Change search
Refine search result
1 - 26 of 26
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bender, Frida
    Stockholm University, Faculty of Science, Department of Meteorology.
    A note on the effect of GCM tuning on climate sensitivity2008In: Environmental Research Letters, ISSN 1748-9318 , Vol. 3, no 1, p. 014001-Article in journal (Refereed)
  • 2.
    Bender, Frida A. -M.
    et al.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Engström, Anders
    Stockholm University, Faculty of Science, Department of Meteorology .
    Wood, Robert
    Charlson, Robert J.
    Evaluation of Hemispheric Asymmetries in Marine Cloud Radiative Properties2017In: Journal of Climate, ISSN 0894-8755, E-ISSN 1520-0442, Vol. 30, no 11, p. 4131-4147Article in journal (Refereed)
    Abstract [en]

    The hemispheric symmetry of albedo and its contributing factors in satellite observations and global climate models is evaluated. The analysis is performed on the annual mean time scale, on which a bimodality in the joint distribution of albedo and cloud fraction is evident, resulting from tropical and subtropical clouds and midlatitude clouds, respectively. Hemispheric albedo symmetry is not found in individual ocean-only latitude bands; comparing the Northern and Southern Hemisphere (NH and SH), regional mean albedo is higher in the NH tropics and lower in the NH subtropics and midlatitudes than in the SH counterparts. This follows the hemispheric asymmetry of cloud fraction. In midlatitudes and tropics the hemispheric asymmetry in cloud albedo also contributes to the asymmetry in total albedo, whereas in the subtropics the cloud albedo is more hemispherically symmetric. According to the observations, cloud contributions to compensation for higher clear-sky albedo in the NH come primarily from cloud albedo in midlatitudes and cloud amount in the subtropics. Current-generation climate models diverge in their representation of these relationships, but common features of the model-data comparison include weaker-than-observed asymmetry in cloud fraction and cloud albedo in the tropics, weaker or reversed cloud fraction asymmetry in the subtropics, and agreement with observed cloud albedo asymmetry in the midlatitudes. Models on average reproduce the NH-SH asymmetry in total albedo over the 60 degrees S-60 degrees N ocean but show higher occurrence of brighter clouds in the SH compared to observations. The albedo bias in both hemispheres is reinforced by overestimated clear-sky albedo in the models.

  • 3.
    Bender, Frida A-M
    Stockholm University, Faculty of Science, Department of Meteorology.
    Earth's albedo in a changing climate2009Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The albedo is a key parameter in the radiative budget of the Earth and a primary determinant of the planetary temperature and is therefore also central to questions regarding climate stability, climate change and climate sensitivity. Climate models and satellite observations are essential for studying the albedo, and the parameters determining it, on large spatial and temporal scales. Although climate models are able to capture the large-scale characteristics of the albedo, a bias is found between modelled and observed global albedo estimates, and on a regional scale particular problematic regions can be identified.

    Cloud parameters, that are of great importance for determining the albedo, vary widely among models, but lack of observations makes constraining models, and even evaluating models, difficult. The freedom of variability for cloud parameters can be used to make models agree with observations of the better constrained radiative budget. It is shown that tuning a model to different radiative budget estimates by altering cloud parameters can influence the climate sensitivity of the model, but the effect seen is small, compared to the range of climate sensitivities estimated by different models.

    Despite their different parameterizations of clouds, aerosols etc., models do have fundamental features in common, which can further the understanding of the real climate system. For instance it is found that sensitivity to volcanic forcing is related to climate sensitivity in an ensemble of models. If this relation is valid for the real climate as well, observations of the volcanic sensitivity can help restrict the climate sensitivity.

    The range of climate sensitivity estimates in models can largely be attributed to variations in cloud response to forcing. It is found that in models with high climate sensitivity changes in cloud cover and cloud reflectivity enhance a positive radiative forcing due to increased CO2 concentrations, feeding back on the warming and in models with low climate sensitivity, cloud response counteracts the positive radiative forcing and warming induced by the same forcing.

    As a consequence the total albedo response to increased CO2 forcing is found to be stronger (more negative) in high sensitivity models and vice versa.

    Cloud albedo and its variation between different cloud regimes, is important in this regard, yet not well known. A method based on the relation between cloud fraction and albedo is presented, giving a way to estimate regional cloud albedo, primarily for homogeneous cloud regimes, but possibly also extended to a global scale.

     

  • 4.
    Bender, Frida A.-M.
    et al.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Rodhe, Henning
    Stockholm University, Faculty of Science, Department of Meteorology .
    Charlson, Robert J.
    Ekman, Annica M. L.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Loeb, Norman
    22 views of the global albedo - comparison between 20 GCMs and two satellites2006In: Tellus. Series A, Dynamic meteorology and oceanography, ISSN 0280-6495, E-ISSN 1600-0870, Vol. 58, no 3, p. 320-330Article in journal (Refereed)
  • 5.
    Bender, Frida
    et al.
    Stockholm University, Faculty of Science, Department of Meteorology.
    Charlson, Robert
    University of Washington, Seattle.
    Ekman, Annica
    Stockholm University, Faculty of Science, Department of Meteorology.
    Planetary and cloud albedo in present and strongly forced climateManuscript (Other academic)
  • 6.
    Bender, Frida
    et al.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Ekman, Annica
    Stockholm University, Faculty of Science, Department of Meteorology .
    Rodhe, Henning
    Stockholm University, Faculty of Science, Department of Meteorology .
    Response to the eruption of Mount Pinatubo in relation to climate sensitivity in the CMIP3 models2010In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 35, no 5, p. 875-886Article in journal (Refereed)
    Abstract [en]

    The radiative flux perturbations and subsequent temperature responses in relation to the eruption of Mount Pinatubo in 1991 are studied in the ten general circulation models incorporated in the Coupled Model Intercomparison Project, phase 3 (CMIP3), that include a parameterization of volcanic aerosol. Models and observations show decreases in global mean temperature of up to 0.5 K, in response to radiative perturbations of up to 10 W m−2, averaged over the tropics. The time scale representing the delay between radiative perturbation and temperature response is determined by the slow ocean response, and is estimated to be centered around 4 months in the models. Although the magniude of the temperature response to a volcanic eruption has previously been used as an indicator of equilibrium climate sensitivity in models, we find these two quantities to be only weakly correlated. This may partly be due to the fact that the size of the volcano-induced radiative perturbation varies among the models. It is found that the magnitude of the modelled radiative perturbation increases with decreasing climate sensitivity, with the exception of one outlying model. Therefore, we scale the temperature perturbation by the radiative perturbation in each model, and use the ratio between the integrated temperature perturbation and the integrated radiative perturbation as a measure of sensitivity to volcanic forcing. This ratio is found to be well correlated with the model climate sensitivity, more sensitive models having a larger ratio. Further, if this correspondence between “volcanic sensitivity” and sensitivity to CO2 forcing is a feature not only among the models, but also of the real climate system, the alleged linear relation can be used to estimate the real climate sensitivity. The observational value of the ratio signifying volcanic sensitivity is hereby estimated to correspond to an equilibrium climate sensitivity, i.e. equilibrium temperature increase due to a doubling of the CO2 concentration, between 1.7 and 4.1 K. Several sources of uncertainty reside in the method applied, and it is pointed out that additional model output, related to ocean heat storage and radiative forcing, could refine the analysis, as could reduced uncertainty in the observational record, of temperature as well as forcing.

  • 7.
    Bender, Frida
    et al.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Engström, Anders
    Stockholm University, Faculty of Science, Department of Meteorology .
    Karlsson, Johannes
    Stockholm University, Faculty of Science, Department of Meteorology .
    Factors controlling cloud albedo in marine subtropical stratocumulus regions in climate models and satellite observations2016In: Journal of Climate, ISSN 0894-8755, E-ISSN 1520-0442, Vol. 29, no 10, p. 3559-3587Article in journal (Refereed)
    Abstract [en]

    This study focuses on the radiative properties of five subtropical marine stratocumulus cloud regions, on monthly mean scale. Through examination of the relation between total albedo and cloud fraction, and its variability and relation to other parameters, some of the factors controlling the reflectivity, or albedo, of the clouds in these regions are investigated. It is found that the main part of the variability in albedo at a given cloud fraction can be related to temporal, rather than spatial variability, indicating spatial homogeneity in cloud radiative properties in the studied regions. This is seen most clearly in satellite observations, but also in an ensemble of climate models. Further comparison between satellite data and output from climate models shows that there is good agreement with respect to the role of liquid water path, the parameter that can be assumed to be the primary source of variability in cloud reflectivity for a given cloud fraction. On the other hand, the influence of aerosol loading on cloud albedo differs between models and observations. The cloud-albedo effect, or cloud brightening caused by aerosol through its coupling to cloud droplet number concentration and droplet size, is found not to dominate in the satellite observations on monthly mean scale, as it appears to do on this scale in the climate models. The disagreement between models and observations is particularly strong in regions with frequent occurrence of absorbing aerosols above clouds, where satellite data contrary to the climate models indicate a scene darkening with increasing aerosol loading.

  • 8.
    Bender, Frida
    et al.
    Stockholm University, Faculty of Science, Department of Meteorology.
    Rodhe, Henning
    Stockholm University, Faculty of Science, Department of Meteorology.
    Al Gore är inte forskare2008In: Svenska Dagbladet, no 2008-10-25Article in journal (Other (popular science, discussion, etc.))
  • 9.
    Bender, Frida
    et al.
    Stockholm University, Faculty of Science, Department of Meteorology.
    Rodhe, Henning
    Stockholm University, Faculty of Science, Department of Meteorology.
    Vem ska man tro på om klimatet?2008In: Svenska Dagbladet, no 2008-10-17Article in journal (Other (popular science, discussion, etc.))
  • 10.
    Bourgeois, Quentin
    et al.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Ekman, Annica M. L.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Renard, Jean-Baptiste
    Krejci, Radovan
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Devasthale, Abhay
    Bender, Frida A. -M.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Riipinen, Ilona
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Berthet, Gwenaël
    Tackett, Jason L.
    How much of the global aerosol optical depth is found in the boundary layer and free troposphere?2018In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 18, no 10, p. 7709-7720Article in journal (Refereed)
    Abstract [en]

    The global aerosol extinction from the CALIOP space lidar was used to compute aerosol optical depth (AOD) over a 9-year period (2007-2015) and partitioned between the boundary layer (BL) and the free troposphere (FT) using BL heights obtained from the ERA-Interim archive. The results show that the vertical distribution of AOD does not follow the diurnal cycle of the BL but remains similar between day and night highlighting the presence of a residual layer during night. The BL and FT contribute 69 and 31 %, respectively, to the global tropospheric AOD during daytime in line with observations obtained in Aire sur l'Adour (France) using the Light Optical Aerosol Counter (LOAC) instrument. The FT AOD contribution is larger in the tropics than at mid-latitudes which indicates that convective transport largely controls the vertical profile of aerosols. Over oceans, the FT AOD contribution is mainly governed by long-range transport of aerosols from emission sources located within neighboring continents. According to the CALIOP aerosol classification, dust and smoke particles are the main aerosol types transported into the FT. Overall, the study shows that the fraction of AOD in the FT - and thus potentially located above low-level clouds - is substantial and deserves more attention when evaluating the radiative effect of aerosols in climate models. More generally, the results have implications for processes determining the overall budgets, sources, sinks and transport of aerosol particles and their description in atmospheric models.

  • 11. Charlson, Robert J.
    et al.
    Ackerman, Andrew S.
    Bender, Frida
    Stockholm University, Faculty of Science, Department of Meteorology.
    Anderson, Theodore L.
    Liu, Zhaoyan
    On the climate forcing consequences of the albedo continuum between cloudy and clear air2007In: Tellus. Series B: Chemical and Physical Meteorology, ISSN 0280-0889, Vol. 59, no 4, p. 715-727Article in journal (Refereed)
  • 12.
    Engström, Anders
    et al.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Bender, Frida A. -M.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Charlson, Robert J.
    Wood, Robert
    Geographically coherent patterns of albedo enhancement and suppression associated with aerosol sources and sinks2015In: Tellus. Series B, Chemical and physical meteorology, ISSN 0280-6509, E-ISSN 1600-0889, Vol. 67, p. 1-9, article id 26442Article in journal (Refereed)
    Abstract [en]

    Earth's albedo is the primary determinant of the amount of energy absorbed by the Earth-atmosphere system. It is a function of the fractional cloud cover and the cloudy-and clear-sky albedos, and thereby of the aerosol loading of the atmosphere. Here, we introduce a method by which we can examine the spatial distribution of the albedo variability that is independent of variations in the two dominant factors of albedo: cloud fraction and liquid water path (LWP). The analysis is based on data simultaneously retrieved from the CERES and MODIS instruments carried on board the Aqua satellite. We analysed the daily overpass data between July 2002 and June 2014 and showed that perturbations in albedo, accounting for variations induced by cloud fraction and LWP, display a coherent geographical pattern. Positive deviations occur in proximity to known anthropogenic aerosol sources, and negative deviations coincide with areas of intense precipitation, acting as aerosol sinks. A simple multiplication of the observed positive perturbations in albedo with the solar flux of 340Wm(-2) yields a magnitude of that effect of several watts per square meter locally. While the location and scale of the geographical pattern might suggest an anthropogenic contribution to the positive albedo perturbations, it is imperative to first carefully examine all other possible causal factors behind the perturbations. Finally, although we have not attempted a full calculation of detection limits, the analysis is capable of sensing very small changes in average albedo of the order of 0.003 out of a total albedo of the order of 0.3. Hence, the applied method might find utilisation in a variety of situations where there is a need to quantify small perturbations of a dependent variable in noisy global data sets.

  • 13.
    Engström, Anders
    et al.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Bender, Frida A.-M.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Charlson, R. J.
    Wood, R.
    The nonlinear relationship between albedo and cloud fraction on near-global, monthly mean scale in observations and in the CMIP5 model ensemble2015In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 42, no 21, p. 9571-9578Article in journal (Refereed)
    Abstract [en]

    We study the relation between monthly mean albedo and cloud fraction over ocean,60∘S–60∘N. Satellite obser vations indicate that these clouds all fall on the same near-exponential curve,with a monotonic distribution over the ranges of cloud fractions and albedo. Using these observational dataas a reference, we examine the degree to which 26 climate models capture this feature of the near-globalmarine cloud population. Models show a general increase in albedo with increasing cloud fraction, but noneof them display a relation that is as well defined as that characterizing the observations. Models t ypicallydisplay larger albedo variability at a given cloud fraction, larger sensitivity in albedo to changes in cloudfraction, and lower cloud fractions. Several models also show branched distributions, contrasting with thesmooth observational relation. In the models the present-day cloud scenes are more reflective than thepreindustrial, demonstrating the simulated impact of anthropogenic aerosols on planetary albedo.

  • 14. Engström, Anders
    et al.
    Bender, Frida A-M.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Karlsson, Johannes
    Stockholm University, Faculty of Science, Department of Meteorology .
    Improved Representation of Marine Stratocumulus Cloud Shortwave Radiative Properties in the CMIP5 Climate Models2014In: Journal of Climate, ISSN 0894-8755, E-ISSN 1520-0442, Vol. 27, no 16, p. 6175-6188Article in journal (Refereed)
    Abstract [en]

    The radiative properties of subtropical marine stratocumulus clouds are investigated in an ensemble of current-generation global climate models from phase 5 of the Climate Model Intercomparison Project (CMIP5). Using a previously documented method for determining regional mean cloud albedo, the authors find a closer agreement with observations in the CMIP5 models as compared to the previous generation of models (phase 3 of CMIP). The multimodel average indicates regional mean, monthly mean cloud albedos ranging from 0.32 to 0.5 among 26 models and five regions, to be compared with satellite observations that indicate a range from 0.32 to 0.39 for the same five regions. The intermodel spread in cloud fraction gives rise to a spread in albedo. Within models, there is a tendency for large cloud fraction to be related to low cloud albedo and vice versa, a relationship that dampens the intermodel variability in total albedo. The intramodel variability in albedo, for a given cloud fraction, is found to be up to twice as large in magnitude in models as in satellite observations. The reason for this larger variability in models is not settled, but possible contributing factors may be imperfect representation in the models of cloud type distribution or of sensitivity to meteorological variability or aerosols. Changes in aerosol loading are found to be the likely cause of an increase in cloud albedo over time. The radiative effect of such a scene brightening in marine stratocumulus cloud regions, from preindustrial times to present day, is estimated to be up to -1W m(-2) for the global ocean, but there are no observations to verify this number.

  • 15.
    Frey, Lena
    et al.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Bender, Frida A.-M.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Svensson, Gunilla
    Stockholm University, Faculty of Science, Department of Meteorology .
    Cloud albedo changes in response to anthropogenic sulfate and non-sulfate forcings in CMIP5 models2017In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 17, no 14, p. 9145-9162Article in journal (Refereed)
    Abstract [en]

    The effects of different aerosol types on cloud albedo are analysed using the linear relation between total albedo and cloud fraction found on a monthly mean scale in regions of subtropical marine stratocumulus clouds and the influence of simulated aerosol variations on this relation. Model experiments from the Coupled Model Intercomparison Project phase 5 (CMIP5) are used to separately study the responses to increases in sulfate, non-sulfate and all anthropogenic aerosols. A cloud brightening on the month-to-month scale due to variability in the background aerosol is found to dominate even in the cases where anthropogenic aerosols are added. The aerosol composition is of importance for this cloud brightening, that is thereby region dependent. There is indication that absorbing aerosols to some extent counteract the cloud brightening but scene darkening with increasing aerosol burden is generally not supported, even in regions where absorbing aerosols dominate. Month-to-month cloud albedo variability also confirms the importance of liquid water content for cloud albedo. Regional, monthly mean cloud albedo is found to increase with the addition of anthropogenic aerosols and more so with sulfate than non-sulfate. Changes in cloud albedo between experiments are related to changes in cloud water content as well as droplet size distribution changes, so that models with large increases in liquid water path and/or cloud droplet number show large cloud albedo increases with increasing aerosol. However, no clear relation between model sensitivities to aerosol variations on the month-to-month scale and changes in cloud albedo due to changed aerosol burden is found.

  • 16.
    Frey, Lena
    et al.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Bender, Frida A.-M.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Svensson, Gunilla
    Stockholm University, Faculty of Science, Department of Meteorology .
    Investigating processes that control the vertical distribution of aerosol in five subtropical marine stratocumulus regions: A sensitivity study using the climate model NorESM1-MManuscript (preprint) (Other academic)
  • 17.
    Frey, Lena
    et al.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Höpner, Friederike
    Stockholm University, Faculty of Science, Department of Meteorology .
    Bender, Frida A.-M.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Absorbing aerosols over Asia: An inter-model and model-observation comparison study using CAM5.3-OsloManuscript (preprint) (Other academic)
  • 18.
    Höpner, Friederike
    et al.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Bender, Frida A. -M.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Ekman, Annica M. L.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Praveen, P. S.
    Bosch, Carme
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry. Fundació CTM Centre Tecnològic, Spain.
    Ogren, J. A.
    Andersson, August
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Gustafsson, Örjan
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Ramanathan, V.
    Vertical profiles of optical and microphysical particle properties above the northern Indian Ocean during CARDEX 20122016In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 16, no 2, p. 1045-1064Article in journal (Refereed)
    Abstract [en]

    A detailed analysis of optical and microphysical properties of aerosol particles during the dry winter monsoon season above the northern Indian Ocean is presented. The Cloud Aerosol Radiative Forcing Experiment (CARDEX), conducted from 16 February to 30 March 2012 at the Maldives Climate Observatory on Hanimaadhoo island (MCOH) in the Republic of the Maldives, used autonomous unmanned aerial vehicles (AUAV) to perform vertical in situ measurements of particle number concentration, particle number size distribution as well as particle absorption coefficients. These measurements were used together with surface-based Mini Micro Pulse Lidar (MiniMPL) observations and aerosol in situ and off-line measurements to investigate the vertical distribution of aerosol particles. Air masses were mainly advected over the Indian subcontinent and the Arabian Peninsula. The mean surface aerosol number concentration was 1717 +/- 604cm(-3) and the highest values were found in air masses from the Bay of Bengal and Indo-Gangetic Plain (2247 +/- 370cm(-3)). Investigations of the free tropospheric air showed that elevated aerosol layers with up to 3 times higher aerosol number concentrations than at the surface occurred mainly during periods with air masses originating from the Bay of Bengal and the Indo-Gangetic Plain. This feature is different compared to what was observed during the Indian Ocean Experiment (INDOEX) conducted in winter 1999, where aerosol number concentrations generally decreased with height. In contrast, lower particle absorption at the surface (sigma(abs)(520nm) = 8.5 + 4.2Wm(-1)) was found during CARDEX compared to INDOEX 1999. Layers with source region specific single-scattering albedo (SSA) values were derived by combining vertical in situ particle absorption coefficients and scattering coefficients calculated with Mie theory. These SSA layers were utilized to calculate vertical particle absorption profiles from MiniMPL profiles. SSA surface values for 550 nm for dry conditions were found to be 0 : 94 +/- 0 : 02 and 0 : 91 +/- 0 : 02 for air masses from the Arabian Sea (and Middle East countries) and India (and Bay of Bengal), respectively. Lidar-derived particle absorption coefficient profiles showed both a similar magnitude and structure as the in situ profiles measured with the AUAV. However, primarily due to insufficient accuracy in the SSA estimates, the lidar-derived absorption coefficient profiles have large uncertainties and are generally weakly correlated to vertically in situ measured particle absorption coefficients. Furthermore, the mass absorption efficiency (MAE) for the northern Indian Ocean during the dry monsoon season was calculated to determine equivalent black carbon (EBC) concentrations from particle absorption coefficient measurements. A mean MAE of 11.6 and 6.9m(2) g(-1) for 520 and 880 nm, respectively, was found, likely representing internally mixed BC containing particles. Lower MAE values for 880 and 520 nm were found for air masses originating from dust regions such as the Arabian Peninsula and western Asia (MAE(880 nm) = 5.6m(2) g(-1), MAE(520 nm) = 9.5m(2) g(-1)) or from closer source regions as southern India (MAE(880 nm) = 4.3m(2) g(-1), MAE(520 nm) = 7. 3m(2) g(-1)).

  • 19.
    Höpner, Friederike
    et al.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Bender, Frida A.-M.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Ekman, Annica M. L.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Andersson, August
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Gustafsson, Örjan
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Leck, Caroline
    Stockholm University, Faculty of Science, Department of Meteorology .
    Investigation of Two Optical Methods for Aerosol‐Type Classification Extended to a Northern Indian Ocean Site2019In: Journal of Geophysical Research - Atmospheres, ISSN 2169-897X, E-ISSN 2169-8996, Vol. 124, no 15, p. 8743-8763Article in journal (Refereed)
    Abstract [en]

    Methods for determining aerosol types in cases where chemical composition measurements are not available are useful for improved aerosol radiative forcing estimates. In this study, two aerosol characterization methods by Cazorla et al. (2013, https://doi.org/10.5194/acp-13-9337-2013; CA13) and Costabile et al. (2013, https://doi.org/10.5194/acp-13-2455-2013; CO13) using wavelength‐dependent particle absorption and scattering are used, to assess their applicability and examine their limitations. Long‐term ambient particle optical property and chemical composition (major inorganic ions and bulk carbon) measurements from the Maldives Climate Observatory Hanimaadhoo as well as concurrent air mass trajectories are utilized to test the classifications based on the determined absorption Ångström exponent, scattering Ångström exponent, and single scattering albedo. The resulting aerosol types from the CA13 method show a good qualitative agreement with the particle chemical composition and air mass origin. In general, the size differentiation using the scattering Ångström exponent works very well for both methods, while the composition identification depending mainly on the absorption Ångström exponent can result in aerosol misclassifications at Maldives Climate Observatory Hanimaadhoo. To broaden the applicability of the CA13 method, we suggest to include an underlying marine aerosol group in the classification scheme. The classification of the CO13 method is less clear, and its applicability is limited when it is extended to aerosols in this environment at ambient humidity.

  • 20.
    Höpner, Friederike
    et al.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Beres, Nicholas
    Bender, Frida
    Stockholm University, Faculty of Science, Department of Meteorology .
    Leck, Caroline
    Stockholm University, Faculty of Science, Department of Meteorology .
    Comparison of BC measurement methods at a marine receptor siteManuscript (preprint) (Other academic)
  • 21.
    Leung, Wing -Y. H.
    et al.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Savre, J.
    Bender, Frida A. -M.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Komppula, M.
    Portin, H.
    Romakkaniemi, S.
    Sedlar, J.
    Noone, Kevin
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
    Ekman, Annica M. L.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Sensitivity of a continental night-time stratocumulus-topped boundary layer to varying environmental conditions2016In: Quarterly Journal of the Royal Meteorological Society, ISSN 0035-9009, E-ISSN 1477-870X, Vol. 142, no 700, p. 2911-2924Article in journal (Refereed)
    Abstract [en]

    Large-eddy simulation of a nocturnal stratocumulus-topped boundary layer in a continental midlatitude environment has been performed to examine the sensitivity of the cloud to a number of different environmental parameters. The simulations showed that the stratocumulus cloud was strongly affected by the presence of an overlying free tropospheric cirrus cloud (FTC), in agreement with previous studies of marine nighttime stratocumulus. When introducing an FTC with an optical thickness of 2, stratocumulus liquid water path decreased by 30%. Enhancing the optical thickness of the FTC to 8 further decreased the liquid water path by almost 10%. The presence of an FTC decreased the cloud-top radiative cooling which decreased the turbulent mixing in the boundary layer, so that the liquid water content and cloud depth were reduced. The sensitivity of the stratocumulus cloud to an overlying FTC was found to be affected by the moisture content in the free troposphere. When a clear positive or negative moisture gradient above the inversion was imposed, and an overlying FTC with an optical thickness of 8 was introduced, the stratocumulus cloud LWP decreased by more than 40%. Furthermore, the effect of changes in free tropospheric moisture content and an overlying FTC on the stratocumulus cloud properties was found to be nonlinear; the combined response was in general weaker than the two responses added together. The modeled response to changes in cloud condensation nuclei (CCN) concentrations was found to be non-significant, unless the CCN concentrations were so low that drizzle was induced (similar to 50 cm(-3))

  • 22. Mccoy, D. T.
    et al.
    Bender, Frida A. -M.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Mohrmann, J. K. C.
    Hartmann, D. L.
    Wood, R.
    Grosvenor, D. P.
    The global aerosol-cloud first indirect effect estimated using MODIS, MERRA, and AeroCom2017In: Journal of Geophysical Research - Atmospheres, ISSN 2169-897X, E-ISSN 2169-8996, Vol. 122, no 3, p. 1779-1796Article in journal (Refereed)
    Abstract [en]

    Aerosol-cloud interactions (ACI) represent a significant source of forcing uncertainty in global climate models (GCMs). Estimates of radiative forcing due to ACI in Fifth Assessment Report range from -0.5 to -2.5 W m(-2). A portion of this uncertainty is related to the first indirect, or Twomey, effect whereby aerosols act as nuclei for cloud droplets to condense upon. At constant liquid water content this increases the number of cloud droplets (Nd) and thus increases the cloud albedo. In this study we use remote-sensing estimates of Nd within stratocumulus regions in combination with state-of-the-art aerosol reanalysis from Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA2) to diagnose how aerosols affect Nd. As in previous studies, Nd is related to sulfate mass through a power law relationship. The slope of the log-log relationship between Nd and SO4 in maritime stratocumulus is found to be 0.31, which is similar to the range of 0.2-0.8 from previous in situ studies and remote-sensing studies in the pristine Southern Ocean. Using preindustrial emissions models, the change in Nd between preindustrial and present day is estimated. Nd is inferred to have more than tripled in some regions. Cloud properties from Moderate Resolution Imaging Spectroradiometer (MODIS) are used to estimate the radiative forcing due to this change in Nd. The Twomey effect operating in isolation is estimated to create a radiative forcing of -0.97 +/- 0.23 W m(-2) relative to the preindustrial era.

  • 23. McCoy, Daniel T.
    et al.
    Bender, Frida A. -M.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Grosvenor, Daniel P.
    Mohrmann, Johannes K.
    Hartmann, Dennis L.
    Wood, Robert
    Field, Paul R.
    Predicting decadal trends in cloud droplet number concentration using reanalysis and satellite data2018In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 18, no 3, p. 2035-2047Article in journal (Refereed)
    Abstract [en]

    Cloud droplet number concentration (CDNC) is the key state variable that moderates the relationship between aerosol and the radiative forcing arising from aerosolcloud interactions. Uncertainty related to the effect of anthropogenic aerosol on cloud properties represents the largest uncertainty in total anthropogenic radiative forcing. Here we show that regionally averaged time series of the Moderate-Resolution Imaging Spectroradiometer (MODIS) observed CDNC of low, liquid-topped clouds is well predicted by the MERRA2 reanalysis near-surface sulfate mass concentration over decadal timescales. A multiple linear regression between MERRA2 reanalyses masses of sulfate (SO4), black carbon (BC), organic carbon (OC), sea salt (SS), and dust (DU) shows that CDNC across many different regimes can be reproduced by a simple power-law fit to near-surface SO4, with smaller contributions from BC, OC, SS, and DU. This confirms previous work using a less sophisticated retrieval of CDNC on monthly timescales. The analysis is supported by an examination of remotely sensed sulfur dioxide (SO2) over maritime volcanoes and the east coasts of North America and Asia, revealing that maritime CDNC responds to changes in SO2 as observed by the ozone monitoring instrument (OMI). This investigation of aerosol reanalysis and top-down remote-sensing observations reveals that emission controls in Asia and North America have decreased CDNC in their maritime outflow on a decadal timescale.

  • 24. McCoy, Daniel T.
    et al.
    Field, Paul R.
    Schmidt, Anja
    Grosvenor, Daniel P.
    Bender, Frida A. -M.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Shipway, Ben J.
    Hill, Adrian A.
    Wilkinson, Jonathan M.
    Elsaesser, Gregory S.
    Aerosol midlatitude cyclone indirect effects in observations and high-resolution simulations2018In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 18, no 8, p. 5821-5846Article in journal (Refereed)
    Abstract [en]

    Aerosol-cloud interactions are a major source of uncertainty in inferring the climate sensitivity from the observational record of temperature. The adjustment of clouds to aerosol is a poorly constrained aspect of these aerosolcloud interactions. Here, we examine the response of midlatitude cyclone cloud properties to a change in cloud droplet number concentration (CDNC). Idealized experiments in high-resolution, convection-permitting global aquaplanet simulations with constant CDNC are compared to 13 years of remote-sensing observations. Observations and idealized aquaplanet simulations agree that increased warm conveyor belt (WCB) moisture flux into cyclones is consistent with higher cyclone liquid water path (CLWP). When CDNC is increased a larger LWP is needed to give the same rain rate. The LWP adjusts to allow the rain rate to be equal to the moisture flux into the cyclone along the WCB. This results in an increased CLWP for higher CDNC at a fixed WCB moisture flux in both observations and simulations. If observed cyclones in the top and bottom tercile of CDNC are contrasted it is found that they have not only higher CLWP but also cloud cover and albedo. The difference in cyclone albedo between the cyclones in the top and bottom third of CDNC is observed by CERES to be between 0.018 and 0.032, which is consistent with a 4.6-8.3Wm(-2) in-cyclone enhancement in upwelling shortwave when scaled by annualmean insolation. Based on a regression model to observed cyclone properties, roughly 60% of the observed variability in CLWP can be explained by CDNC and WCB moisture flux.

  • 25. Pistone, Kristina
    et al.
    Praveen, Puppala S.
    Thomas, Rick M.
    Ramanathan, Veerabhadran
    Wilcox, Eric M.
    Bender, Frida A. -M.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime2016In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 16, no 8, p. 5203-5227Article in journal (Refereed)
    Abstract [en]

    There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric vertical structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season. In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements were made of atmospheric precipitable water vapor (PWV) and the liquid water path (LWP) of trade cumulus clouds, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol from instrumentation at a ground observatory and on small unmanned aircraft. We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV < 40aEuro-kg m(-2)), a criterion which acts to filter the data to control for the natural meteorological variability in the region. We then use the aircraft and ground-based measurements to explore possible mechanisms behind this observed aerosol-LWP correlation. The increase in cloud liquid water is found to coincide with a lowering of the cloud base, which is itself attributable to increased boundary layer humidity in polluted conditions. High pollution is found to correlate with both higher temperatures and higher humidity measured throughout the boundary layer. A large-scale analysis, using satellite observations and meteorological reanalysis, corroborates these covariations: high-pollution cases are shown to originate as a highly polluted boundary layer air mass approaching the observatory from a northwesterly direction. The source air mass exhibits both higher temperatures and higher humidity in the polluted cases. While the warmer temperatures may be attributable to aerosol absorption of solar radiation over the subcontinent, the factors responsible for the coincident high humidity are less evident: the high-aerosol conditions are observed to disperse with air mass evolution, along with a weakening of the high-temperature anomaly, while the high-humidity condition is observed to strengthen in magnitude as the polluted air mass moves over the ocean toward the site of the CARDEX observations. Potential causal mechanisms of the observed correlations, including meteorological or aerosol-induced factors, are explored, though future research will be needed for a more complete and quantitative understanding of the aerosol-humidity relationship.

  • 26. Wilcox, Eric M.
    et al.
    Thomas, Rick M.
    Praveen, Puppala S.
    Pistone, Kristina
    Bender, Frida A. -M.
    Stockholm University, Faculty of Science, Department of Meteorology .
    Ramanathan, Veerabhadran
    Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer2016In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 113, no 42, p. 11794-11799Article in journal (Refereed)
    Abstract [en]

    The introduction of cloud condensation nuclei and radiative heating by sunlight-absorbing aerosols can modify the thickness and coverage of low clouds, yielding significant radiative forcing of climate. The magnitude and sign of changes in cloud coverage and depth in response to changing aerosols are impacted by turbulent dynamics of the cloudy atmosphere, but integrated measurements of aerosol solar absorption and turbulent fluxes have not been reported thus far. Here we report such integrated measurements made from unmanned aerial vehicles (UAVs) during the CARDEX (Cloud Aerosol Radiative Forcing and Dynamics Experiment) investigation conducted over the northern Indian Ocean. The UAV and surface data reveal a reduction in turbulent kinetic energy in the surface mixed layer at the base of the atmosphere concurrent with an increase in absorbing black carbon aerosols. Polluted conditions coincide with a warmer and shallower surface mixed layer because of aerosol radiative heating and reduced turbulence. The polluted surface mixed layer was also observed to be more humid with higher relative humidity. Greater humidity enhances cloud development, as evidenced by polluted clouds that penetrate higher above the top of the surface mixed layer. Reduced entrainment of dry air into the surface layer from above the inversion capping the surface mixed layer, due to weaker turbulence, may contribute to higher relative humidity in the surface layer during polluted conditions. Measurements of turbulence are important for studies of aerosol effects on clouds. Moreover, reduced turbulence can exacerbate both the human health impacts of high concentrations of fine particles and conditions favorable for low-visibility fog events.

1 - 26 of 26
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf