Change search
Refine search result
1 - 19 of 19
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Best, T.
    et al.
    Otto, R.
    Trippel, S.
    Hlavenka, P.
    von Zastrow, A.
    Eisenbach, S.
    Jezouin, S.
    Wester, R.
    Vigren, Erik
    Stockholm University, Faculty of Science, Department of Physics.
    Hamberg, M.
    Stockholm University, Faculty of Science, Department of Physics.
    Geppert, Wolf D.
    Stockholm University, Faculty of Science, Department of Physics.
    ABSOLUTE PHOTODETACHMENT CROSS-SECTION MEASUREMENTS FOR HYDROCARBON CHAIN ANIONS2011In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 742, no 2, p. 63-Article in journal (Refereed)
    Abstract [en]

    Absolute photodetachment cross sections have been measured for the hydrocarbon chain anions C(n)H(-), n = 2, 4, and 6, which are relevant for an understanding of molecular clouds in the interstellar medium. Data have been obtained for different photon energies within approximately 1 eV of the detachment threshold. With our recently developed method we have achieved a precision of better than 25% on these absolute cross sections. The experiments have been carried out by means of photodetachment tomography of the mass-selected molecular anions in a multipole radio-frequency ion trap. The measured absolute cross sections are in accordance with the empirical scaling law of Millar et al. and have allowed us to determine its free parameters. These results are important for predicting the photostability and thus the abundance of carbon chain anions in planetary atmospheres, in circumstellar envelopes, and in photon-dominated regions of interstellar molecular clouds.

  • 2.
    Hamberg, Mathias
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Kashperka, Iryna
    Stockholm University, Faculty of Science, Department of Physics.
    Danielsson, Mathias
    af Ugglas, Magnus
    Stockholm University, Faculty of Science, Department of Physics.
    Österdahl, Fabian
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Zhaunerchyk, Vitali
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard D.
    Stockholm University, Faculty of Science, Department of Physics.
    Vigren, Erik
    Stockholm University, Faculty of Science, Department of Physics.
    Kaminska, Magdalena
    Jan Kochanowski University, Kielce, Poland.
    Källberg, Anders
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Paál, András
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Larsson, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    Geppert, Wolf
    Stockholm University, Faculty of Science, Department of Physics.
    Experimental studies on the dissociative recombination of H13CO+ with electrons at energies between 2 – 50 000 meVManuscript (preprint) (Other academic)
    Abstract [en]

    Determination of dissociative recombination processes of H13CO+ using merged ion-electron beam methods has been performed at the heavy storage ring CRYRING, Stockholm, Sweden. We have measured the branching fractions at ~0 eV as: CO+H 87±2%, OH+C 9±2% and O+CH 4±2%. The channels leading to CO+H have the following branching fractions between the accessible electronic states of CO(X1S+)+H 46±3%, CO(a3Pg)+H 20±1% and CO(a’3S+)+H 34±3% respectively. The reaction cross section was fitted between 1-300 meV and followed the expression σ = 1.2±0.25×10-16 E-1.32±0.02 cm2 and the corresponding thermal rate constant was determined to k(T) = 2.0±0.4×10−7(T/300)−0.82±0.02 cm3s−1. The cross sections between ~2-50 000 meV were investigated showing resonant structures between 3-15 eV.

  • 3.
    Hamberg, Mathias
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Zhaunerchyk, Vitali
    Stockholm University, Faculty of Science, Department of Physics.
    Vigren, Erik
    Stockholm University, Faculty of Science, Department of Physics.
    Kaminska, Magdalena
    Jan Kochanowski University, Kielce, Poland.
    Kashperka, Iryna
    Stockholm University, Faculty of Science, Department of Physics.
    Zhang, Mingwu
    Institute of Modern Physics.
    Trippel, Sebastian
    Albert-Ludwigs-Universität Freiburg, Tyskland.
    Österdahl, Fabian
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    af Ugglas, Magnus
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard D.
    Stockholm University, Faculty of Science, Department of Physics.
    Källberg, Anders
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Paál, András
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Larsson, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    Geppert, Wolf
    Stockholm University, Faculty of Science, Department of Physics.
    Experimental studies of the dissociative recombination for CD3CDOD+ and CH3CH2OH2+Manuscript (preprint) (Other academic)
    Abstract [en]

    Aims:  Determination of branching fractions, cross sections and thermal rate constants for the dissociative recombination of CD3CDOD+ and CH3CH2OH2+ at the low relative kinetic energies encountered in the interstellar medium.

    Methods: The experiments were carried out by merging an ion and electron beam at the heavy ion storage ring CRYRING, Stockholm, Sweden.

    Results: Break-up of the CCO structure into three heavy fragments is not found for either of the ions. Instead the CCO structure is retained in 23 ± 3% of the DR reactions of CD3CDOD+ and 7 ± 3% in the DR of CH3CH2OH2+, whereas rupture into two heavy fragments occurs in 77 ± 3% and 93 ± 3% of the DR events of the respective ions. The measured cross sections were fitted between 1-200 meV yielding the following thermal rate constants and cross-section dependencies on the relative kinetic energy: σ(Ecm[eV]) = 1.7 ± 0.3 × 1015(Ecm[eV])1.23±0.02 cm2 and k(T) = 1.9 ± 0.4 × 106(T/300)0.73±0.02 cm3s1 for CH3CH2OH2+  as well as k(T) = 1.1 ± 0.4 × 106(T/300)0.74±0.05 cm3s1 and σ(Ecm[eV]) = 9.2 ± 4 × 1016(Ecm[eV])1.24±0.05 cm2 for CD3CDOD+.

  • 4.
    Hamberg, Mathias
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Österdahl, Fabian
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard D.
    Stockholm University, Faculty of Science, Department of Physics.
    Zhaunerchyk, Vitali
    Stockholm University, Faculty of Science, Department of Physics.
    Vigren, Erik
    Stockholm University, Faculty of Science, Department of Physics.
    Kaminska, Magdalena
    Jan Kochanowski University.
    af Ugglas, Magnus
    Stockholm University, Faculty of Science, Department of Physics.
    Källberg, Anders
    Stockholm University, Faculty of Science, Department of Physics, The Manne Siegbahn Laboratory.
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, Department of Physics, The Manne Siegbahn Laboratory.
    Paál, András
    Stockholm University, Faculty of Science, Department of Physics, The Manne Siegbahn Laboratory.
    Larsson, Mats
    Geppert, Wolf D.
    Stockholm University, Faculty of Science, Department of Physics.
    Experimental studies of the dissociative recombination processes for the dimethyl ether ions CD3OCD2+ and (CD3)2OD+2010In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 514, p. A83-Article in journal (Refereed)
    Abstract [en]

    Aims: Determination of branching fractions, cross sections and thermal rate coefficients for the dissociative recombination of CD3OCD2+ (0-0.3 eV) and (CD3)2OD+ (0-0.2 eV) at the low relative kinetic energies encountered in the interstellar medium.

    Methods: The measurements were carried out using merged electron and ion beams at the CRYRING storage ring, Stockholm, Sweden.

    Results: For (CD3)2OD+ we have experimentally determined the branching fraction for ejection of a single hydrogen atom in the DR process to be maximally 7% whereas 49% of the reactions involve the break up of the COC chain into two heavy fragments and 44% ruptures both C-O bonds. The DR of CD3OCD2+ is dominated by fragmentation of the COC chain into two heavy fragments. The measured thermal rate constants and cross sections are k(T) =1.7 ± 0.5 × 106(T/300)0.77±0.01 cm3s−1,  σ= 1.2 ± 0.4 × 1015(Ecm[eV])1.27 ± 0.01 cm2 and k(T) = 1.7 ± 0.6 × 106(T/300)0.70±0.02 cm3s1,σ= 1.7 ± 0.6 × 1015(Ecm[eV])1.20±0.02 cm2 for CD3OCD2+ and (CD3)2OD+, respectively.

  • 5.
    Thomas, Richard D.
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Kashperka, Iryna
    Stockholm University, Faculty of Science, Department of Physics.
    Vigren, Erik
    Stockholm University, Faculty of Science, Department of Physics.
    Geppert, Wolf D.
    Stockholm University, Faculty of Science, Department of Physics.
    Hamberg, Mathias
    Stockholm University, Faculty of Science, Department of Physics.
    Larsson, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    af Ugglas, Magnus
    Stockholm University, Faculty of Science, Department of Physics.
    Zhaunerchyk, Vitali
    Stockholm University, Faculty of Science, Department of Physics.
    Dissociative Recombination of CH4+2013In: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 117, no 39, p. 9999-10005Article in journal (Refereed)
    Abstract [en]

    CH4+ is an important molecular ion in the astrochemistry of diffuse clouds, dense clouds, cometary comae, and planetary ionospheres However, the rate of one of the common destruction mechanisms for molecular ions in these regions, dissociative recombination (DR), is somewhat uncertain. Here, we present absolute measurements for the DR of CH4+ made using the heavy ion storage ring CRYRING hi Stockholm, Sweden. From our collision energy dependent cross sections, we infer a thermal rate constant of k(T-e) = 1.71(+/- 0.02) X 10(-6)(T-e/300)(-0.66(+/- 0.02)) cm(3) s(-1) over the region of electron temperatures 10 <= T-e <= 1000 K. At low collision energies, we have measured the branching fractions of the DR products to be CH4 (0.00 +/- 0.00); CH3 + H (0.18 +/- 0.03); CH2 + 2H (0.51 +/- 0.03); CH2 + H-2 (0.06 +/- 0.01); CH + H-2 + H (0.23 +/- 0.01); and CH + 2H(2) (0.02 +/- 0.01), indicating that two or more C-H bonds are broken in similar to 80% of all collisions.

  • 6.
    Thomas, Richard
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Kashperka, I.
    Stockholm University, Faculty of Science, Department of Physics.
    Vigren, Erik
    Stockholm University, Faculty of Science, Department of Physics.
    Geppert, Wolf D.
    Stockholm University, Faculty of Science, Department of Physics.
    Hamberg, M.
    Stockholm University, Faculty of Science, Department of Physics.
    Larsson, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    af Ugglas, Magnus
    Stockholm University, Faculty of Science, Department of Physics.
    Zhaunerchyk, Vitali
    Stockholm University, Faculty of Science, Department of Physics.
    Indriolo, N.
    Yagi, K.
    Hirata, S.
    McCall, B. J.
    DISSOCIATIVE RECOMBINATION OF VIBRATIONALLY COLD CH+3 AND INTERSTELLAR IMPLICATIONS2012In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 758, no 1, p. 55-Article in journal (Refereed)
    Abstract [en]

    CH3+ is an important molecular ion in the astrochemistry of diffuse clouds, dense clouds, cometary comae, and planetary ionospheres. However, the rate of one of the major destruction mechanisms of CH3+, dissociative recombination (DR), has long been uncertain, hindering the use of CH3+ as an astrochemical probe. Here, we present the first absolute measurement of the DR of vibrationally cold CH3+, which has been made using the heavy storage ring CRYRING in Stockholm, Sweden. From our collision-energy-dependent cross sections, we infer a thermal rate constant of k(T) = 6.97(+/- 0.03) x 10(-7)(T/300)(-0.61(+/- 0.01)) cm(3) s(-1) over the region 10 K <= T <= 1000 K. At low collision energies, we have measured the branching fractions of the DR products to be CH3 (0.00(- 0.00)(+ 0.01)), CH2 + H (0.35(-0.01)(+ 0.01)), CH + 2H (0.20(-0.02)(+0.02)), CH + H-2 (0.10(-0.01)(+0.01)), and C + H-2 + H (0.35(-0.02)(+ 0.01)), indicating that two or more C-H bonds are broken in 65% of all collisions. We also present vibrational calculations which indicate that the CH3+ ions in the storage ring were relaxed to the vibrational ground state by spontaneous emission during the storage time. Finally, we discuss the implications of these new measurements for the observation of CH3+ in regions of the diffuse interstellar medium where CH+ is abundant.

    Download full text (pdf)
    fulltext
  • 7. Tom, Brian A.
    et al.
    Zhaunerchyk, Vitali
    Stockholm University, Faculty of Science, Department of Physics.
    Wiczer, Michael B.
    Mills, Andrew A.
    Crabtree, Kyle N.
    Kaminska, Magdalena
    Stockholm University, Faculty of Science, Department of Physics.
    Geppert, Wolf D.
    Stockholm University, Faculty of Science, Department of Physics.
    Hamberg, Mathias
    Stockholm University, Faculty of Science, Department of Physics.
    af Ugglas, Magnus
    Stockholm University, Faculty of Science, Department of Physics.
    Vigren, Erik
    Stockholm University, Faculty of Science, Department of Physics.
    van der Zande, Wim J.
    Larsson, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard D.
    Stockholm University, Faculty of Science, Department of Physics.
    McCall, Benjamin J.
    Dissociative recombination of highly enriched para-H-3(+)2009In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 130, no 3, p. 31101-Article in journal (Refereed)
    Abstract [en]

    The determination of the dissociative recombination rate coefficient of H-3(+) has had a turbulent history, but both experiment and theory have recently converged to a common value. Despite this convergence, it has not been clear if there should be a difference between the rate coefficients for ortho-H-3(+) and para-H-3(+). A difference has been predicted theoretically and could conceivably impact the ortho:para ratio of H-3(+) in the diffuse interstellar medium, where H-3(+) has been widely observed. We present the results of an experiment at the CRYRING ion storage ring in which we investigated the dissociative recombination of highly enriched (similar to 83.6%) para-H-3(+) using a supersonic expansion source that produced ions with T-rot similar to 60-100 K. We observed an increase in the low energy recombination rate coefficient of the enriched para-H-3(+) by a factor of similar to 1.25 in comparison to H-3(+) produced from normal H-2 (ortho:para=3:1). The ratio of the rate coefficients of pure para-H-3(+) to that of pure ortho-H-3(+) is inferred to be similar to 2 at low collision energies; the corresponding ratio of the thermal rate coefficients is similar to 1.5 at electron temperatures from 60 to 1000 K. We conclude that this difference is unlikely to have an impact on the interstellar ortho:para ratio of H-3(+).

  • 8.
    Vigren, Erik
    Stockholm University, Faculty of Science, Department of Physics.
    Dissociative recombination of organic molecular ions of relevance for interstellar clouds and Titan's upper atmosphere2010Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis presents experimental studies on the dissociative recombination (DR) of the organic molecular ions CD3CND+, CH2CHCNH+, CH3CH2CNH+, CD3CDO+, CH3CHO+ and DCOOD2+. The experiments were all performed at the heavy ion storage ring CRYRING at the Manne Siegbahn Laboratory in Stockholm, Sweden. DR is the process in which a singly charged molecular cation captures a free electron, forming a highly excited intermediate molecule which then dissociates into exclusively neutral fragments. The process plays an important role as a plasma neutralizing mechanism in many cold, low density plasmas such as those encountered in planetary ionospheres and interstellar clouds. DR can also act as the final step in the gas-phase synthesis of different neutral molecules in such environments.

    Our experimental findings indicate that nitriles that are lost by protonation in Titan’s upper atmosphere or in interstellar clouds to a large extent may be recycled by DR. Also, it appears that the DR of nitrile ions does not break the C-N bond, which supports the hypothesis that nitriles which are formed in Titan’s upper atmosphere do not degrade to recover N2. For the studied acetaldehyde cations, CD3CDO+ and CH3CHO+, we observed a considerable isotopic effect in the cross section, with the lighter isotopologue being more reactive. In the DR of DCOOD2+ an upper limit of only 13% for the branching fraction of the DCOOD + D channel was found. This finding has pronounced effects on the predicted abundance of formic acid in dark clouds.

    Download full text (pdf)
    FULLTEXT01
  • 9.
    Vigren, Erik
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Hamberg, Mathias
    Stockholm University, Faculty of Science, Department of Physics.
    Zhaunerchyk, Vitali
    Stockholm University, Faculty of Science, Department of Physics.
    Kaminska, Magdalena
    Semaniak, Jacek
    Larsson, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard D.
    Stockholm University, Faculty of Science, Department of Physics.
    af Ugglas, Magnus
    Stockholm University, Faculty of Science, Department of Physics.
    Kashperka, Iryna
    Stockholm University, Faculty of Science, Department of Physics.
    Millar, T. J.
    Walsh, Catherine
    Roberts, Helen
    Geppert, Wolf D.
    Stockholm University, Faculty of Science, Department of Physics.
    Dissociative Recombination of Protonated Formic Acid: Implications for Molecular Cloud and Cometary Chemistry2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 709, no 2, p. 1429-1434Article in journal (Refereed)
    Abstract [en]

    At the heavy ion storage ring CRYRING in Stockholm, Sweden, we have investigated the dissociative recombination of DCOOD2+ at low relative kinetic energies, from similar to 1 meV to 1 eV. The thermal rate coefficient has been found to follow the expression k(T) = 8.43 x 10(-7) (T/300)(-0.78) cm(3) s(-1) for electron temperatures, T, ranging from similar to 10 to similar to 1000 K. The branching fractions of the reaction have been studied at similar to 2 meV relative kinetic energy. It has been found that similar to 87% of the reactions involve breaking a bond between heavy atoms. In only 13% of the reactions do the heavy atoms remain in the same product fragment. This puts limits on the gas-phase production of formic acid, observed in both molecular clouds and cometary comae. Using the experimental results in chemical models of the dark cloud, TMC-1, and using the latest release of the UMIST Database for Astrochemistry improves the agreement with observations for the abundance of formic acid. Our results also strengthen the assumption that formic acid is a component of cometary ices.

  • 10.
    Vigren, Erik
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Hamberg, Mathias
    Stockholm University, Faculty of Science, Department of Physics.
    Zhaunerchyk, Vitali
    Stockholm University, Faculty of Science, Department of Physics.
    Kaminska, Magdalena
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard D.
    Stockholm University, Faculty of Science, Department of Physics.
    Larsson, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    Millar, T. J.
    Walsh, Catherine
    Geppert, Wolf D.
    Stockholm University, Faculty of Science, Department of Physics.
    The Dissociative Recombination of Protonated Acrylonitrile, CH2CHCNH+, with implications for the Nitrile Chemistry in Dark Molecular Clouds and the Upper Atmosphere of Titan2009In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 695, no 1, p. 317-324Article in journal (Refereed)
    Abstract [en]

    Measurements on the dissociative recombination (DR) of protonated acrylonitrile, CH2CHCNH+, have been performed at the heavy ion storage ring CRYRING located in the Manne Siegbahn Laboratory in Stockholm, Sweden. It has been found that at similar to 2meV relative kinetic energy about 50% of the DR events involve only ruptures of X-Hbonds (where X = C or N) while the rest leads to the production of a pair of fragments each containing two heavy atoms (alongside H and/or H-2). The absolute DR cross section has been investigated for relative kinetic energies ranging from similar to 1 meV to 1 eV. The thermal rate coefficient has been determined to follow the expression k(T) = 1.78 x 10(-6) (T/300)(-0.80) cm(3) s(-1) for electron temperatures ranging from similar to 10 to 1000 K. Gas-phase models of the nitrile chemistry in the dark molecular cloud TMC-1 have been run and results are compared with observations. Also, implications of the present results for the nitrile chemistry of Titan's upper atmosphere are discussed.

  • 11.
    Vigren, Erik
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Hamberg, Mathias
    Stockholm University, Faculty of Science, Department of Physics.
    Zhaunerchyk, Vitali
    Kaminska, Magdalena
    Thomas, Richard D.
    Stockholm University, Faculty of Science, Department of Physics.
    Trippel, Sebastian
    Wester, Roland
    Zhang, Mingwu
    Kashperka, Iryna
    Stockholm University, Faculty of Science, Department of Physics.
    af Ugglas, Magnus
    Stockholm University, Faculty of Science, Department of Physics, The Manne Siegbahn Laboratory.
    Semaniak, Jacek
    Larsson, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    Geppert, Wolf D.
    Stockholm University, Faculty of Science, Department of Physics.
    Dissociative Recombination of Protonated Propionitrile, CH3CH2CNH+: Implications for Titan's Upper Atmosphere2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 722, no 1, p. 847-850Article in journal (Refereed)
    Abstract [en]

    The dissociative recombination of protonated propionitrile, CH3CH2CNH+, has been investigated at the heavy ion storage ring, CRYRING, at the Manne Siegbahn Laboratory, Stockholm University, Sweden. The thermal rate coefficient has been deduced to follow k(T) = (1.5 ± 0.2) × 10–6 (T/300)–0.76 ± 0.02 cm3 s–1 for electron temperatures ranging from ~10 to ~1000 K. Measurements of the branching fractions were performed at ~0 eV relative kinetic energy. It has been found that in 43% ± 2% of the reactions the four heavy atoms remain in the same product fragment. An equal portion of the reactions leads to products where one of the heavy atoms is split off from the other three and 14% ± 1% result in a breakup into two heavy fragments containing two heavy atoms each. We discuss the significance of the data to Titan's upper atmosphere.

  • 12.
    Vigren, Erik
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Hamberg, Mathias
    Stockholm University, Faculty of Science, Department of Physics.
    Zhaunerchyk, Vitali
    Stockholm University, Faculty of Science, Department of Physics.
    Kaminska, Magdalena
    Thomas, Richard D.
    Stockholm University, Faculty of Science, Department of Physics.
    Trippel, Sebastian
    Zhang, Mingwu
    Stockholm University, Faculty of Science, Department of Physics.
    Kashperka, Iryna
    Stockholm University, Faculty of Science, Department of Physics.
    af Ugglas, Magnus
    Stockholm University, Faculty of Science, Department of Physics.
    Walsh, Catherine
    Wester, Roland
    Semaniak, Jacek
    Larsson, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    Geppert, Wolf D.
    Stockholm University, Faculty of Science, Department of Physics.
    Dissociative recombination of the acetaldehyde cation, CH3CHO+2010In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 12, no 37, p. 11670-11673Article in journal (Refereed)
    Abstract [en]

    The dissociative recombination of the acetaldehyde cation, CH3CHO+, has been investigated at the heavy ion storage ring CRYRING at the Manne Siegbahn Laboratory in Stockholm, Sweden. The dependence of the absolute cross section of the reaction on the relative kinetic energy has been determined and a thermal rate coefficient of k(T) = (1.5 +/- 0.2) x 10(-6) (T/300)(-0.70 +/- 0.02) cm(3) s(-1) has been deduced, which is valid for electron temperatures between similar to 10 and 1000 K. The branching fractions of the reaction were studied at similar to 0 eV relative kinetic energy and we found that breaking one of the bonds between two of the heavy atoms occurs in 72 +/- 2% of the reactions. In the remaining events the three heavy atoms stay in the same product fragment. While the branching fractions are fairly similar to the results from an earlier investigation into the dissociative recombination of the fully deuterated acetaldehyde cation, CD3CDO+, the thermal rate coefficient is somewhat larger for CH3CHO+. Astrochemical implications of the results are discussed.

  • 13.
    Vigren, Erik
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Kaminska, Magdalena
    Hamberg, Mathias
    Stockholm University, Faculty of Science, Department of Physics.
    Zhaunerchyk, Vitali
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard D.
    Stockholm University, Faculty of Science, Department of Physics.
    Danielsson, Mathias
    Stockholm University, Faculty of Science, Department of Physics.
    Semaniak, Jacek
    Andersson, Patrik U.
    Larsson, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    Geppert, Wolf D.
    Stockholm University, Faculty of Science, Department of Physics.
    Dissociative recombination of fully deuterated protonated acetonitrile, CD3CND+: Product branching fractions, absolute cross section and thermal rate coefficient2008In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 10, no 27, p. 4014-4019Article in journal (Refereed)
    Abstract [en]

    The dissociative recombination of fully deuterated protonated acetonitrile, CD3CND+, has been investigated at the CRYRING heavy ion storage ring, located at the Manne Siegbahn Laboratory, Stockholm, Sweden. Branching fractions were measured at similar to 0 eV relative collision energy between the ions and the electrons and in 65% of the DR events there was no rupture of bonds between heavy atoms. In the remaining 35%, one of the bonds between the heavy atoms was broken. The DR cross-section was measured between similar to 0 eV and 1 eV relative collision energy. In the energy region between 1 meV and 0.1 eV the cross section data were best fitted by the expression sigma = 7.37 x 10(-16) (E/eV)(-1.23) cm(2), whereas sigma = 4.12 x 10(-16) (E/eV)(-1.46) cm(2) was the best fit for the energy region between 0.1 and 1.0 eV. From the cross section a thermal rate coefficient of alpha(T) = 8.13 x 10(-7) (T/300)(-0.69) cm(3) s(-1) was deduced.

  • 14.
    Vigren, Erik
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Kaminska, Magdalena
    Hamberg, Mathias
    Stockholm University, Faculty of Science, Department of Physics.
    Zhaunerchyk, Vitali
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard D.
    Stockholm University, Faculty of Science, Department of Physics.
    Semaniak, Jacek
    Danielsson, Mathias
    Larsson, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    Geppert, Wolf D.
    Stockholm University, Faculty of Science, Department of Physics.
    Dissociative recombination of the deuterated acetaldehyde ion, CD3CDO+: product branching fractions, absolute cross sections and thermal rate coefficient2007In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 9, no 22, p. 2856-2861Article in journal (Refereed)
    Abstract [en]

    Dissociative recombination of the deuterated acetaldehyde ion CD3CDO+ has been studied at the heavy-ion storage ring CRYRING, located at the Manne Siegbahn Laboratory, Stockholm, Sweden. Product branching fractions together with absolute DR cross-sections were measured. The branching fractions were determined at a relative collision energy between the ions and the electrons of 0 eV. With a probability of 34% the DR events resulted in no ruptures of bonds between heavy atoms (i.e. no breakage of the C–C bond or the CO bond). In the remaining 66% of the events one of the bonds between the heavy atoms was broken. The energy-dependent cross-section for the DR reaction was measured between 0 and 1 eV relative kinetic energy. In the energy region between 1 meV and 0.2 eV the absolute cross section could be fitted by the expression σ(E) = 6.8 × 10−16E−1.28 cm2, whereas in the energy interval between 0.2 and 1 eV the data were best fitted by σ(E) = 4.1 × 10−16E−1.60 cm2. From these cross section data the thermal rate coefficient (as a function of the electron temperature), α(T) = 9.2 × 10−7 (T/300)−0.72 cm3 s−1 was obtained.

  • 15.
    Vigren, Erik
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Semaniak, J.
    Hamberg, M.
    Stockholm University, Faculty of Science, Department of Physics.
    Zhaunerchyk, V.
    Kaminska, M.
    Thomas, Richard D.
    Stockholm University, Faculty of Science, Department of Physics.
    af Ugglas, Magnus
    Stockholm University, Faculty of Science, Department of Physics.
    Larsson, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    Geppert, Wolf D.
    Stockholm University, Faculty of Science, Department of Physics.
    Dissociative recombination of nitrile ions with implications for Titan's upper atmosphere2012In: Planetary and Space Science, ISSN 0032-0633, E-ISSN 1873-5088, Vol. 60, no 1, p. 102-106Article in journal (Refereed)
    Abstract [en]

    Nitrile ions are abundant in Titan's upper atmosphere and are expected to be lost mainly via dissociative recombination with free electrons. We review in this paper a series of experimental results on the dissociative recombination reactions of nitrile ions known/expected to be present in Titan's upper atmosphere. The experiments were all performed at the heavy ion storage ring CRYRING in Stockholm, Sweden, and the results presented here include information on rate coefficients at electron temperatures relevant for Titan's upper atmosphere as well as information on the product branching fractions of the reactions. We discuss implications of the results for Titan's atmosphere. As an example the presented results support a statement by Krasnopolsky (2009) that nitriles do not degrade to yield N-2 again in Titan's atmosphere, indicating that condensation and polymerization with precipitation to the surface are their ultimate fate.

  • 16.
    Vigren, Erik
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Zhaunerchyk, Vitali
    Stockholm University, Faculty of Science, Department of Physics.
    Hamberg, M.
    Stockholm University, Faculty of Science, Department of Physics.
    Kaminska, M.
    Semaniak, J.
    af Ugglas, Magnus
    Stockholm University, Faculty of Science, Department of Physics.
    Larsson, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard
    Stockholm University, Faculty of Science, Department of Physics.
    Geppert, Wolf D.
    Stockholm University, Faculty of Science, Department of Physics.
    Reassessment of the dissociative recombination of n2h+ at cryring2012In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 757, no 1, p. 34-Article in journal (Refereed)
    Abstract [en]

    The dissociative recombination (DR) of N2H+ has been reinvestigated at the heavy ion storage ring CRYRING at the Manne Siegbahn Laboratory in Stockholm, Sweden. Thermal rate coefficients for electron temperatures between 10 and 1000 K have been deduced. We show that electron recombination is expected to play an approximately equally important role as CO in the removal of N2H+ in dark interstellar clouds. We note that a deeper knowledge on the influence of the ions' rotational temperature in the DR of N2H+ would be helpful to set further constraints on the relative importance of the different destruction mechanisms for N2H+ in these environments. The branching fractions in the DR of N2H+ have been reinvestigated at similar to 0 eV relative kinetic energy, showing a strong dominance of the N-2 + H production channel (93(-2)(+4)%) with the rest leading to NH + N. These results are in good agreement with flowing afterglow experiments and in disagreement with an earlier measurement at CRYRING.

  • 17. Wirström, E. S.
    et al.
    Geppert, Wolf D.
    Stockholm University, Faculty of Science, Department of Physics.
    Hjalmarson, A.
    Persson, C. M.
    Black, J. H.
    Bergman, P.
    Millar, T. J.
    Hamberg, Mathias
    Stockholm University, Faculty of Science, Department of Physics.
    Vigren, Erik
    Stockholm University, Faculty of Science, Department of Physics.
    Observational tests of interstellar methanol formation2011In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 533, p. A24-Article in journal (Refereed)
    Abstract [en]

    Context. It has been established that the classical gas-phase production of interstellar methanol (CH(3)OH) cannot explain observed abundances. Instead it is now generally thought that the main formation path has to be by successive hydrogenation of solid CO on interstellar grain surfaces. Aims. While theoretical models and laboratory experiments show that methanol is efficiently formed from CO on cold grains, our aim is to test this scenario by astronomical observations of gas associated with young stellar objects (YSOs). Methods. We have observed the rotational transition quartets J = 2(K) - 1(K) of (12)CH(3)OH and (13)CH(3)OH at 96.7 and 94.4 GHz, respectively, towards a sample of massive YSOs in different stages of evolution. In addition, the J = 1-0 transitions of (12)C(18)O and (13)C(18)O were observed towards some of these sources. We use the (12)C/(13)C ratio to discriminate between gas-phase and grain surface origin: If methanol is formed from CO on grains, the ratios should be similar in CH(3)OH and CO. If not, the ratio should be higher in CH(3)OH due to (13)C fractionation in cold CO gas. We also estimate the abundance ratios between the nuclear spin types of methanol (E and A). If methanol is formed on grains, this ratio is likely to have been thermalized at the low physical temperature of the grain, and therefore show a relative over-abundance of A-methanol. Results. We show that the (12)C/(13)C isotopic ratio is very similar in gas-phase CH(3)OH and C(18)O, on the spatial scale of about 40 '', towards four YSOs. For two of our sources we find an overabundance of A-methanol as compared to E-methanol, corresponding to nuclear spin temperatures of 10 and 16 K. For the remaining five sources, the methanol E/A ratio is less than unity. Conclusions. While the (12)C/(13)C ratio test is consistent with methanol formation from hydrogenation of CO on grain surfaces, the result of the E/A ratio test is inconclusive.

  • 18.
    Zhaunerchyk, Vitali
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Geppert, Wolf D.
    Stockholm University, Faculty of Science, Department of Physics.
    Rosen, Stefan
    Stockholm University, Faculty of Science, Department of Physics.
    Vigren, Erik
    Stockholm University, Faculty of Science, Department of Physics.
    Hamberg, Mathias
    Stockholm University, Faculty of Science, Department of Physics.
    Kaminska, Magdalena
    Kashperka, Iryna
    Stockholm University, Faculty of Science, Department of Physics.
    af Ugglas, Magnus
    Stockholm University, Faculty of Science, Department of Physics.
    Semaniak, Jacek
    Larsson, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard D.
    Stockholm University, Faculty of Science, Department of Physics.
    Investigation into the vibrational yield of OH products in the OH plus H plus H channel arising from the dissociative recombination of H3O+2009In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 130, no 21, p. 214302-Article in journal (Refereed)
    Abstract [en]

    The vibrational population of the hydroxyl radical, OH, formed in the OH+H+H channel arising from the dissociative recombination of the hydronium ion, H3O+, has been investigated at the storage ring CRYRING using a position-sensitive imaging detector. Analysis shows that the OH fragments are predominantly produced in the v=0 and v=1 states with almost equal probabilities. This observation is in disagreement with earlier FALP experiments, which reported OH(v=0) as the dominant product. Possible explanations for this difference are discussed.

  • 19.
    Zhaunerchyk, Vitali
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Kaminska, Magdalena
    Stockholm University, Faculty of Science, Department of Physics.
    Vigren, Erik
    Stockholm University, Faculty of Science, Department of Physics.
    Hamberg, Mathias
    Stockholm University, Faculty of Science, Department of Physics.
    Geppert, Wolf D.
    Stockholm University, Faculty of Science, Department of Physics.
    Larsson, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard D.
    Stockholm University, Faculty of Science, Department of Physics.
    Semaniak, Jacek
    Sequential formation of the CH3+H+H channel in the dissociative recombination of CH5+2009In: Physical Review A. Atomic, Molecular, and Optical Physics, ISSN 1050-2947, E-ISSN 1094-1622, Vol. 79, no 3, p. 30701-Article in journal (Refereed)
    Abstract [en]

    The fragmentation dynamics in the CH3+H+H channel arising from the dissociative recombination of protonated methane, CH5+, has been investigated with an imaging detector at the CRYRING storage ring. The experimental results imply that this channel proceeds via two-step break-up in which the intermediate CH4 molecule is sufficiently internally excited to further fragment. These observations could go some way to explaining the discrepancy in results reported from ion storage rings and FALP apparatus.

1 - 19 of 19
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf