Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Carson, Fabian
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Development of Metal–Organic Frameworks for Catalysis: Designing Functional and Porous Crystals2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Metal–organic frameworks, or MOFs, have emerged as a new class of porous materials made by linking metal and organic units. The easy preparation, structural and functional tunability, ultrahigh porosity, and enormous surface areas of MOFs have led to them becoming one of the fastest growing fields in chemistry. MOFs have potential applications in numerous areas such as clean energy, adsorption and separation processes, biomedicine, and sensing. One of the most promising areas of research with MOFs is heterogeneous catalysis.

    This thesis describes the design and synthesis of new, carboxylate-based MOFs for use as catalysts. These materials have been characterized using diffraction, spectroscopy, adsorption, and imaging techniques. The thesis has focused on preparing highly-stable MOFs for catalysis, using post-synthetic methods to modify the properties of these crystals, and applying a combination of characterization techniques to probe these complex materials.

    In the first part of this thesis, several new vanadium MOFs have been presented. The synthesis of MIL-88B(V), MIL-101(V), and MIL-47 were studied using ex situ techniques to gain insight into the synthesis–structure relationships. The properties of these materials have also been studied.

    In the second part, the use of MOFs as supports for metallic nanoparticles has been investigated. These materials, Pd@MIL-101–NH2(Cr) and Pd@MIL-88B–NH2(Cr), were used as catalysts for Suzuki–Miyaura and oxidation reactions, respectively. The effect of the base on the catalytic activity, crystallinity, porosity, and palladium distribution of Pd@MIL-101–NH2(Cr) was studied.

    In the final part, the introduction of transition-metal complexes into MOFs through different synthesis routes has been described. A ruthenium complex was grafted onto an aluminium MOF, MOF-253, and an iridium metallolinker was introduced into a zirconium MOF, UiO-68–2CH3. These materials were used as catalysts for alcohol oxidation and allylic alcohol isomerization, respectively.

  • 2.
    Carson, Fabian
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Agrawal, Santosh
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Gustafsson, Mikaela
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Bartoszewicz, Agnieszka
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Moraga, Francisca
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ruthenium Complexation in an Aluminium Metal-Organic Framework and its Application in Alcohol Oxidation Catalysis2012In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 18, no 48, p. 15337-15344Article, review/survey (Refereed)
    Abstract [en]

    A ruthenium trichloride complex has been loaded into an aluminium metalorganic framework (MOF), MOF-253, by post-synthetic modification to give MOF-253-Ru. MOF-253 contains open bipyridine sites that are available to bind with the ruthenium complex. MOF-253-Ru was characterised by elemental analysis, N2 sorption and X-ray powder diffraction. This is the first time that a Ru complex has been coordinated to a MOF through post-synthetic modification and used as a heterogeneous catalyst. MOF-253-Ru catalysed the oxidation of primary and secondary alcohols, including allylic alcohols, with PhI(OAc)2 as the oxidant under very mild reaction conditions (ambient temperature to 40 degrees C). High conversions (up to >99%) were achieved in short reaction times (13 h) by using low catalyst loadings (0.5 mol% Ru). In addition, high selectivities (>90%) for aldehydes were obtained at room temperature. MOF-253-Ru can be recycled up to six times with only a moderate decrease in substrate conversion.

  • 3.
    Carson, Fabian
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Martínez-Castro, Elisa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Marcos, Rocio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    González Miera, Greco
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Jansson, Kjell
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Martin-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Effect of the functionalisation route on a Zr-MOF with an Ir-NHC complex for catalysis2015In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 51, no 54, p. 10864-10867Article in journal (Refereed)
    Abstract [en]

    A new iridium N-heterocyclic carbene (NHC) metallolinker has been synthesised and introduced into a metal-organic framework (MOF), for the first time, via two different routes: direct synthesis and postsynthetic exchange (PSE). The two materials were compared in terms of the Ir loading and distribution using X-ray energy dispersive spectroscopy (EDS), the local Ir structure using X-ray absorption spectroscopy (XAS) and the catalytic activity. The materials showed good activity and recyclability as catalysts for the isomerisation of an allylic alcohol.

  • 4.
    Carson, Fabian
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Martínez-Castro, Elisa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Marcos, Rocío
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    González Miera, Greco
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Jansson, Kjell
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Introduction of an N-heterocyclic Carbene Iridium Complex into a Zirconium Metal–Organic Framework for CatalysisManuscript (preprint) (Other academic)
  • 5.
    Carson, Fabian
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Pascanu, Vlad
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bermejo Gómez, Antonio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zhang, Yi
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Platero-Prats, Ana E.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Influence of the Base on Pd@MIL-101-NH2(Cr) as Catalyst for the Suzuki-Miyaura Cross-Coupling Reaction2015In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 21, no 30, p. 10896-10902Article in journal (Refereed)
    Abstract [en]

    The chemical stability of metal-organic frameworks (MOFs) is a major factor preventing their use in industrial processes. Herein, it is shown that judicious choice of the base for the Suzuki-Miyaura cross-coupling reaction can avoid decomposition of the MOF catalyst Pd@MIL-101-NH2(Cr). Four bases were compared for the reaction: K2CO3, KF, Cs2CO3 and CsF. The carbonates were the most active and achieved excellent yields in shorter reaction times than the fluorides. However, powder XRD and N-2 sorption measurements showed that the MOF catalyst was degraded when carbonates were used but remained crystalline and porous with the fluorides. XANES measurements revealed that the trimeric chromium cluster of Pd@MIL-101-NH2(Cr) is still present in the degraded MOF. In addition, the different countercations of the base significantly affected the catalytic activity of the material. TEM revealed that after several catalytic runs many of the Pd nanoparticles (NPs) had migrated to the external surface of the MOF particles and formed larger aggregates. The Pd NPs were larger after catalysis with caesium bases compared to potassium bases.

  • 6.
    Carson, Fabian
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Su, Jie
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Platero-Prats, Ana E.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Wan, Wei
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Yun, Yifeng
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Samain, Louise
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Framework Isomerism in Vanadium Metal-Organic Frameworks: MIL-88B(V) and MIL-101(V)2013In: Crystal Growth & Design, ISSN 1528-7483, E-ISSN 1528-7505, Vol. 13, no 11, p. 5036-5044Article in journal (Refereed)
    Abstract [en]

    Two families of metal organic frameworks (MOFs), MIL-88 and MIL-101 built by trinuclear transition metal (TM) clusters (TM = Cr, Fe, or Sc), have been known for several years, but their syntheses are often reported separately. In fact, these MOFs are polymorphs, or framework isomers: they are assembled from the same metal secondary building units and organic linkers, but the connectivity of these components differs. Here we report for the first time the synthesis of the vanadium MOF MIL-88B(V) and compare its synthesis parameters to those of MIL-47(V) and the recently reported MIL-101(V). The properties of MIL-88B(V) and MIL-101(V) are remarkably different. MIL-88B(V) can breathe and is responsive to different solvents, while MIL-101(V) is rigid and contains mesoporous cages. MIL-101(V) exhibits the highest specific surface area among vanadium MOFs discovered so far. In addition, both MIL-88B(V) and MIL-101(V) transform to MIL-47 at higher temperatures. We have also identified the key synthesis parameters that control the formation of MIL-88B(V), MIL-101(V), and MIL-47: temperature, time, and pH. This relates to the rate of reaction between the metal and linkers, which has been monitored by ex situ X-ray powder diffraction and V K-edge X-ray absorption spectroscopy during MOF synthesis. It is therefore important to fully study the synthesis conditions to improve our understanding of framework isomerism in MOFs.

  • 7.
    Pascanu, Vlad
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bermejo Gómez, Antonio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ayats, Carles
    Platero-Prats, Ana E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Carson, Fabian
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Su, Jie
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Yao, Qingxia
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Pericas, Miquel A.
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Double-Supported Silica-Metal-Organic Framework Palladium Nanocatalyst for the Aerobic Oxidation of Alcohols under Batch and Continuous Flow Regimes2015In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 5, no 2, p. 472-479Article in journal (Refereed)
    Abstract [en]

    Stable and easily synthesized metal-organic framework MIL-88B-NH2 represents an attractive support for catalysts employed in oxidation reactions, which are typically performed under relatively harsh conditions. However, MIL-88B-NH2, the thermodynamic polymorph of the more popular MIL-101-NH2, has been rarely employed in catalytic applications because of a difficult impregnation process caused by the flexible nature of the framework. We report herein a new catalyst denoted Pd@MIL-88B-NH2 (8 wt % Pd), the first example of metallic nanoparticles successfully impregnated in the pores of MIL-88B-NH2. Furthermore, by enclosing the MOF crystals in a tailored protective coating of SiO2 nanoparticles, an even more enduring material was developed and applied to the aerobic oxidation of benzylic alcohols. This doubly supported catalyst Pd@MIL-88B-NH2@nano-SiO2 displayed high activity and excellent performance in terms of endurance and leaching control. Under batch conditions, a very convenient and efficient recycling protocol is illustrated, using a teabag approach. Under continuous flow, the catalyst was capable of withstanding 7 days of continuous operation at 110 degrees C without deactivation. During this time, no leaching of metallic species was observed, and the material maintained its structural integrity.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf