Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Emmanouilidis, Alexandros
    et al.
    Katrantsiotis, Christos
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Norström, Elin
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Risberg, Jan
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Kylander, Malin
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Sheik, Taariq Ali
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Iliopoulos, George
    Avramidis, Pavlos
    Middle to late Holocene palaeoenvironmental study of Gialova Lagoon, SW Peloponnese, Greece2018In: Quaternary International, ISSN 1040-6182, E-ISSN 1873-4553, Vol. 476, p. 46-62Article in journal (Refereed)
    Abstract [en]

    The coastal areas of Eastern Mediterranean have long been the subject of research, due to their rapid geomorphological changes, but also because of their archaeological interest. Our study is focused on a shallow coastal lagoon of Peloponnese, Gialova Lagoon, which for several years has attracted the scientific interest of archaeologists, geomorphologists as well as sedimentologists. Gialova lagoon is located near the ancient city of Pylos, the kingdom of king Nestor during the Mycenaean period (1600-1100 BC). The objectives of this study are: (a) to reconstruct the middle to late Holocene depositional environments of the lagoon and (b) to correlate our data to already existing publications, in order to shed new light on the Holocene evolution of the lagoon and the associated coastal palaeoenvironmental changes. An 8m deep vibracore was drilled and a multi proxy analysis was carried out on the sediment sequence, including sedimentological (grain size analysis and moment measures, total organic carbon - TOC, total nitrogen e TN and total phosphorus - TP), high resolution geochemical (XRF-scanning) and palaeontological (micro-and macro faunal) analysis. The chronological framework is based on five C-14 datings forming the basis for an age depth model, calculated using the OxCal software. The radiocarbon dates from previous studies (6 cores, similar to 20 dates) were also taken into account. The data synthesis and interpretation provided robust and coherent indications regarding the palaeoenvironment, shoreline changes and the rate of geomorphological changes of the coastal area of Gialova Lagoon, as well as useful information about the palaeonvironmental and palaeoclimatic conditions that prevailed during the Mycenaean period. The interpretation, reveal a transition from a shallow marine environment (65005800 yr B.P.) to a brackish/lagoonal (5800-3300 yr B.P.), followed by a shift towards a freshwater/marsh environment (3300 yr B.P. to present).

  • 2.
    Helmens, Karin F.
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Katrantsiotis, Christos
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Salonen, J. Sakari
    Shala, Shyhrete
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Bos, Johanna A. A.
    Engels, Stefan
    Kuosmanen, Niina
    Luoto, Tomi P.
    Väliranta, Minna
    Luoto, Miska
    Ojala, Antti
    Risberg, Jan
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Weckström, Jan
    Warm summers and rich biotic communities during N-Hemisphere deglaciation2018In: Global and Planetary Change, ISSN 0921-8181, E-ISSN 1872-6364, Vol. 167, p. 61-73Article in journal (Refereed)
    Abstract [en]

    Detailed studies on fossil remains of plants or animals in glacial lake sediments are rare. As a result, environmental conditions right at the moment of deglaciation of the large N-Hemisphere ice-sheets remain largely unknown. Here we study three deglacial phases of the Fennoscandian Ice Sheet as a unique, repeated element in a long sediment record preserved at Soldl in northern Finland. We summarize extensive multi-proxy data (diatoms, phytoliths, chironomids, pollen, spores, non-pollen palynomorphs, macrofossils, lithology, loss-on-ignition, C/N) obtained on glacial lake sediments dated to the early Holocene (ca. 10 kyr BP), early MIS 3 (ca. 50 kyr BP) and early MIS 5a (ca. 80 kyr BP). In contrast to the common view of an unproductive ice-marginal environment, our study reconstructs rich ecosystems both in the glacial lake and along the shores with forest on recently deglaciated land. Higher than present-day summer temperatures are reconstructed based on a large variety of aquatic taxa. Rich biota developed due to the insolation-induced postglacial warming and high nutrient levels, the latter resulting from erosion of fresh bedrock and sediment, leaching of surface soils, decay of plant material under shallow water conditions, and sudden decreases in lake volume. Aquatic communities responded quickly to deglaciation and warm summers and reflect boreal conditions, in contrast to the terrestrial ecosystem which responded with some delay probably due to time required for slow soil formation processes. Birch forest is reconstructed upon deglaciation of the large LGM ice-sheet and shrub tundra following the probably faster melting smaller MIS 4 and MIS 5b ice-sheets. Our study shows that glacial lake sediments can provide valuable palaeo-environmental data, that aquatic biota and terrestrial vegetation rapidly accommodated to new environmental conditions during deglaciation, and that glacial lake ecosystems, and the carbon stored in their sediments, should be included in earth system modeling.

  • 3.
    Katrantsiotis, Christos
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Holocene environmental changes and climate variability in the Eastern Mediterranean: Multiproxy sediment records from the Peloponnese peninsula, SW Greece2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis presents multiproxy reconstructions of the mid to late Holocene climate and environmental changes in the Peloponnese peninsula, SW Greece. The combined dataset consists of diatom, biomarker and X-ray fluorescence spectrometry (XRF) elemental data in radiocarbon-dated sediment cores taken from the Agios Floros fen and the Gialova Lagoon in SW Peloponnese and the Ancient Lake Lerna in NE Peloponnese. Overall, the results highlight the complex interaction between climate, tectonics and human activities in the landscape development and further reveal changes in the W-E precipitation/temperature gradient over the peninsula connected to shifts in the large-scale atmospheric circulation patterns.

    The Agios Floros study provides a 6000-year hydrological record based on diatoms and hydrogen isotopic (δD) analysis of aquatic plant-derived n-C23 alkanes. The records indicate two decadal-long periods of deep water conditions at ca 5700 and 5300 cal BP, largely attributed to local tectonic processes and the hydrological anomalies of the nearby karst springs. A period of intermediate water level at ca 4600 cal BP is dominated by the new fossil species Cyclotella paradistinguenda described in this thesis. The gradual development of a fen at ca 4500 cal BP is attributed to a combination of human activities and drier conditions, the latter culminating in SW Peloponnese mainly after ca 4100 cal BP. From ca 2800 cal BP and onwards, there is evidence for flooding events probably related to marked rainfall seasonality.

    The n-alkane δD profiles and XRF data analyzed in the Gialova core co-vary with each other indicating a common climate signal during the last 3600 years, which resembles the Agios Floros record. The n-alkane δ13C values show high contribution of aquatic vegetation to sedimentary organic matter during wet/cold periods. The n-alkane δD signals from the Lake Lerna also exhibit a similar pattern to each other providing further evidence for precipitation/temperature changes over the last 5000 years.

    Comparison of the δD records reveals sometimes similar and sometimes opposing signals between NE and SW Peloponnese, which can be attributed to the relative dominance of high latitude and low latitude atmospheric patterns over the peninsula. The records show wet conditions at ca 5000-4600 cal BP likely associated with the weakening of the Hadley circulation. High humidity is also evident at ca 4500-4100, ca 3000-2600 (more unstable in SW) and after ca 700 cal BP with drier conditions at ca 4100-3900 and ca 1000-700 cal BP. These periods correspond to regional climate changes, when the North Atlantic Oscillation (NAO) likely exerted the main control with NAO (+) creating conditions of reduced moisture. A NE-SW climate see-saw with drier conditions in NE Peloponnese is evident at ca 4600-4500, ca 3200, ca 2600-1800 and ca 1200-1000 cal BP and a reversal at ca 3900-3300 ca 3200-3000 and ca 1800-1300 cal BP. The dipole pattern is likely driven by shifts in the North Sea–Caspian Atmospheric pattern (NCP), with NCP (+) leading to wetter and colder conditions in NE Peloponnese. The opposing signal can also be explained by changes in summer temperatures driven by the Asian monsoon intensity. Strong monsoonal periods coincide with cool summers in Lerna, due to the northerly winds (Etesians), in contrast to SW Peloponnese, located on the lee side of the mountain and most affected by the large-scale air subsidence.

  • 4.
    Katrantsiotis, Christos
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography. Navarino Environmental Observatory (NEO), Greece.
    Kylander, Malin E.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Smittenberg, Rienk
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Yamoah, Kweku K. A.
    Hättestrand, Martina
    Stockholm University, Faculty of Science, Department of Physical Geography. Navarino Environmental Observatory (NEO), Greece.
    Avramidis, Pavlos
    Strandberg, Nichola A.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Norström, Elin
    Stockholm University, Faculty of Science, Department of Geological Sciences. Navarino Environmental Observatory (NEO), Greece.
    Eastern Mediterranean hydroclimate reconstruction over the last 3600 years based on sedimentary n-alkanes, their carbon and hydrogen isotope composition and XRF data from the Gialova Lagoon, SW Greece2018In: Quaternary Science Reviews, ISSN 0277-3791, E-ISSN 1873-457X, Vol. 194, p. 77-93Article in journal (Refereed)
    Abstract [en]

    Understanding past hydroclimate variability and related drivers is essential to improve climate forecasting capabilities especially in areas with high climatic sensitivity, such as the Mediterranean. This can be achieved by using a broad spectrum of high resolution, multiple proxy records which can also allow us to assess linkages between regional hydroclimate variability and shifts in the large-scale atmospheric patterns. Here, we present a multiproxy reconstruction of the central-eastern Mediterranean hydro climate changes over the last 3600 years based on a sediment core from the Gialova Lagoon, a shallow coastal ecosystem in SW Peloponnese, Greece. Our combined dataset consists of the distribution and compound-specific carbon and hydrogen isotope (delta C-13 and 8D) composition of n-alkanes, bulk organic matter properties and X-ray fluorescence (XRF) core scanning data. This approach was complemented with a semi-quantitative analysis of plant remains in the core. The results indicate a high contribution of local aquatic vegetation to organic matter. Large delta C-13 variations in predominantly aquatic plant-derived mid-chain alkanes (C23-23) mainly reflect changes in the aquatic plant abundance and their carbon source. Our data suggest that higher delta C-13(23-25) values (up to 19 parts per thousand) largely correspond to expansion of aquatic vegetation during wet and/or cold periods causing carbon-limiting conditions in the water and assimilation of isotopically-enriched bicarbonate by the plants. The 8D records of the individual n-alkanes (C-17 to C-31) exhibit a nearly identical pattern to each other, which implies that they all reflect changes in the source water isotope composition, driven by hydroclimate variability. In addition, the 8D profiles are consistent with the XRF data with both proxies being driven by a common hydroclimate signal. We observe two major shifts from dry and/or warm periods at ca 3600-3000 cal BP and ca 17001300 cal BP to wet and/or cold episodes at ca 3000-2700 cal BP and ca 1300-900 cal BP. The period ca 700-200 cal BP is the wettest and/or coldest in our record and coeval with the Little Ice Age. The climatic fluctuation reported in this study can be explained by the relative dominance of high-latitude (e.g. North Atlantic Oscillation during winters) and the low-latitude atmospheric patterns (Intertropical convergence zone, Subtropical High and the effects of Asian monsoons during summers) which suggests an Atlantic-Mediterranean-Monsoon climate link in this area for the late Holocene.

  • 5.
    Katrantsiotis, Christos
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Norström, Elin
    Stockholm University, Faculty of Science, Department of Physical Geography. Stockholm University, Faculty of Science, Department of Geological Sciences.
    Holmgren, Karin
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Risberg, Jan
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Skelton, Alasdair
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    High-resolution environmental reconstruction in SW Peloponnese, Greece, covering the last c. 6000years: Evidence from Agios Floros fen, Messenian plain2016In: The Holocene, ISSN 0959-6836, E-ISSN 1477-0911, Vol. 26, no 2, p. 188-204Article in journal (Refereed)
    Abstract [en]

    A paleolimnological record from the central Messenian plain (southwestern Peloponnese, southern Greece) indicates rapid changes in the water level and chemistry of a transient lake on the flanks of the Taygetos Mountains during the last c. 6000years. The analyses are based on diatoms as well as carbon and nitrogen isotopes from bulk sediments in a 7.5-m-long sediment core retrieved from the drained fen of Agios Floros, at the northern banks of the ancient River Pamisos. The sequence consists of fen peat in the uppermost section underlain by lacustrine sediments, which are punctuated by two layers of clay with diatomaceous silt bands. High accumulation rate is recorded in the oldest part of the section (up to 23mm/yr), particularly during two decadal-long periods centered at c. 5700 and c. 5300 cal. BP. The diatom record reveals pronounced peaks in the planktonic taxon Cyclotella distinguenda, which correspond to the laminated sequences, reflecting the rapid development of a deep lake with an open water environment during these two time periods. Another two events with intermediate water levels are inferred at c. 5200 and c. 4600 cal. BP. These short-lived phases were probably, to a large extent, caused by local tectonic processes and the consequent hydrological anomalies of the nearby karst springs, although abrupt climatic changes with enhanced precipitation might have also played a role. At c. 4500 cal. BP, our data suggest the development of terrestrial conditions in this area, which can be attributed to the decreasing activity/dry up of springs, probably associated with more arid climate. After c. 2500 cal. BP, the diatom record infers a return to wetter conditions, probably as a response to more humid climate with marked seasonality and human activities, developing the present-day environment with cultivated and seasonally semi-flooded fields.

  • 6.
    Katrantsiotis, Christos
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography. Navarino Environmental Observatory (NEO), Greece.
    Norström, Elin
    Stockholm University, Faculty of Science, Department of Geological Sciences. Navarino Environmental Observatory (NEO), Greece.
    Smittenberg, Rienk H.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Finné, Martin
    Weiberg, Erika
    Hättestrand, Martina
    Stockholm University, Faculty of Science, Department of Physical Geography. Navarino Environmental Observatory (NEO), Greece.
    Avramidis, Pavlos
    Wastegård, Stefan
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Climate changes in the Eastern Mediterranean over the last 5000 years and their links to the high-latitude atmospheric patterns and Asian monsoons2019In: Global and Planetary Change, ISSN 0921-8181, E-ISSN 1872-6364, Vol. 175, p. 36-51Article in journal (Refereed)
    Abstract [en]

    This research aims to improve the knowledge of the mid to late Holocene climate changes and the underlying drivers in the eastern Mediterranean. We focus on the Peloponnese peninsula, SW Greece, characterized by a W-E rainfall/temperature gradient and a strong climate-sensitivity to shifts in the large-scale atmospheric patterns. A radiocarbon-dated sediment core, taken from the ancient Lake Lerna, a former lake in NE Peloponnese, was analyzed for distribution and hydrogen isotope (δD) composition of n-alkanes and bulk organic geochemistry (δ13C, TOC). The predominantly macrophyte (submerged/floating)-derived δD23 profile exhibits the largest long-term fluctuation in the record and co-varies with δD of long-chain n-alkanes providing evidence for precipitation and temperature changes over the last 5000 years. The Lerna δD23 signal is sometimes in agreement with other n-alkane δD records from SW Peloponnese indicating wetter conditions in the peninsula at ca 5000–4600, ca 4500–4100, ca 3000–2600 (more unstable in SW) and after ca 700 cal BP with drier periods at ca 4100–3900 and ca 1000–700 cal BP. Conversely, a NE-SW climate see-saw is revealed at ca 4600–4500, ca 3200, ca 2600–1800, and ca 1200–1000 cal BP when the δD23 Lerna exhibits more positive trends (drier in NE) with a reversal at ca 3900–3300, ca 3200–3000 and ca 1800–1300 cal BP. These opposing and sometimes similar signals between NE and SW Peloponnese can be explained by the relative dominance of high-latitude atmospheric patterns over the peninsula. A similar signal would be expected when the North Atlantic Oscillation (NAO) exerts the main control with NAO (+) creating conditions of reduced moisture. The dipole pattern is likely driven by shifts in North Sea–Caspian Atmospheric pattern (NCP), which account for the present-day regional climate variability with NCP (+) leading to wetter and colder conditions in NE Peloponnese. The Asian monsoonal system likely has an additional impact on the δD variabilities through influencing the summer temperatures. There is a consistency between the Peloponnesian δD signals and monsoonal records after ca 4000 cal BP confirming the actualistic models. Strong monsoonal periods coincide with cooler summers (lower δD values) in Lerna, due to the northerly winds, the Etesians. On the contrary, SW Peloponnese is dominated by warmer conditions during the same periods as the area is located on the lee side of the mountain and highly influenced by the adiabatic warming associated with the subsidence over the Eastern Mediterranean.

  • 7.
    Katrantsiotis, Christos
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Risberg, Jan
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Norström, Elin
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Holmgren, Karin
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Morphological study of Cyclotella distinguenda with a description of a new fossil species Cyclotella paradistinguenda sp nov from the Agios Floros fen, SW Peloponnese, Greece in relation to other Cyclotella species2016In: Diatom Research, ISSN 0269-249X, E-ISSN 2159-8347, Vol. 31, no 3, p. 243-267Article in journal (Refereed)
    Abstract [en]

    In a previous palaeoenvironmental study based on a high-resolution diatom record from a core sampled at the Agios Floros fen, SW Peloponnese, Greece, Cyclotella distinguenda was reported as exhibiting two morphs with distinct central area and stria arrangement, as well as a specific distribution throughout the sequence. In the present paper, we examine this morphological variability through detailed observations using light and scanning electron microscope combined with a simple statistical approach. Our new data suggest that the two morphs present substantial and constant differences in the structure and size of their central areas, the structure and number of their striae, the arrangement of their marginal fultoportulae/density of costae between fultoportulae, the shape of their rimoportulae and their alveolar chambers. On the basis of these morphological and stratigraphic variations one morph is described as a new species, Cyclotella paradistinguenda sp. nov., while the other is assigned to C. distinguenda and is also consistent with the original description of this taxon. The two species share well-defined central areas without fultoportulae, almost equal length striae and one rimoportula situated on a costa within the ring of marginal fultoportulae. Cyclotella paradistinguenda sp. nov. can be distinguished by a combination of the following characteristics: (1) large central area (1/3 of valve diameter), smooth or decorated with puncta and depressions, flat or concentrically undulated, (2) distinct, narrow striae (12-15/10 mu m) consisting of one or two short rows of areolae of the same size expanding into three rows at the mantle, (3) marginal fultoportulae on each first to third costae (4) poorly developed alveolar chambers and rimoportula. Based on the stratigraphic distribution and the associated flora in the Agios Floros sequence, it can be inferred that C. paradistinguenda sp. nov. is tolerant of shallower water conditions with lower nutrient availability and/or higher pH than C. distinguenda.

  • 8.
    Norström, Elin
    et al.
    Stockholm University, Faculty of Science, Department of Geological Sciences. Navarino Environmental Observatory, Greece.
    Katrantsiotis, Christos
    Stockholm University, Faculty of Science, Department of Physical Geography. Navarino Environmental Observatory, Greece.
    Finné, Martin
    Risberg, Jan
    Stockholm University, Faculty of Science, Department of Physical Geography. Navarino Environmental Observatory, Greece.
    Smittenberg, Rienk H.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Bjursäter, Stefan
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Biomarker hydrogen isotope composition (D) as proxy for Holocene hydroclimatic change and seismic activity in SW Peloponnese, Greece2018In: Journal of Quaternary Science, ISSN 0267-8179, E-ISSN 1099-1417, Vol. 33, no 5, p. 563-574Article in journal (Refereed)
    Abstract [en]

    We present a 6000-year-long record tracing hydroclimate changes in SW Greece, based on hydrogen isotope composition of aquatic plant-derived n-C-23 alkanes (D-C23) in a sediment core from the Messenian plain, Peloponnese. The D-C23 record co-varies with other eastern Mediterranean records, suggesting relatively wetter conditions c. 6-4.5ka, followed by progressively drier conditions leading up to maximum aridity c. 2.8 ka. This arid phase was interrupted by a shift in D-C23 between 3.3 and 3.1ka inferring wetter conditions and/or tentative responses to anthropogenic water regulating activities during the Late Bronze Age. After 2.7ka, a return to more humid conditions was followed by increased dryness and stronger seasonality contrasts from c. 2.0ka. The D-C23 record shows three short-lived excursions (5.7, 5.3, 2.8ka), where isotope values dropped by >20 parts per thousand and immediately stabilized again. The events were paralleled by abrupt increases in sedimentation rates. We hypothesize that the isotopic shifts represent a response to mixing of ground water systems during tectonic events, followed by sealing of seismically derived cracks in the active fault. The outcome of the study is promising for future expansion of isotope-based proxies on sediments in the region, to reconstruct both hydroclimate and past seismic activity.

  • 9.
    Norström, Elin
    et al.
    Stockholm University, Faculty of Science, Department of Geological Sciences. Navarino Environmental Observatory (NEO), Greece.
    Katrantsiotis, Christos
    Stockholm University, Faculty of Science, Department of Physical Geography. Navarino Environmental Observatory (NEO), Greece.
    Smittenberg, Rienk H.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Kouli, Katerina
    Chemotaxonomy in some Mediterranean plants and implications for fossil biomarker records2017In: Geochimica et Cosmochimica Acta, ISSN 0016-7037, E-ISSN 1872-9533, Vol. 219, p. 96-110Article in journal (Refereed)
    Abstract [en]

    The increasing utilization of n-alkanes as plant-derived paleo-environmental proxies calls for improved chemotaxonomic control of the modern flora in order to calibrate fossil sediment records to modern analogues. Several recent studies have investigated long-chain n-alkane concentrations and chain-length distributions in species from various vegetation biomes, but up to date, the Mediterranean flora is relatively unexplored in this respect. Here, we analyse the n-alkane concentrations and chain-length distributions in some of the most common species of the modern macchia and phrygana vegetation in south western Peloponnese, Greece. We show that the drought adapted phrygana herbs and shrubs, as well as some of the sclerophyll and gymnosperm macchia components, produce high concentrations of n-alkanes, on average more than double n-alkane production in local wetland reed vegetation. Furthermore, the chain-length distribution in the analysed plants is related to plant functionality, with longer chain lengths associated with higher drought adaptive capacities, probably as a response to long-term evolutionary processes in a moisture limited environment. Furthermore, species with relatively higher average chain lengths (ACL) showed more enriched carbon isotope composition in their tissues (delta C-13(plant)), suggesting a dual imprint from both physiological and biochemical drought adaptation. The findings have bearings on interpretation of fossil sedimentary biomarker records in the Mediterranean region, which is discussed in relation to a case study from Agios Floros fen, Messenian plain, Peloponnese. The 6000 year long n-alkane record from Agios Floros (ACL, delta C-13(wax)) is linked to the modern analogue and then evaluated through a comparison with other regional-wide as well as local climate and vegetation proxy-data. The high concentration of long chain n-alkanes in phrygana vegetation suggests a dominating imprint from this vegetation type in sedimentary archives from this ecotone.

  • 10. Weiberg, Erika
    et al.
    Unkel, Ingmar
    Kouli, Katerina
    Holmgren, Karin
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Avramidis, Pavlos
    Bonnier, Anton
    Dibble, Flint
    Finné, Martin
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Izdebski, Adam
    Katrantsiotis, Christos
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Stocker, Sharon R.
    Andwinge, Maria
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Baika, Kalliopi
    Boyd, Meighan
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Heymann, Christian
    The socio-environmental history of the Peloponnese during the Holocene: Towards an integrated understanding of the past2016In: Quaternary Science Reviews, ISSN 0277-3791, E-ISSN 1873-457X, Vol. 136, p. 40-65Article in journal (Refereed)
    Abstract [en]

    Published archaeological, palaeoenvironmental, and palaeoclimatic data from the Peloponnese in Greece are compiled, discussed and evaluated in order to analyse the interactions between humans and the environment over the last 9000 years. Our study indicates that the number of human settlements found scattered over the peninsula have quadrupled from the prehistoric to historical periods and that this evolution occurred over periods of climate change and seismo-tectonic activity. We show that societal development occurs both during periods of harsh as well as favourable climatic conditions. At some times, some settlements develop while others decline. Well-known climate events such as the 4.2 ka and 3.2 ka events are recognizable in some of the palaeoclimatic records and a regional decline in the number and sizes of settlements occurs roughly at the same time, but their precise chronological fit with the archaeological record remains uncertain. Local socio-political processes were probably always the key drivers behind the diverse strategies that human societies took in times of changing climate. The study thus reveals considerable chronological parallels between societal development and palaeoenvironmental records, but also demonstrates the ambiguities in these correspondences and, in doing so, highlights some of the challenges that will face future interdisciplinary projects. We suggest that there can be no general association made between societal expansion phases and periods of advantageous climate. We also propose that the relevance of climatic and environmental regionality, as well as any potential impacts of seismo-tectonics on societal development, need to be part of the interpretative frameworks.

1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf