Change search
Refine search result
1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ahmed, Engy
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Microbe-mineral interactions in soil: Investigation of biogenic chelators, microenvironments and weathering processes2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The interplay between geology and biology has shaped the Earth during billions of years. Microbe-mineral interactions are prime examples of this interplay and underscore the importance of microorganisms in making Earth a suitable environment for all forms of life. The present thesis takes an interdisciplinary approach to obtain an integrated understanding of microbe-mineral interactions. More specifically it addresses how the composition and distribution of biogenic weathering agents (siderophores) differ with regard to soil horizon and mineral type in situ, what siderophore type soil microorganisms produces under laboratory conditions, what role microbial surface attachment plays in mineral weathering reactions and what central roles and applications siderophores have in the environment.

    Podzol, the third most abundant soil in Europe, and most abundant in Scandinavia, was chosen for a field experiment, where three minerals (apatite, biotite and oligoclase) were inserted in the organic, eluvial and upper illuvial soil horizons. The study started with an investigation of the siderophore composition in the bulk soil profile and on the mineral surfaces (paper I), which was followed by a study of the siderophore producing capabilities of microorganisms isolated from the soil profile under laboratory conditions (paper II). Subsequently, a study was done on the impact of microbial surface attachment on biotite dissolution (paper III). Finally, the roles of siderophores in nature and their potential applications were reviewed (paper IV).

    The major findings were that the concentration of hydroxamate siderophores in the soil attached to the mineral surfaces was greater than those in the surrounding bulk soil, indicating that the minerals stimulate the microbial communities attached to their surfaces to produce more siderophores than the microorganisms in the bulk soil. Each mineral had a unique assemblage of hydroxamate siderophores, that makes the mineral type one of the main factors affecting siderophore composition in the natural environment. Siderophore production varied between the microbial species originating from different soil horizons, suggesting that the metabolic properties of microbes in deep soil horizons function differently from those at upper soil horizons. Microbial surface attachment enhanced the biotite dissolution, showing that attached microbes has a greater influence on weathering reactions in soil than planktonic populations. In conclusion, our findings reflected that the complicated relationship between microorganisms and mineral surfaces reinforces the central theme of biogeochemistry that the mineral controls the biological activity in the natural environments. However, the importance of these relationships to the biogeochemical systems requires further investigation.

  • 2.
    Ahmed, Engy
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    The interaction between microbes, siderophores and minerals in podzol soil2013Licentiate thesis, comprehensive summary (Other academic)
  • 3.
    Ahmed, Engy
    et al.
    Stockholm University, Faculty of Science, Department of Geological Sciences. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Abdulla, Hesham M.
    Mohamed, Amy H.
    El-Bassuony, Ahmed D.
    Remediation and recycling of chromium from tannery wastewater using combined chemical-biological treatment system2016In: Process Safety and Environmental Protection, ISSN 0957-5820, E-ISSN 1744-3598, Vol. 104, p. 1-10Article in journal (Refereed)
    Abstract [en]

    Tannery wastewater containing chromium (Cr) is one of the most serious problems in leather industry. In order to develop an effective and eco-friendly treatment technology, a combined chemical-biological treatment system was performed for Cr remediation and recycling. The aim of the present study is to design a laboratory scale system using chemical precipitation of Cr(III) combined with biological removal of Cr(VI) from tannery wastewater, and to investigate the possibility of recycling the recovered Cr(III) in the tanning industry. Chemical precipitation of Cr(III) was carried out using lime and cement dust. The actinomycete strain Kitasatosporia sp. was used in microcosm studies for Cr(VI) bioremoval. Moreover, parameters such as type of porous medium, inoculum size, flow rate and culture conditions were investigated. The precipitated Cr(III) that was recovered from the chemical precipitation stage was recycled in the leather tanning industry. Our findings indicate that the maximum Cr(III) precipitation (98%) was achieved using 2 g/100 mL of lime and 2 h of settling rate. On the other hand, microcosm columns using sand that was inoculated with induced culture (OD600 = 2.43) and flow rate (2 mL/min) gave the maximum recovery (99%) of Cr(VI). The experimental Cr(III) was successfully recycled in the tanning process and the experimental leathers showed comparable properties as same as the leathers tanned with commercial Cr(III). Thus, we concluded that using combined chemical-biological treatment system for Cr remediation from tanning wastewater together with recycling process for the recovered Cr(III) is a promising strategy for economic and environmental friendly tanning industry.

  • 4.
    Ahmed, Engy
    et al.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Holmström, Sara
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Soil Microorganisms and Mineral Weathering: Mechanics of Biotite Dissolution2012Conference paper (Other academic)
    Abstract [en]

    Soil microorganisms play an important role in the environment by contributing to leach and release of essential elements from soil minerals that are required not only for their own nutrition but also for plants growth. This study aims to compare between the mechanisms of different fungal and bacterial species isolated from podzol soil in biotite dissolution. Microplate devices with 6 wells were used for the biological weathering experiments. All of the sterilized microplate wells were filled with 4g/l of biotite followed by 12 ml of an iron free diluted mineral liquid medium. In these conditions, biotite particles are the only source of the essential elements for the microorganisms. To characterize the mechanisms of biotite dissolution, we monitored siderophores production, microbial biomass, pH, exchangeable cations concentration and SEM analysis for mineral surface. There was a significant difference between the behavior of the fungal and bacterial species in dissolution of biotite. This difference may be due to the variation of these microorganisms in their mechanics of interaction with mineral surface. It was observed also that these microorganisms directly and indirectly induce biotite dissolution. Defining soil as a system driven by biological mechanisms rather than chemical processes has major implications for our understanding of how the system functions and how it will respond to changing conditions.

  • 5.
    Ahmed, Engy
    et al.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Holmström, Sara
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    THE MICROBE-MINERAL INTERACTIONS IN THE ACIDIC PODZOL SOIL2013In: Mineralogical magazine, ISSN 0026-461X, E-ISSN 1471-8022, Vol. 77, no 5, p. 564-Article in journal (Other (popular science, discussion, etc.))
    Abstract [en]

    Iron is a key component of the chemical architecture of the biosphere. Due to the low bioavailability of iron in the environment, microorganisms have developed specific uptake strategies, like siderophores, which are operationally defined as low-molecular-mass biogenic Fe(III)-binding compounds, that can increase iron’s bioavailability by promoting the dissolution of iron-bearing minerals. In the present study, we aimed to investigate the composition of hydroxamate siderophores in the soil horizons of the acidic podzol, and study how they are affected by the presence of specific mineral types and microbial communities.

     Three different minerals (apatite, biotite and oligioclase) were inserted in the soil horizons (O (organic), E (eluvial), B (upper illuvial), and C (mineral)). After two years, soil samples were collected from both the bulk soil (next to the minerals) and from the soil attached to the mineral surfaces. The concentration of ten different fungal tri-hydroxamates and five bacterial ones were determined by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS). In addition, total microbial composition and diversity were studied.

    Our field experiment succeeded in describing the relationship between the presence of siderophores, soil horizon and mineral type, in addition to understanding the interaction between mineral type and soil microbial composition. A wide range of fungal and bacterial hydroxamates were detected throughout the soil profile. On the other hand, the presence of the minerals completely altered the diversity of siderophores. In addition, each mineral had a unique interaction with hydroxamates in the different soil horizons. There were also a good relationship between the microbial diversity and the siderophore distribution. 

  • 6.
    Ahmed, Engy
    et al.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Holmström, Sara
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    The Roles and Applications of Siderophores in Natural Environments2013Conference paper (Other academic)
    Abstract [en]

    Siderophores are organic compounds with low molecular mass that are produced by microorganisms growing under conditions of low iron. The primary function of these compounds is to chelate ferric iron from different terrestrial and aquatic habitats and thereby make it available for microbial cells.

    Siderophores have received much attention in recent years because of their potential roles and applications in various areas of environmental research. For instance, the production of siderophores can provide a quick identification of microbes to the species level that called “siderotyping”. On the other hand, siderophores could also function as biocontrol, biosensor, and bioremediation agents, in addition to their important role in mineral weathering and enhancing plant growth. In the present study, we aimed to investigate the composition of trihydroxamate siderophores in soil samples from different horizons (O (organic), E (eluvial), B (upper illuvial), and C (parent material)) of a podzol soil in Sweden, and study how they are affected by the presence of specific mineral types (apatite, biotite and oligioclase) that were inserted in the soil for two years in a field experiment.

    Our field experiment succeeded in describing the relationship between the presence of siderophores, soil horizons and mineral types. A wide range of fungal and bacterial hydroxamates were detected throughout the soil profile. On the other hand, the presence of the minerals completely altered the diversity of siderophores. In addition, each mineral had a unique interaction with hydroxamates in the different soil horizons. Our next step is to gain greater insight into the siderotyping to illustrate the relationship between the siderophore types that was found throughout the soil profile and on the different mineral surfaces and the microbial diversity by using metagenomic applications.

  • 7.
    Ahmed, Engy
    et al.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Holmström, Sara
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Brüchert, Volker
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Holm, Nils G.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    The Role of Microorganisms in the diversity and distribution of siderophores in Podzolic Forest Soil2013In: Mineralogical magazine, ISSN 0026-461X, E-ISSN 1471-8022, Vol. 77, no 2, p. 161--208(48)Article in journal (Other academic)
    Abstract [en]

    Iron is a key component of the chemical architecture of the biosphere. Due to the low bioavailability of iron in the environment, microorganisms have developed specific uptake strategies. The most important one is the production of siderophores, which are operationally defined as low-molecular-mass biogenic Fe (III)-binding compounds which may greatly increase bioavailability of Fe [1]. One of the primary biogeochemical functions of siderophores is therefore to increase Fe bioavailability by promoting the dissolution of iron-bearing minerals [2]. This study aims to understand the role of microorganisms in the chemical diversity and distribution of siderophores in podzol soil and how this diversity can contribute to the bioavailability of Fe in forest soil.Soil samples were collected from an experimental site in the area of Bispgården in central Sweden (63°07′N, 16°70′E) from the O (organic), E (eluvial), B1 (upper illuvial), and C (mineral) horizons. Concentration and chemical composition of dissolved and adsorbed siderophores in the soil samples were determined using colorimetric assays and high-performance liquid chromatography.The highest siderophore concentrations were found in the O layer and thereafter decreased by depth. Concentrations of dissolved hydroxamate, catecholate and carboxylate siderophores were up to 84, 17 and 0.2 nmol/ g soil, respectively. In contrast, concentrations of adsorbed hydroxamates, catecholates and carboxylates were only up to 1.8, 3 and 0.2 nmol/ g soil, respectively.Siderophore-producing microorganisms were isolated from the same soil samples. Viable fungi, bacteria and actinomycete counts ranged from 7 to 300, from 300 to 1800, and from 0 to 5 cfu/gm, respectively. The highest counts were found in the O and E layers. Only the E layer contained the three types of siderophore-producing microorganisms investigated in this study. Siderophores were extracted from culture filtrates of the isolated microorganisms when grown under iron-limited conditions. These extracts varied considerably in siderophore composition. Fungal isolates produced up to 183 μM of hydroxamates, especially those isolated from the O layer, whereas bacteria and actinomycete isolated from the O and E layers of the soil produced high amounts of carboxylate, catecholate and hydroxamate siderophores. Actinomycete produced up to 93 μM of hydroxamates and 47 μM of catecholates, while bacteria produced up to 34 μM of carboxylates and up to 14 μM of catecholates.The depth variability in concentration and chemical composition and the good correlation between abundance of siderophore-producing microorganisms and siderophore soil concentrations strongly suggest that these siderophore-producing microorganisms play an important role in the mobilization of iron in the podzol soil that may be important in iron availability to plants in forest environment.

    [1] Clay et al. (1981) Biochemistry 20, 2432-2436. [2] Duckworth et al. (2009) ChemGeol 260, 149-158.

  • 8.
    Ahmed, Engy
    et al.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Holmström, Sara J. M.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Microbe-mineral interactions: The impact of surface attachment on mineral weathering and element selectivity by microorganisms2015In: Chemical Geology, ISSN 0009-2541, E-ISSN 1872-6836, Vol. 403, p. 13-23Article in journal (Refereed)
    Abstract [en]

    One of the major gaps within the field of biogeochemistry is the lack of a detailed and deep understanding of the mechanismbehind the microbial inducement of mineral dissolution. The association of microorganisms with the mineral surfaces is an important issue for understanding processes like mineral weathering, biomineralization, bioremediation and biofouling. The present study aims to investigate the performance of attached and unattached soil fungal and bacterial species in biotite weathering and in the selectivity of elements from biotite. Sterilized microplate devices were filled with biotite (>2 mm) followed by an iron limited liquid growth medium and were inoculated separately with six different microbial species isolated from podzol soil: Erwinia amylovora, Pseudomonas stutzeri, Pseudomonas mendocina, Streptomyces pilosus, Neurospora crassa and Penicillium melinii. The experiment was designed in two set-ups: 1) attached form, in which the microorganisms were inoculated directly to the biotite surface, and 2) unattached form, in which 0.4 mu m PET track etched devices were used to separate the microbial cells from the biotite surface. Our findings indicate that the surface attached microorganisms led to a greater dissolution of elements from biotite than the unattached microorganisms that was evidenced by 1) higher dissolution of Fe, Al and Si, 2) greater decrease in pH of the liquid growth medium, and 3) relatively higher production of siderophores. Furthermore, there was no significant difference in the capability of element selectivity between the attached and unattached microbial forms. The biotite dissolution was promoted initially by complexation processes and later by acidification processes for most of the attached and unattached microorganisms. Thus, we conclude that despite the mineral dissolution induced by microbial attachment on the mineral surface, the element composition of the biotite and nutritional need of the microorganisms were the main factors affecting the element selectivity.

  • 9.
    Ahmed, Engy
    et al.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Holmström, Sara J. M.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Siderophore Production by Microorganisms Isolated From a Podzol Soil Profile2015In: Geomicrobiology Journal, ISSN 0149-0451, E-ISSN 1521-0529, Vol. 32, no 5, p. 397-411Article in journal (Refereed)
    Abstract [en]

    Siderophore-producing bacteria/actinobacteria and fungi were isolated from O- (organic), E- (eluvial), B- (upper illuvial), and C- (parent material) horizons of podzol soil. Siderophores were isolated and hydroxamate type siderophores were detected and quantitated by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry. The molecular identification of siderophore-producing isolates showed that there was a high diversity of fungal and bacterial/actinobacterial species throughout the soil profile. The isolated bacteria/actinobacteria showed different abilities in the production of ferrioxamines (E, B, G and D). Moreover, the isolated fungal species showed great variety in the production of ferrichromes, coprogens and fusarinines.

  • 10.
    Ahmed, Engy
    et al.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Holmström, Sara J. M.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Siderophores in environmental research: roles and applications2014In: Microbial Biotechnology, ISSN 1751-7907, E-ISSN 1751-7915, Vol. 7, no 3, p. 196-208Article, review/survey (Refereed)
    Abstract [en]

    Siderophores are organic compounds with low molecular masses that are produced by microorganisms and plants growing under low iron conditions. The primary function of these compounds is to chelate the ferric iron [Fe(III)] from different terrestrial and aquatic habitats and thereby make it available for microbial and plant cells. Siderophores have received much attention in recent years because of their potential roles and applications in various areas of environmental research. Their significance in these applications is because siderophores have the ability to bind a variety of metals in addition to iron, and they have a wide range of chemical structures and specific properties. For instance, siderophores function as biocontrols, biosensors, and bioremediation and chelation agents, in addition to their important role in weathering soil minerals and enhancing plant growth. The aim of this literature review is to outline and discuss the important roles and functions of siderophores in different environmental habitats and emphasize the significant roles that these small organic molecules could play in applied environmental processes.

  • 11.
    Ahmed, Engy
    et al.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Holmström, Sara J. M.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    The effect of soil horizon and mineral type on the distribution of siderophores in soil2014In: Geochimica et Cosmochimica Acta, ISSN 0016-7037, E-ISSN 1872-9533, Vol. 131, p. 184-195Article in journal (Refereed)
    Abstract [en]

    Iron is a key component of the chemical architecture of the biosphere. Due to the low bioavailability of iron in the environment, microorganisms have developed specific uptake strategies like production of siderophores. Siderophores are operationally defined as low-molecular-mass biogenic Fe(III)-binding compounds, that can increase the bioavailability of iron by promoting the dissolution of iron-bearing minerals. In the present study, we investigated the composition of dissolved and adsorbed siderophores of the hydroxamate family in the soil horizons of podzol and the effect of specific mineral types on siderophores. Three polished mineral specimens of 3 cm x 4 cm x 3 mm (apatite, biotite and oligioclase) were inserted in the soil horizons (O (organic), E (eluvial) and B (upper illuvial)). After two years, soil samples were collected from both the bulk soil of the whole profile and from the soil attached to the mineral surfaces. The concentration of ten different fungal tri-hydroxamates within ferrichromes, fusigen and coprogens families, and five bacterial hydroxamates within the ferrioxamine family were detected. All hydroxamate types were determined in both soil water (dissolved) and soil methanol (adsorbed) extracts along the whole soil profile by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS); hence, the study is the most extensive of its kind. We found that coprogens and fusigen were present in much higher concentrations in bulk soil than were ferrioxamines and ferrichromes. On the other hand, the presence of the polished mineral completely altered the distribution of siderophores. In addition, each mineral had a unique interaction with the dissolved and adsorbed hydroxamates in the different soil horizons. Thus siderophore composition in the soil environment is controlled by the chemical, physical and biological characteristics of each soil horizon and also by the available mineral types.

  • 12.
    Ahmed, Engy
    et al.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Hugerth, Luisa W.
    Logue, Jurg B.
    Brüchert, Volker
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Andersson, Anders F.
    Holmström, Sara J. M.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Mineral Type Structures Soil Microbial Communities2017In: Geomicrobiology Journal, ISSN 0149-0451, E-ISSN 1521-0529, Vol. 34, no 6, p. 538-545Article in journal (Refereed)
    Abstract [en]

    Soil microorganisms living in close contact with minerals play key roles in the biogeochemical cycling of elements, soil formation, and plant nutrition. Yet, the composition of microbial communities inhabiting the mineralosphere (i.e., the soil surrounding minerals) is poorly understood. Here, we explored the composition of soil microbial communities associated with different types of minerals in various soil horizons. To this effect, a field experiment was set up in which mineral specimens of apatite, biotite, and oligoclase were buried in the organic, eluvial, and upper illuvial horizons of a podzol soil. After an incubation period of two years, the soil attached to the mineral surfaces was collected, and microbial communities were analyzed by means of Illumina MiSeq sequencing of the 16S (prokaryotic) and 18S (eukaryotic) ribosomal RNA genes. We found that both composition and diversity of bacterial, archaeal, and fungal communities varied across the different mineral surfaces, and that mineral type had a greater influence on structuring microbial assemblages than soil horizon. Thus, our findings emphasize the importance of mineral surfaces as ecological niches in soils.

  • 13.
    Cataldi, Gianni
    et al.
    Stockholm University, Faculty of Science, Department of Astronomy.
    Brandeker, Alexis
    Stockholm University, Faculty of Science, Department of Astronomy.
    Thébault, Philippe
    Singer, Kelsi
    Ahmed, Engy
    Stockholm University, Faculty of Science, Department of Geological Sciences. Royal Institute of Technology (KTH), Sweden.
    de Vries, Bernard L.
    Stockholm University, Faculty of Science, Department of Astronomy. European Space Research and Technology Centre (ESA/ESTEC), The Netherlands.
    Neubeck, Anna
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Olofsson, Göran
    Stockholm University, Faculty of Science, Department of Astronomy.
    Searching for Biosignatures in Exoplanetary Impact Ejecta2017In: Astrobiology, ISSN 1531-1074, E-ISSN 1557-8070, Vol. 17, no 8, p. 721-746Article in journal (Refereed)
    Abstract [en]

    With the number of confirmed rocky exoplanets increasing steadily, their characterization and the search for exoplanetary biospheres are becoming increasingly urgent issues in astrobiology. To date, most efforts have concentrated on the study of exoplanetary atmospheres. Instead, we aim to investigate the possibility of characterizing an exoplanet (in terms of habitability, geology, presence of life, etc.) by studying material ejected from the surface during an impact event. For a number of impact scenarios, we estimate the escaping mass and assess its subsequent collisional evolution in a circumstellar orbit, assuming a Sun-like host star. We calculate the fractional luminosity of the dust as a function of time after the impact event and study its detectability with current and future instrumentation. We consider the possibility to constrain the dust composition, giving information on the geology or the presence of a biosphere. As examples, we investigate whether calcite, silica, or ejected microorganisms could be detected. For a 20km diameter impactor, we find that the dust mass escaping the exoplanet is roughly comparable to the zodiacal dust, depending on the exoplanet's size. The collisional evolution is best modeled by considering two independent dust populations, a spalled population consisting of nonmelted ejecta evolving on timescales of millions of years, and dust recondensed from melt or vapor evolving on much shorter timescales. While the presence of dust can potentially be inferred with current telescopes, studying its composition requires advanced instrumentation not yet available. The direct detection of biological matter turns out to be extremely challenging. Despite considerable difficulties (small dust masses, noise such as exozodiacal dust, etc.), studying dusty material ejected from an exoplanetary surface might become an interesting complement to atmospheric studies in the future.

  • 14. Esposito, Alfonso
    et al.
    Ahmed, Engy
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Ciccazzo, Sonia
    Sikorski, Johannes
    Overmann, Jörg
    Holmström, Sara J. M.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Brusetti, Lorenzo
    Comparison of Rock Varnish Bacterial Communities with Surrounding Non-Varnished Rock Surfaces: Taxon-Specific Analysis and Morphological Description2015In: Microbial Ecology, ISSN 0095-3628, E-ISSN 1432-184X, Vol. 70, no 3, p. 741-750Article in journal (Refereed)
    Abstract [en]

    Rock varnish is a thin layer of Fe and Mn oxyhydroxides with embedded clay minerals that contain an increased Mn/Fe ratio compared to that of the Earth's crust. Even if the study of rock varnish has important implications in several fields, the composition of epilithic bacterial communities and the distribution of taxa on varnish surfaces are still not wholly described. The aim of this study was (i) to identify the bacterial taxa which show the greatest variation between varnish and non-varnish environments, collected from the same rock, and (ii) to describe the morphology of epilithic communities through scanning electron microscopy (SEM). Triplicate samples of rock surfaces with varnish and triplicate samples without varnish were collected from five sites in Matsch Valley (South Tyrol, Italy). The V4 region of 16S rRNA gene was analyzed by Illumina sequencing. Fifty-five ubiquitous taxa have been examined to assess variation between varnish and non-varnish. Cyanobacteria, Chloroflexi, Proteobacteria along with minor taxa such as Solirubrobacterales, Conexibaxter, and Rhodopila showed significant variations of abundance, diversity, or both responding to the ecology (presence/absence of varnish). Other taxa, such as the genus Edaphobacter, showed a more marked spatial variation responding to the sampling site. SEM images showed a multitude of bacterial morphologies and structures involved in the process of attachment and creation of a suitable environment for growth. The features emerging from this analysis suggest that the highly oxidative Fe and Mn-rich varnish environment favors anoxigenic autotrophy and establishment of highly specialized bacteria.

  • 15.
    Ezzat, Kariem
    et al.
    Stockholm University, Faculty of Science, Department of Neurochemistry.
    EL Andaloussi, Samir
    Zaghloul, Eman M.
    Lehto, Taavi
    Lindberg, Staffan
    Stockholm University, Faculty of Science, Department of Neurochemistry.
    Moreno, Pedro M. D.
    Viola, Joana R.
    Magdy, Tarek
    Stockholm University, Faculty of Science, Department of Neurochemistry.
    Abdo, Rania
    Stockholm University, Faculty of Science, Department of Neurochemistry.
    Guterstam, Peter
    Stockholm University, Faculty of Science, Department of Neurochemistry.
    Sillard, Rannar
    Stockholm University, Faculty of Science, Department of Neurochemistry.
    Hammond, Suzan M.
    Wood, Matthew J. A.
    Arzumanov, Andrey A.
    Gait, Michael J.
    Smith, C. I. Edvard
    Hällbrink, Mattias
    Stockholm University, Faculty of Science, Department of Neurochemistry.
    Langel, Ülo
    Stockholm University, Faculty of Science, Department of Neurochemistry. University of Tartu, Estonia.
    PepFect 14, a novel cell-penetrating peptide for oligonucleotide delivery in solution and as solid formulation2011In: Nucleic Acids Research, ISSN 0305-1048, E-ISSN 1362-4962, Vol. 39, no 12, p. 5284-5298Article in journal (Refereed)
    Abstract [en]

    Numerous human genetic diseases are caused by mutations that give rise to aberrant alternative splicing. Recently, several of these debilitating disorders have been shown to be amenable for splice-correcting oligonucleotides (SCOs) that modify splicing patterns and restore the phenotype in experimental models. However, translational approaches are required to transform SCOs into usable drug products. In this study, we present a new cell-penetrating peptide, PepFect14 (PF14), which efficiently delivers SCOs to different cell models including HeLa pLuc705 and mdx mouse myotubes; a cell culture model of Duchenne's muscular dystrophy (DMD). Non-covalent PF14-SCO nanocomplexes induce splice-correction at rates higher than the commercially available lipid-based vector Lipofectamine™ 2000 (LF2000) and remain active in the presence of serum. Furthermore, we demonstrate the feasibility of incorporating this delivery system into solid formulations that could be suitable for several therapeutic applications. Solid dispersion technique is utilized and the formed solid formulations are as active as the freshly prepared nanocomplexes in solution even when stored at an elevated temperatures for several weeks. In contrast, LF2000 drastically loses activity after being subjected to same procedure. This shows that using PF14 is a very promising translational approach for the delivery of SCOs in different pharmaceutical forms.

  • 16. Schütze, Eileen
    et al.
    Ahmed, Engy
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Voit, Annekatrin
    Klose, Michael
    Greyer, Matthias
    Svatoš, Aleš
    Merten, Dirk
    Roth, Martin
    Holmström, Sara J. M.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Kothe, Erika
    Siderophore production by streptomycetes-stability and alteration of ferrihydroxamates in heavy metal-contaminated soil2015In: Environmental science and pollution research international, ISSN 0944-1344, E-ISSN 1614-7499, Vol. 22, no 24, p. 19376-19383Article in journal (Refereed)
    Abstract [en]

    Heavy metal-contaminated soil derived from a former uranium mining site in Ronneburg, Germany, was used for sterile mesocosms inoculated with the extremely metal-resistant Streptomyces mirabilis P16B-1 or the sensitive control strain Streptomyces lividans TK24. The production and fate of bacterial hydroxamate siderophores in soil was analyzed, and the presence of ferrioxamines E, B, D, and G was shown. While total ferrioxamine concentrations decreased in water-treated controls after 30 days of incubation, the sustained production by the bacteria was seen. For the individual molecules, alteration between neutral and cationic forms and linearization of hydroxamates was observed for the first time. Mesocosms inoculated with biomass of either strain showed changes of siderophore contents compared with the non-treated control indicating for auto-alteration and consumption, respectively, depending on the vital bacteria present. Heat stability and structural consistency of siderophores obtained from sterile culture filtrate were shown. In addition, low recovery (32 %) from soil was shown, indicating adsorption to soil particles or soil organic matter. Fate and behavior of hydroxamate siderophores in metal-contaminated soils may affect soil properties as well as conditions for its inhabiting (micro)organisms.

1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf