Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Destouni, Georgia
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Basu, Nandita
    Cohen, Matthew J.
    Dahlke, Helen
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Jaramillo, Fernando
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Jarsjö, Jerker
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Jawitz, James W.
    Juston, John
    Karlsson, Elin M.
    Koussis, Antonis D.
    Lyon, Steve
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Mazi, Katerina
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Mård Karlsson, Johanna
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Prieto, Carmen
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Rao, Suresh C.
    van der Velde, Ype
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Vercauteren, Nikki
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Hydro-Biogeochemical and Environmental-Management Functions of Wetland Networks in Landscapes2012In: 9th INTECOL International Wetlands Conference, Wetlands in a Complex World: Conference Abstracts, 2012, p. 915-Conference paper (Other academic)
    Abstract [en]

    A main application goal of ecohydrological science is to amplify opportunities of achieving water quality improvements, biodiversity enhancements and sustainable development, by improved understanding and use of ecosystem properties as a management tool. This paper draws on and synthesizes main result implications for the function and possible enhanced use of wetland networks in the landscape as such a tool, from a series of hydro-biogeochemical and environmental economics studies of nutrient/pollutant loading and abatement in different Swedish hydrological catchments. Results show large potential of wetland networks to reduce the cost of abating nutrient and metal loads within and from hydrological catchments, and emphasize some main research questions for further investigations of actual possibilities to realize this potential. The questions regard in particular the ability of wetland networks to extend the travel times and reduce the uncertainty of hydrological nutrient/pollutant transport through catchments.

    The paper further presents and discusses some main joint conclusions of the participants in a recently held International Workshop on Ecohydrology and Integrated Water Resource Management (1) at the Navarino Environmental Observatory in Messinia, Greece (2), regarding essential goals for collaborative international efforts in wetland network research. The goals include to investigate on different spatiotemporal scales and in different world regions: a) the dynamics of natural and managed wetland networks across a gradient of different climate, human disturbance, energy and organization conditions; b) the reciprocal interactions between wetland networks and associated hydrological catchments; c) how climate change and different human activities in the wetland network catchments influence these interactions (in b) and generally the ecohydrology of individual wetlands and the whole wetland networks; and d) the ecosystem services provided by networks of wetlands.

  • 2. Koussis, Antonis D.
    et al.
    Mazi, Ekaterini
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology. National Observatory of Athens, Greece.
    Destouni, Georgia
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Analytical single-potential, sharp-interface solutions for regional seawater intrusion in sloping unconfined coastal aquifers, with pumping and recharge2012In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 416, p. 1-11Article in journal (Refereed)
    Abstract [en]

    Contamination of groundwater by intruding seawater is a major problem in many parts of the world. This work derives novel analytical solutions for addressing this problem by extending the Girinskii-Strack concept of discharge potential to represent regional, steady-state, sharp-interface seawater intrusion in a sloping unconfined coastal aquifer. The aquifer has hydraulic conductivity K, is recharged uniformly at the rate r, receives an inflow at its land boundary and has a collector trough (or well gallery idealised as line sink) located at the distance I-w from the coastline that penetrates the aquifer and draws groundwater at the rate q(w). The theory rests on the approximation of a linearised gravity-part of the hydraulic potential. Analytical solutions for the discharge potential are derived, through which the hydraulic head, the flow depth and the sharp interface, and particularly the location of the interface toe, l(T), are also determined. These solutions simplify to known results for the horizontal aquifer case. The utility (and robustness to uncertainty regarding the base slope) of the results in applications is demonstrated in the regional example of the Akrotiri Coastal Aquifer, Cyprus. Recasting the problem in non-dimensional form provides a relationship for the dependence of the relative interface toe location l(T)/l(w) on the appropriately normalised difference between the groundwater flow just up-gradient of the collector trough, q(o), and the pumping rate, q(w), given values of the base slope, r/K and H-sea/l(w), where H-sea is the sea-surface elevation above the aquifer base at the coastline. That relationship frames a common groundwater management problem in coastal aquifers subject to a certain exploitation scheme, with l(T) as decision variable. In an exploratory demonstration study, non-dimensional sets of performance curves are calculated for the regional Akrotiri aquifer. In general, the derived analytical solutions can be used for first-order assessments of seawater intrusion vulnerability and management possibilities across a wide range of current regional coastal aquifer conditions and/or projected water demand, groundwater management and climatic change scenarios.

  • 3. Koussis, Antonis D.
    et al.
    Mazi, Katerina
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Riou, Fabien
    Destouni, Georgia
    Stockholm University, Faculty of Science, Department of Physical Geography.
    A correction for Dupuit-Forchheimer interface flow models of seawater intrusion in unconfined coastal aquifers2015In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 525, p. 277-285Article in journal (Refereed)
    Abstract [en]

    Interface flow models that use the Dupuit-Forchheimer (DF) approximation for assessing the freshwater lens and the seawater intrusion in coastal aquifers lack representation of the gap through which fresh groundwater discharges to the sea. In these models, the interface outcrops unrealistically at the same point as the free surface, is too shallow and intersects the aquifer base too far inland, thus overestimating an intruding seawater front. To correct this shortcoming of DF-type interface solutions for unconfined aquifers, we here adapt the outflow gap estimate of an analytical 2-D interface solution for infinitely thick aquifers to fit the 50%-salinity contour of variable-density solutions for finite-depth aquifers. We further improve the accuracy of the interface toe location predicted with depth-integrated DF interface solutions by similar to 20% (relative to the 50%-salinity contour of variable-density solutions) by combining the outflow-gap adjusted aquifer depth at the sea with a transverse-dispersion adjusted density ratio (Pool and Carrera, 2011), appropriately modified for unconfined flow. The effectiveness of the combined correction is exemplified for two regional Mediterranean aquifers, the Israel Coastal and Nile Delta aquifers.

  • 4.
    Mazi, Aikaterini
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology. National Observatory of Athens, Greece.
    Seawater intrusion risks and controls for safe use of coastal groundwater under multiple change pressures2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In the era of intense pressures on water resources, the loss of groundwater by increased seawater intrusion (SWI), driven by climate, sea level and landscape changes, may be critical for many people living in commonly populous coastal regions. Analytical solutions have been derived here for interface flow in coastal aquifers, which allow for simple quantification of SWI under extended conditions from previously available such solutions and are suitable for first-order regional vulnerability assessment and mapping of the implications of climate- and landscape-driven change scenarios and related comparisons across various coastal world regions. Specifically, the derived solutions can account for the hydraulically significant aquifer bed slope in quantifying the toe location of a fresh-seawater sharp interface in the present assessments of vulnerability and safe exploitation of regional coastal groundwater. 

    Results show high nonlinearity of SWI responses to hydro-climatic and groundwater pumping changes on the landside and sea level rise on the marine side, implying thresholds, or tipping points, which, if crossed, may lead abruptly to major SWI of the aquifer. Critical limits of coastal groundwater change and exploitation have been identified and quantified in direct relation to prevailing local-regional conditions and stresses, defining a safe operating space for the human use of coastal groundwater. Generally, to control SWI, coastal aquifer management should focus on adequate fresh groundwater discharge to the sea, rather than on maintaining a certain hydraulic head at some aquifer location. First-order vulnerability assessments for regional Mediterranean aquifers of the Nile Delta Aquifer, the Israel Coastal Aquifer  and the Cyprus Akrotiri Aquifer show that in particular the first is seriously threatened by advancing seawater. Safe operating spaces determined for the latter two show that the current pumping schemes are not sustainable under declining recharge.

  • 5.
    Mazi, Aikaterini
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology. National Observatory of Athens, Greece.
    Koussis, Antonis D.
    Destouni, Georgia
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Intensively exploited Mediterranean aquifers: resilience to seawater intrusion and proximity to critical thresholds2014In: Hydrology and Earth System Sciences, ISSN 1027-5606, E-ISSN 1607-7938, Vol. 18, no 5, p. 1663-1677Article in journal (Refereed)
    Abstract [en]

    We investigate seawater intrusion in three prominent Mediterranean aquifers that are subject to intensive exploitation and modified hydrologic regimes by human activities: the Nile Delta, Israel Coastal and Cyprus Akrotiri aquifers. Using a generalized analytical sharp interface model, we review the salinization history and current status of these aquifers, and quantify their resilience/vulnerability to current and future seawater intrusion forcings. We identify two different critical limits of seawater intrusion under groundwater exploitation and/or climatic stress: a limit of well intrusion, at which intruded seawater reaches key locations of groundwater pumping, and a tipping point of complete seawater intrusion upto the prevailing groundwater divide of a coastal aquifer. Either limit can be reached, and ultimately crossed, under intensive aquifer exploitation and/or climate-driven change. We show that seawater intrusion vulnerability for different aquifer cases can be directly compared in terms of normalized intrusion performance curves. The site-specific assessments show that: a) the intruding seawater currently seriously threatens the Nile Delta Aquifer, b) in the Israel Coastal Aquifer the sharp interface toe approaches the well location and c) the Cyprus Akrotiri Aquifer is currently somewhat less threatened by increased seawater intrusion.

  • 6.
    Mazi, Aikaterini
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology. National Observatory of Athens, Greece.
    Koussis, Antonis D.
    Destouni, Georgia
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Quantifying a safe operating space for human use of coastal groundwater under multiple change pressuresManuscript (preprint) (Other academic)
    Abstract [en]

    Climate-change and various other changes occurring in the landscape may lead to critical loss of freshwater on different scales. In the densely populated coastal regions of the world, loss of groundwater by seawater intrusion, which is impacted by the climate, sea-level and landscape changes, may be critical for many people. We here analytically investigate and quantify this criticality in terms of a safe operating space for human use of groundwater in coastal regions. We determine this space, both generally and specifically for two important exploited Mediterranean aquifers, in terms of key natural and management limits for human use of coastal groundwater in order to avoid critical loss of this resource by seawater intrusion. The quantification framework is simple, yet general and applicable across different scales and regions, for historic, current and projected future conditions of changing hydro-climate, sea level and freshwater use and demand.

  • 7.
    Mazi, Katerina
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography. National Observatory of Athens, Greece.
    Koussis, A. D.
    Destouni, Georgia
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Erratum to: Quantifying a Sustainable Management Space for Human Use of Coastal Groundwater under Multiple Change Pressures2016In: Water resources management, ISSN 0920-4741, E-ISSN 1573-1650, Vol. 30, no 12, p. 4081-4081Article in journal (Other academic)
  • 8.
    Mazi, Katerina
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography. National Observatory of Athens, Greece.
    Koussis, A. D.
    Destouni, Georgia
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Quantifying a Sustainable Management Space for Human Use of Coastal Groundwater under Multiple Change Pressures2016In: Water resources management, ISSN 0920-4741, E-ISSN 1573-1650, Vol. 30, no 12, p. 4063-4080Article in journal (Refereed)
    Abstract [en]

    In the densely populated coastal regions of the world, loss of groundwater due to seawater intrusion, driven by changes of climate, sea level, land use and water use, may critically impact many people. We analytically investigate and quantify the limits constraining a coastal aquifer's sustainable management space, in order to avoid critical loss of the coastal groundwater resource by seawater intrusion. Limiting conditions occur when the intrusion toe reaches the pumping wells, well intrusion, or the marine-side groundwater divide, complete intrusion; in both cases the limits are functions of the seaward groundwater flow remaining after the human groundwater extractions. The study presents a screening-level approach to the quantification of the key natural and human-determined controls and sustainability limits for the human use of coastal groundwater. The physical and geometrical characteristics of the coastal aquifer along with the natural conditions for recharge and replenishment of the coastal groundwater are the key natural controls of the sustainable management space for the latter. The groundwater pumping rates and locations are the key human-determined controls of this space. The present approach to combining and accounting for both of these types of controls is simple, yet general. The approach is applicable across different scales and regions, and for historic, current and projected future conditions of changing hydro-climate, sea level, and human freshwater use. The use of this approach is also concretely demonstrated for the natural and human-determined controls and limits of the sustainable management space for two specific Mediterranean aquifers.

  • 9.
    Mazi, Katerina
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology. National Observatory of Athens, Greece.
    Koussis, Antonis D.
    Destouni, Georgia
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Tipping points for seawater intrusion in coastal aquifers under rising sea level2013In: Environmental Research Letters, ISSN 1748-9326, E-ISSN 1748-9326, Vol. 8, no 1, p. 014001-Article in journal (Refereed)
    Abstract [en]

    This study considers different projections of climate-driven sea-level rise and uses a recently developed, generalized analytical model to investigate the responses of sea intrusion in unconfined sloping coastal aquifers to climate-driven sea-level rise. The results show high nonlinearity in these responses, implying important thresholds, or tipping points, beyond which the responses of seawater intrusion to sea-level rise shift abruptly from a stable state of mild change responses to a new stable state of large responses to small changes that can rapidly lead to full seawater intrusion into a coastal aquifer. The identified tipping points are of three types: (a) spatial, for the particular aquifers (sections) along a coastline with depths that imply critical risk of full sea intrusion in response to even small sea-level rise; (b) temporal, for the critical sea-level rise and its timing, beyond which the change responses and the risk of complete sea intrusion in an aquifer shift abruptly from low to very high; and (c) managerial, for the critical minimum values of groundwater discharge and hydraulic head that inland water management must maintain in an aquifer in order to avoid rapid loss of control and complete sea intrusion in response to even small sea-level rise. The existence of a tipping point depends on highly variable aquifer properties and groundwater conditions, in combination with more homogeneous sea conditions. The generalized analytical model used in this study facilitates parsimonious quantification and screening of sea-intrusion risks and tipping points under such spatio-temporally different condition combinations along extended coastlines.

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf