amount, and isolated brown fat mitochondria were thermogenically competent but displayed 30% higher thermogenic capacity. However, the beta(3)-adrenergic receptor amount was reduced by about one-third in the Cav1-ablated mice at all acclimation temperatures. Principally in accordance with this, a higher than standard dose of norepinephrine was needed to obtain full norepinephrine-induced thermogenesis in the Cav1-ablated mice; the higher dose was also needed for the Cav1-ablated mice to be able to utilize fat as a substrate for thermogenesis. In conclusion, the ablation of Cav1 impairs brown adipose tissue function by a desensitization of the adrenergic response; however, the desensitization is not evident in the animal as it is overcome physiologically, and Cav1-ablated mice can therefore survive in prolonged cold by nonshivering thermogenesis.

  • 42.
    Nabben, Miranda
    et al.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Shabalina, Irina G.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Moonen-Kornips, Esther
    van Beurden, Denis
    Cannon, Barbara
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Schrauwen, Patrick
    Nedergaard, Jan
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Hoeks, Joris
    Uncoupled respiration, ROS production, acute lipotoxicity and oxidative damage in isolated skeletal muscle mitochondria from UCP3-ablated mice2011In: Biochimica et Biophysica Acta - Bioenergetics, ISSN 0005-2728, E-ISSN 1879-2650, Vol. 1807, no 9, p. 1095-1105Article in journal (Refereed)
    Abstract [en]

    The function of uncoupling protein 3 (UCP3) is still not established. Mitochondrial uncoupling, control of ROS production, protection against lipotoxicity and protection against oxidative stress are functions classically discussed. To establish a role for UCP3 in these functions, we have here used UCP3 (-/-) mice, backcrossed for 10 generations on a C57Bl/6 background. In isolated skeletal muscle mitochondria, we examined uncoupled respiration, both unstimulated and in the presence of fatty acids. We did not observe any difference between mitochondria from wildtype and UCP3 (-/-) mice. We measured H(2)O(2) production rate and respiration rate under reactive oxygen species-generating conditions (succinate without rotenone) but found no effect of UCP3. We tested two models of acute lipotoxicity fatty add-induced oxidative inhibition and fatty acid-induced swelling-but did not observe any protective effect of UCP3. We examined oxidative stress by quantifying 4-hydroxynonenal protein adducts and protein carbonyls in the mitochondria-but did not observe any protective effect of UCP3. We conclude that under the experimental conditions tested here, we find no evidence for the function of UCP3 being basal or induced uncoupling, regulation of ROS production, protection against acute lipotoxicity or protection against oxidative damage.

  • 43.
    Nedergaard, Jan
    et al.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Bengtsson, Tore
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Cannon, Barbara
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    New Powers of Brown Fat: Fighting the Metabolic Syndrome2011In: Cell Metabolism, ISSN 1550-4131, E-ISSN 1932-7420, Vol. 13, no 3, p. 238-240Article in journal (Refereed)
    Abstract [en]

    An understanding of the full powers of brown adipose tissue (BAT) is only successively being accumulated. In a paper in Nature Medicine, Bartelt et al. (2011) add further impressive aspects to the potential powers of BAT in the combat against the metabolic syndrome by demonstrating its vast capacity for triglyceride clearance and glucose disposal.

  • 44.
    Nedergaard, Jan
    et al.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute, Physiology.
    Bengtsson, Tore
    Stockholm University, Faculty of Science, The Wenner-Gren Institute, Physiology.
    Cannon, Barbara
    Stockholm University, Faculty of Science, The Wenner-Gren Institute, Physiology.
    Three years with adult human brown adipose tissue2010In: Annals of the New York Academy of Sciences, ISSN 0077-8923, E-ISSN 1749-6632, Vol. 1212, p. E20-E36Article in journal (Refereed)
    Abstract [en]

    The presence of active brown adipose tissue in adult humans has been recognized in general physiology only since 2007. The intervening three years established that the depots originally observed by (18)F-fluoro-deoxy-glucose positron emission tomography (FDG PET) scanning techniques really are brown adipose tissue depots because they are enriched for uncoupling protein 1 (UCP1). Reports of low apparent prevalence of brown adipose tissue based on retrospective studies of hospital records of FDG PET scans markedly underestimate true prevalence because such studies only reflect acute activity state; consequently, such retrospective studies cannot be conclusively analysed for factors influencing activity and amount of brown adipose tissue. Dedicated studies show that the true prevalence is 30-100%, depending on cohort. Warm temperature during the investigation-as well as adrenergic antagonists-inhibit tissue activity. There is probably no sexual dimorphism in the prevalence of brown adipose tissue. Outdoor temperature may affect the amount of brown adipose tissue, and the amount is negatively correlated with age and obesity. The presence of brown adipose tissue is associated with cold-induced nonshivering thermogenesis, and the tissue may be a major organ for glucose disposal. The decline in brown adipose tissue amount with increasing age may account for or aggravate middle-age obesity. Maintained activation of brown adipose tissue throughout life may thus protect against obesity and diabetes.

  • 45.
    Nedergaard, Jan
    et al.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Cannon, Barbara
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Brown adipose tissue: development and function2011In: Fetal and neonatal physiology / [ed] Richard A Polin, William W Fox and Steven H Abman, Philadelphia, PA: Saunders Elsevier, 2011, 4th ed., p. 470-482Chapter in book (Refereed)
  • 46.
    Nedergaard, Jan
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    How brown is brown fat?: It depends where you look2013In: Nature Medicine, ISSN 1078-8956, E-ISSN 1546-170X, Vol. 19, no 5, p. 540-541Article in journal (Other academic)
    Abstract [en]

    Although it is now accepted that adult humans possess active brown adipose tissue, it has been questioned whether this is genuine classical brown adipose tissue. Two new studies provide evidence that humans, both as babies and adults, do have classical brown tissue and also indicate that there is heterogeneity in the composition of brown fat depots in humans, as in mice (

  • 47.
    Nedergaard, Jan
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    The Browning of White Adipose Tissue: Some Burning Issues2014In: Cell Metabolism, ISSN 1550-4131, E-ISSN 1932-7420, Vol. 20, no 3, p. 396-407Article, review/survey (Refereed)
    Abstract [en]

    Igniting thermogenesis within white adipose tissue (i.e., promoting expression and activity of the uncoupling protein UCP1) has attracted much interest. Numerous browning agents'' have now been described (gene ablations, transgenes, foodcomponents, drugs, environments, etc.). The implied action of browning agents is that they increase UCP1 through this heat production, leading to slimming. Here, we particularly point to the possibility that cause and effect may on occasion be the reverse: browning agents may disrupt, for example, the fur, leading to increased heat loss, increased thermogenic demand to counteract this heat loss, and thus, through sympathetic nervous system activation, to enhanced UCP1 expression in white (and brown) adipose tissues.

  • 48.
    Nedergaard, Jan
    et al.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    Cannon, Barbara
    Stockholm University, Faculty of Science, The Wenner-Gren Institute .
    The changed metabolic world with human brown adipose tissue: therapeutic visions2010In: Cell metabolism, ISSN 1932-7420, Vol. 11, no 4, p. 268-272Article in journal (Refereed)
    Abstract [en]

    That adult humans possess active brown adipose tissue potentially leads to a paradigm shift in the understanding of human metabolism and of obesity. Adaptive adrenergic thermogenesis in humans represents brown adipose tissue activity, the absence of which may contribute to middle-age obesity.

  • 49.
    Nedergaard, Jan
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    UCP1 mRNA does not produce heat2013In: Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, ISSN 1388-1981, E-ISSN 1879-2618, Vol. 1831, no 5, p. 943-949Article in journal (Refereed)
    Abstract [en]

    Because of the possible role of brown adipose tissue and UCP1 in metabolic regulation, even in adult humans, there is presently considerable interest in quantifying, from in-vitro data, the thermogenic capacities of brown and brite/beige adipose tissues. An important issue is therefore to establish which parameters are the most adequate for this. A particularly important issue is the relevance of UCP1 mRNA levels as estimates of the degree of recruitment and of the thermogenic capacity resulting from differences in physiological conditions and from experimental manipulations. By solely following UCP1 mRNA levels in brown adipose tissue, the conclusion would be made that the tissue's highest activation occurs after only 6 h in the cold and then successively decreases to being only some 50% elevated after 1 month in the cold. However, measurement of total UCP1 protein levels per depot (mouse) reveals that the maximal thermogenic capacity estimated in this way is reached first after 1 month but represents an approx. 10-fold increase in thermogenic capacity. Since this in-vitro measure correlates quantitatively and temporally with the acquisition of nonshivering thermogenesis, this must be considered the most physiologically relevant parameter. Similarly, observations that cold acclimation barely increases UCP1 mRNA levels in classical brown adipose tissue but leads to a 200-fold increase in UCP1 mRNA levels in brite/beige adipose tissue depots may overemphasise the physiological significance of these depots, as the high fold-increases are due to very low initial levels, and the UCP1 mRNA levels reached are at least an order of magnitude lower than in brown adipose tissue; furthermore, based on total UCP1 protein amounts, the brite/beige depots attain only about 10% of the thermogenic capacity of the classical brown adipose tissue depots. Consequently, inadequate conclusions may be reached if UCP1 mRNA levels are used as a proxy for the metabolic significance of recruited versus non-recruited brown adipose tissue and for estimating the metabolic significance of brown versus brite/beige adipose tissues. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  • 50. Rohm, Maria
    et al.
    Schäfer, Michaela
    Laurent, Victor
    Üstünel, Bilgen Ekim
    Niopek, Katharina
    Algire, Carolyn
    Hautzinger, Oksana
    Sijmonsma, Tjeerd P.
    Zota, Annika
    Medrikova, Dasa
    Pellegata, Natalia S.
    Ryden, Mikael
    Kulyte, Agné
    Dahlman, Ingrid
    Arner, Peter
    Petrovic, Natasa
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Cannon, Barbara
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Amri, Ez-Zoubir
    Kemp, Bruce E.
    Steinberg, Gregory R.
    Janovska, Petra
    Kopecky, Jan
    Wolfrum, Christian
    Blüher, Matthias
    Diaz, Mauricio Berriel
    Herzig, Stephan
    An AMP-activated protein kinase-stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice2016In: Nature Medicine, ISSN 1078-8956, E-ISSN 1546-170X, Vol. 22, no 10, p. 1120-1130Article in journal (Refereed)
    Abstract [en]

    Cachexia represents a fatal energy-wasting syndrome in a large number of patients with cancer that mostly results in a pathological loss of skeletal muscle and adipose tissue. Here we show that tumor cell exposure and tumor growth in mice triggered a futile energy-wasting cycle in cultured white adipocytes and white adipose tissue (WAT), respectively. Although uncoupling protein 1 (Ucp1)-dependent thermogenesis was dispensable for tumor-induced body wasting, WAT from cachectic mice and tumor-cell-supernatant-treated adipocytes were consistently characterized by the simultaneous induction of both lipolytic and lipogenic pathways. Paradoxically, this was accompanied by an inactivated AMP-activated protein kinase (Ampk), which is normally activated in peripheral tissues during states of low cellular energy. Ampk inactivation correlated with its degradation and with upregulation of the Ampk-interacting protein Cidea. Therefore, we developed an Ampk-stabilizing peptide, ACIP, which was able to ameliorate WAT wasting in vitro and in vivo by shielding the Cidea-targeted interaction surface on Ampk. Thus, our data establish the Ucp1-independent remodeling of adipocyte lipid homeostasis as a key event in tumor-induced WAT wasting, and we propose the ACIP-dependent preservation of Ampk integrity in the WAT as a concept in future therapies for cachexia.

12 1 - 50 of 71
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf