Change search
Refine search result
1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Chammiran, Daniel
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
    Veno, Morten T.
    Ekdahl, Ylva
    Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
    Kjems, Jörgen
    Öhman, Marie
    Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
    A distant cis acting intronic element induces site-selective RNA editing2012In: Nucleic Acids Research, ISSN 0305-1048, E-ISSN 1362-4962, Vol. 40, no 19, p. 9876-9886Article in journal (Refereed)
    Abstract [en]

    Transcripts have been found to be site selectively edited from adenosine-to-inosine (A-to-I) in the mammalian brain, mostly in genes involved in neurotransmission. While A-to-I editing occurs at double-stranded structures, other structural requirements are largely unknown. We have investigated the requirements for editing at the I/M site in the Gabra-3 transcript of the GABA(A) receptor. We identify an evolutionarily conserved intronic duplex, 150 nt downstream of the exonic hairpin where the I/M site resides, which is required for its editing. This is the first time a distant RNA structure has been shown to be important for A-to-I editing. We demonstrate that the element also can induce editing in related but normally not edited RNA sequences. In human, thousands of genes are edited in duplexes formed by inverted repeats in non-coding regions. It is likely that numerous such duplexes can induce editing of coding regions throughout the transcriptome.

    Download full text (pdf)
    Fulltext
  • 2.
    Daniel, Chammiran
    Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
    Regulation and Function of RNA Editing in the Mammalian Brain2011Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Adenosine (A) to inosine (I) RNA editing is a widespread post-transcriptional mechanism in eukaryotes that increases the protein diversity. Adenosine deaminases acting on RNA (ADARs) are the enzymes that catalyze this conversion. The diversity generated by ADAR enzymes occurs mainly in the brain where they target transcripts coding for proteins in the central nervous system (CNS).

    We have determined the editing frequency of known ADAR substrates during development of the mouse brain using the large-scale 454-sequencing method. We show in paper I that editing is regulated during development of the brain, where it increases along with the maturation of the brain. We propose that the unedited isoform of proteins are required for the undeveloped brain while the edited isoforms are more suitable for the mature brain.

    In paper II we show that substrates with multiple editing sites, one specific principle adenosine is favored for initial editing. We demonstrate that within these substrates, editing is coupled when adenosines are located in multiples of twelve nucleotides. These edited adenosines reside on the same side in the tertiary RNA helical structure. A model is suggested where kinetically favored structures at principle editing sites attract ADAR to the substrate, followed by editing at sites that are structurally adjacent to the initiation site.

    Editing of the mammalian Gabra-3 transcripts coding for the GABAA receptor α3 subunits recodes an isoleucine (I) to a methionine (M) referred as the I/M site. In paper III we demonstrate that receptors containing edited α3 subunits have altered trafficking properties compared to receptors containing unedited α3 subunits. We suggest that the amino acid residue change, affects protein interactions required for stability and trafficking of GABAA receptors. We propose that the biological function of editing is to reduce the number of α3 subunits in favor of other α subunits.

    The dsRNA structure at the I/M site in the Gabra-3 transcript is formed within the exon 9 sequence. We show in paper IV that a conserved intronic dsRNA structure in the downstream intron is required for editing to occur at the I/M site. We demonstrate that in the context of this intronic duplex also non-ADAR substrates can be edited. We propose that the intronic dsRNA stabilize the short I/M stem structure, thereby increasing the ability of ADAR to bind and edit the I/M site. These discoveries have expanded the knowledge in how ADAR editing is employed to supply the development of the brain as well as the RNA structure requirement for editing to occur.

  • 3.
    Daniel, Chammiran
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Behm, Mikaela
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Öhman, Marie
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    The role of Alu elements in the cis-regulation of RNA processing2015In: Cellular and Molecular Life Sciences (CMLS), ISSN 1420-682X, E-ISSN 1420-9071, Vol. 72, no 21, p. 4063-4076Article, review/survey (Refereed)
    Abstract [en]

    The human genome is under constant invasion by retrotransposable elements. The most successful of these are the Alu elements; with a copy number of over a million, they occupy about 10 % of the entire genome. Interestingly, the vast majority of these Alu insertions are located in gene-rich regions, and one-third of all human genes contains an Alu insertion. Alu sequences are often embedded in gene sequence encoding pre-mRNAs and mature mRNAs, usually as part of their intron or UTRs. Once transcribed, they can regulate gene expression as well as increase the number of RNA isoforms expressed in a tissue or a species. They also regulate the function of other RNAs, like microRNAs, circular RNAs, and potentially long non-coding RNAs. Mechanistically, Alu elements exert their effects by influencing diverse processes, such as RNA editing, exonization, and RNA processing. In so doing, they have undoubtedly had a profound effect on human evolution.

  • 4.
    Daniel, Chammiran
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Lagergren, Jens
    Öhman, Marie
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    RNA editing of non-coding RNA and its role in gene regulation2015In: Biochimie, ISSN 0300-9084, E-ISSN 1638-6183, Vol. 117, p. 22-27Article, review/survey (Refereed)
    Abstract [en]

    It has for a long time been known that repetitive elements, particularly Alu sequences in human, are edited by the adenosine deaminases acting on RNA, ADAR, family. The functional interpretation of these events has been even more difficult than that of editing events in coding sequences, but today there is an emerging understanding of their downstream effects. A surprisingly large fraction of the human transcriptome contains inverted Alu repeats, often forming long double stranded structures in RNA transcripts, typically occurring in introns and UTRs of protein coding genes. Alu repeats are also common in other primates, and similar inverted repeats can frequently be found in non-primates, although the latter are less prone to duplex formation. In human, as many as 700,000 Alu elements have been identified as substrates for RNA editing, of which many are edited at several sites. In fact, recent advancements in transcriptome sequencing techniques and bioinformatics have revealed that the human editome comprises at least a hundred million adenosine to inosine (A-to-I) editing sites in Alu sequences. Although substantial additional efforts are required in order to map the editome, already present knowledge provides an excellent starting point for studying cis-regulation of editing. In this review, we will focus on editing of long stem loop structures in the human transcriptome and how it can effect gene expression.

  • 5.
    Daniel, Chammiran
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Silberberg, Gilad
    Behm, Mikaela
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Öhman, Marie
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Alu elements shape the primate transcriptome by cis-regulation of RNA editing2014In: Genome Biology, ISSN 1465-6906, E-ISSN 1474-760X, Vol. 15, no 2, article id R28Article in journal (Refereed)
    Abstract [en]

    Background: RNA editing by adenosine to inosine deamination is a widespread phenomenon, particularly frequent in the human transcriptome, largely due to the presence of inverted Alu repeats and their ability to form double-stranded structures - a requisite for ADAR editing. While several hundred thousand editing sites have been identified within these primate-specific repeats, the function of Alu-editing has yet to be elucidated. Results: We show that inverted Alu repeats, expressed in the primate brain, can induce site-selective editing in cis on sites located several hundred nucleotides from the Alu elements. Furthermore, a computational analysis, based on available RNA-seq data, finds that site-selective editing occurs significantly closer to edited Alu elements than expected. These targets are poorly edited upon deletion of the editing inducers, as well as in homologous transcripts from organisms lacking Alus. Sequences surrounding sites near edited Alus in UTRs, have been subjected to a lesser extent of evolutionary selection than those far from edited Alus, indicating that their editing generally depends on cis-acting Alus. Interestingly, we find an enrichment of primate-specific editing within encoded sequence or the UTRs of zinc finger-containing transcription factors. Conclusions: We propose a model whereby primate-specific editing is induced by adjacent Alu elements that function as recruitment elements for the ADAR editing enzymes. The enrichment of site-selective editing with potentially functional consequences on the expression of transcription factors indicates that editing contributes more profoundly to the transcriptomic regulation and repertoire in primates than previously thought.

  • 6.
    Daniel, Chammiran
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
    Wahlstedt, Helene
    Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
    Ohlson, Johan
    Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
    Björk, Petra
    Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
    Öhman, Marie
    Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
    Adenosine-to-Inosine RNA Editing Affects Trafficking of the γ-Aminobutyric Acid Type A (GABAA) Receptor2011In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 286, no 3, p. 2031-2040Article in journal (Refereed)
    Abstract [en]

    Recoding by adenosine-to-inosine RNA editing plays an important role in diversifying proteins involved in neurotransmission. We have previously shown that the Gabra-3 transcript, coding for the α3 subunit of the GABAA receptor is edited in mouse, causing an isoleucine to methionine (I/M) change. Here we show that this editing event is evolutionarily conserved from human to chicken. Analyzing recombinant GABAA receptor subunits expressed in HEK293 cells, our results suggest that editing at the I/M site in α3 has functional consequences on receptor expression. We demonstrate that I/M editing reduces the cell surface and the total number of α3 subunits. The reduction in cell surface levels is independent of the subunit combination as it is observed for α3 in combination with either the β2 or the β3 subunit. Further, an amino acid substitution at the corresponding I/M site in the α1 subunit has a similar effect on cell surface presentation, indicating the importance of this site for receptor trafficking. We show that the I/M editing during brain development is inversely related to the α3 protein abundance. Our results suggest that editing controls trafficking of α3-containing receptors and may therefore facilitate the switch of subunit compositions during development as well as the subcellular distribution of α subunits in the adult brain.

  • 7.
    Daniel, Chammiran
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Widmark, Albin
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Rigardt, Ditte
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Öhman, Marie
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Editing inducer elements increases A-to-I editing efficiency in the mammalian transcriptome2017In: Genome Biology, ISSN 1465-6906, E-ISSN 1474-760X, Vol. 18, article id 195Article in journal (Refereed)
    Abstract [en]

    Background: Adenosine to inosine (A-to-I) RNA editing has been shown to be an essential event that plays a significant role in neuronal function, as well as innate immunity, in mammals. It requires a structure that is largely double-stranded for catalysis but little is known about what determines editing efficiency and specificity in vivo. We have previously shown that some editing sites require adjacent long stem loop structures acting as editing inducer elements (EIEs) for efficient editing. Results: The glutamate receptor subunit A2 is edited at the Q/R site in almost 100% of all transcripts. We show that efficient editing at the Q/R site requires an EIE in the downstream intron, separated by an internal loop. Also, other efficiently edited sites are flanked by conserved, highly structured EIEs and we propose that this is a general requisite for efficient editing, while sites with low levels of editing lack EIEs. This phenomenon is not limited to mRNA, as non-coding primary miRNAs also use EIEs to recruit ADAR to specific sites. Conclusions: We propose a model where two regions of dsRNA are required for efficient editing: first, an RNA stem that recruits ADAR and increases the local concentration of the enzyme, then a shorter, less stable duplex that is ideal for efficient and specific catalysis. This discovery changes the way we define and determine a substrate for A-to-I editing. This will be important in the discovery of novel editing sites, as well as explaining cases of altered editing in relation to disease.

  • 8.
    Daniel, Chammiran
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
    Öhman, Marie
    Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
    RNA editing and its impact on GABAa receptor function2009In: Biochemical Society Transactions, ISSN 0300-5127, E-ISSN 1470-8752, Vol. 37, p. 1399-1403Article in journal (Refereed)
    Abstract [en]

    A-to-I (adenosine-to-inosine) RNA editing catalysed by the ADARs (adenosine deaminases that act on RNA) is a post-transcriptional event that contributes to protein diversity in metazoans. In mammalian neuronal ion channels, editing alters functionally important amino acids and creates receptor subtypes important for the development of the nervous system. The excitatory AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) and kainate glutamate receptors, as well as the inhibitory GABAA [GABA (γ-aminobutyric acid) type A] receptor, are subject to A-to-I RNA editing. Editing affects several features of the receptors, including kinetics, subunit assembly and cell-surface expression. Here, we discuss the regulation of editing during brain maturation and the impact of RNA editing on the expression of different receptor subtypes.

  • 9.
    Ensterö, Mats
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
    Daniel, Chammiran
    Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
    Wahlstedt, Helene
    Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
    Major, Francois
    Öhman, Marie
    Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
    Recognition and coupling af A-to-I edited sites are determined by the tertiary structure of the RNA2009In: Nucleic Acids Research, ISSN 0305-1048, E-ISSN 1362-4962, Vol. 37, no 20, p. 6916-6926Article in journal (Refereed)
    Abstract [en]

    Adenosine-to-inosine (A-to-I) editing has been shown to be an important mechanism that increases protein diversity in the brain of organisms from human to fly. The family of ADAR enzymes converts some adenosines of RNA duplexes to inosines through hydrolytic deamination. The adenosine recognition mechanism is still largely unknown. Here, to investigate it, we analyzed a set of selectively edited substrates with a cluster of edited sites. We used a large set of individual transcripts sequenced by the 454 sequencing technique. On average, we analyzed 570 single transcripts per edited region at four different developmental stages from embryogenesis to adulthood. To our knowledge, this is the first time, large-scale sequencing has been used to determine synchronous editing events. We demonstrate that edited sites are only coupled within specific distances from each other. Furthermore, our results show that the coupled sites of editing are positioned on the same side of a helix, indicating that the three-dimensional structure is key in ADAR enzyme substrate recognition. Finally, we propose that editing by the ADAR enzymes is initiated by their attraction to one principal site in the substrate.

  • 10.
    Gowda, Naveen K. C.
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Kaimal, Jayasankar M.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Kityk, Roman
    Daniel, Chammiran
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Liebau, Jobst
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Öhman, Marie
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Mayer, Matthias P.
    Andréasson, Claes
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Nucleotide exchange factors Fes1 and HspBP1 mimic substrate to release misfolded proteins from Hsp702018In: Nature Structural & Molecular Biology, ISSN 1545-9993, E-ISSN 1545-9985, Vol. 25, no 1, p. 83-+Article in journal (Refereed)
    Abstract [en]

    Protein quality control depends on the tight regulation of interactions between molecular chaperones and polypeptide substrates. Substrate release from the chaperone Hsp70 is triggered by nucleotide-exchange factors (NEFs) that control folding and degradation fates via poorly understood mechanisms. We found that the armadillo-type NEFs budding yeast Fes1 and its human homolog HspBP1 employ flexible N-terminal release domains (RDs) with substrate-mimicking properties to ensure the efficient release of persistent substrates from Hsp70. The RD contacts the substrate-binding domain of the chaperone, competes with peptide substrate for binding and is essential for proper function in yeast and mammalian cells. Thus, the armadillo domain engages Hsp70 to trigger nucleotide exchange, whereas the RD safeguards the release of substrates. Our findings provide fundamental mechanistic insight into the functional specialization of Hsp70 NEFs and have implications for the understanding of proteostasis-related disorders, including Marinesco-Sjögren syndrome.

  • 11.
    Gowda, Naveen Kumar C.
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Kaimal, Jayasankar Mohanakrishnan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Kityk, Roman
    Daniel, Chammiran
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Liebau, Jobst
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Öhman, Marie
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Mayer, Matthias P.
    Andréasson, Claes
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Substrate-mimicking domain of nucleotide-exchange factor Fes1/HspBP1 ensures efficient release of persistent substrates from Hsp70Manuscript (preprint) (Other academic)
  • 12.
    Lundin, Elin
    et al.
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Wu, Chenglin
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Widmark, Albin
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Behm, Mikaela
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Hjerling-Leffler, Jens
    Daniel, Chammiran
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Öhman, Marie
    Nilsson, Mats
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Spatiotemporal mapping of RNA editing in the developing mouse brain using in situ sequencing reveals regional and cell-type-specific regulationManuscript (preprint) (Other academic)
    Abstract [en]

    Background: Adenosine-to-inosine (A-to-I) RNA editing is a process that contributes to the diversification of proteins that has been shown to be essential for neurotransmission and other neuronal functions. However, the spatiotemporal and diversification properties of RNA editing in the brain are largely unknown. Here, we applied in situ sequencing to distinguish between edited and unedited transcripts in distinct regions of the mouse brain at four developmental stages, and investigate the diversity of the RNA landscape.

    Results: We analyzed RNA editing at codon-altering sites using in situ sequencing at single-cell resolution, in combination with the detection of individual ADAR enzymes and specific cell type marker transcripts. This approach revealed cell-type specific regulation of RNA editing of a set of transcripts, and developmental and regional variation in editing levels for many of the targeted sites. We found increasing editing diversity throughout development, which arises through regional- and cell type-specific regulation of ADAR enzymes and target transcripts.

    Conclusions: Our single-cell in situ sequencing method has proved useful to study the complex landscape of RNA editing and our results indicate that this complexity arises due to distinct mechanisms of regulating individual RNA editing sites, acting both regionally and in specific cell types.

  • 13.
    Lundin, Elin
    et al.
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Wu, Chenglin
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Widmark, Albin
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Behm, Mikaela
    Hjerling-Leffler, Jens
    Daniel, Chammiran
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Öhman, Marie
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Nilsson, Mats
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Spatiotemporal mapping of RNA editing in the developing mouse brain using in situ sequencing reveals regional and cell-type-specific regulation2020In: BMC Biology, E-ISSN 1741-7007, Vol. 18, no 1, article id 6Article in journal (Refereed)
    Abstract [en]

    Background Adenosine-to-inosine (A-to-I) RNA editing is a process that contributes to the diversification of proteins that has been shown to be essential for neurotransmission and other neuronal functions. However, the spatiotemporal and diversification properties of RNA editing in the brain are largely unknown. Here, we applied in situ sequencing to distinguish between edited and unedited transcripts in distinct regions of the mouse brain at four developmental stages, and investigate the diversity of the RNA landscape. Results We analyzed RNA editing at codon-altering sites using in situ sequencing at single-cell resolution, in combination with the detection of individual ADAR enzymes and specific cell type marker transcripts. This approach revealed cell-type-specific regulation of RNA editing of a set of transcripts, and developmental and regional variation in editing levels for many of the targeted sites. We found increasing editing diversity throughout development, which arises through regional- and cell type-specific regulation of ADAR enzymes and target transcripts. Conclusions Our single-cell in situ sequencing method has proved useful to study the complex landscape of RNA editing and our results indicate that this complexity arises due to distinct mechanisms of regulating individual RNA editing sites, acting both regionally and in specific cell types.

  • 14. Ring, Henrik
    et al.
    Boije, Henrik
    Daniel, Chammiran
    Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
    Ohlson, Johan
    Öhman, Marie
    Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
    Increased A-to-I RNA editing of the transcript for GABAA receptor subunit α3 during chick retinal development2010In: Visual Neuroscience, ISSN 0952-5238, E-ISSN 1469-8714, Vol. 27, no 5-6, p. 149-157Article in journal (Refereed)
  • 15.
    Wahlstedt, Helene
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
    Daniel, Chammiran
    Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
    Ensterö, Mats
    Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
    Öhman, Marie
    Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
    Large-scale mRNA sequencing determines global regulation of RNA editing during brain development2009In: Genome Research, ISSN 1088-9051, E-ISSN 1549-5469, Vol. 19, p. 978-986Article in journal (Refereed)
    Abstract [en]

    RNA editing by adenosine deamination has been shown to generate multiple isoforms of several neural receptors, often with profound effects on receptor function. However, little is known about the regulation of editing activity during development. We have developed a large-scale RNA sequencing protocol to determine adenosine-to-inosine (A-to-I) editing frequencies in the coding region of genes in the mammalian brain. Using the 454 Life Sciences (Roche) Amplicon Sequencing technology, we were able to determine even low levels of editing with high accuracy. The efficiency of editing for 28 different sites was analyzed during the development of the mouse brain from embryogenesis to adulthood. We show that, with few exceptions, the editing efficiency is low during embryogenesis, increasing gradually at different rates up to the adult mouse. The variation in editing gave receptors like HTR2C and GABAA (gamma-aminobutyric acid type A) a different set of protein isoforms during development from those in the adult animal. Furthermore, we show that this regulation of editing activity cannot be explained by an altered expression of the ADAR proteins but, rather, by the presence of a regulatory network that controls the editing activity during development.

  • 16.
    Widmark, Albin
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Sagredo, Eduardo A.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Karlström, Victor
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Behm, Mikaela
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Biryukova, Inna
    Stockholm University, Science for Life Laboratory (SciLifeLab). Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Friedländer, Marc R.
    Stockholm University, Science for Life Laboratory (SciLifeLab). Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Daniel, Chammiran
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Öhman, Marie
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    ADAR1-and ADAR2-mediated regulation of maturation and targeting of miR-376b to modulate GABA neurotransmitter catabolism2022In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 298, no 3, article id 101682Article in journal (Refereed)
    Abstract [en]

    miRNAs are short noncoding RNA molecules that regulate gene expression by inhibiting translation or inducing degradation of target mRNAs. miRNAs are often expressed as polycistronic transcripts, so-called miRNA clusters, containing several miRNA precursors. The largest mammalian miRNA cluster, the miR-379-410 cluster, is expressed primarily during embryonic development and in the adult brain; however, downstream regulation of this cluster is not well understood. Here, we investigated adenosine deamination to inosine (RNA editing) in the miR-379-410 cluster by adenosine deaminase acting on RNA (ADAR) enzymes as a possible mechanism modulating the expression and activity of these miRNAs in a brain-specific manner. We show that the levels of editing in the majority of mature miRNAs are lower than the editing levels of the corresponding site in primary miRNA precursors. However, for one miRNA, miR-376b-3p, editing was significantly higher in the mature form than in the primary precursor. We found miR-376b-3p maturation is negatively regulated by ADAR2 in an editing activity-independent manner, whereas ADAR1-mediated and ADAR2-mediated editing were observed to be competitive. In addition, the edited miR-376b-3p targets a different set of mRNAs than unedited miR-376b-3p, including 4-aminobutyrate aminotransferase, encoding the enzyme responsible for the catabolism of the neurotransmitter gamma aminobutyric acid (GABA). Expression of edited miR-376b-3p led to increased intracellular GABA levels as well as increased cell surface presentation of GABA type A receptors. Our results indicate that both editing and editing-independent effects modulate the expression of miR-376b-3p, with the potential to regulate GABAergic signaling in the brain.

  • 17.
    Widmark, Albin
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Sagredo, Eduardo
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Karlström, Victor
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Behm, Mikaela
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Biryukova, Inna
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Friedländer, Marc R.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Daniel, Chammiran
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Öhman, Marie
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    ADAR1- and ADAR2-mediated regulation of miR-376b maturation and targeting modulates GABA catabolismManuscript (preprint) (Other academic)
    Abstract [en]

    MicroRNAs (miRNAs) are short non-coding RNA molecules that regulate gene expression by inhibiting translation or inducing degradation of target mRNAs. miRNAs are often expressed as polycistronic transcripts, so-called miRNA clusters, where several miRNA precursors are present in the same transcript. The largest mammalian miRNA cluster, the miR-379-410 cluster, is expressed primarily during embryonic development and in the adult brain. We investigated adenosine-to-inosine (A-to-I) RNA editing by the adenosine deaminase acting on RNA (ADAR) enzymes of the miR-379-410 cluster as a possible mechanism of modulating expression and activity of the miRNAs in a brain-specific manner. We show that editing levels of the majority of mature miRNAs are lower than the editing level of the corresponding site in primary miRNA (pri-miRNA) precursors. However, for one miRNA, miR-376b-3p, editing was significantly higher in the mature form than in the primary precursor. miR-376b-3p maturation is negatively regulated by ADAR2 in an editing-independent manner, while ADAR1 and ADAR2 editing was observed to be competitive. The edited miR-376b-3p targets a different set of mRNAs than unedited miR-376b-3p, including 4-aminobutyrate aminotransferase (Abat), the enzyme responsible for the catabolism of the neurotransmitter GABA. Expression of edited miR-376b-3p led to increased intracellular GABA levels, as well as increased cell surface presentation of GABAA receptors, previously shown to be dependent on intracellular GABA levels. Our results indicate that editing and editing-independent effects modulates the expression of miR-376b-3p, with the potential to regulate GABAergic signaling in the brain. 

1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf