We study the Josephson coupling of superconducting (SC) islands through the surface of single-layer graphene (SLG) and bilayer graphene (BLG) in the long-junction regime, as a function of the distance between the grains, temperature, chemical potential and external (transverse) gate-voltage. For SLG, we provide a comparison with existing literature. The proximity effect is analyzed through a Matsubara Green's function approach. This represents the first step in a discussion of the conditions for the onset of a granular superconductivity within the film, made possible by Josephson currents flowing between superconductors. To ensure phase coherence over the 2D sample, a random spatial distribution can be assumed for the SC islands on the SLG sheet (or intercalating the BLG sheets). The tunable gate-voltage-induced band gap of BLG affects the asymptotic decay of the Josephson coupling-distance characteristic for each pair of SC islands in the sample, which results in a qualitatively strong field dependence of the relation between Berezinskii-Kosterlitz-Thouless transition critical temperature and gate voltage.

In the dilute limit Eshelby's inclusion theory captures the behavior of a wide range of systems and properties. However, because Eshelby's approach neglects interfacial stress, it breaks down in soft materials as the inclusion size approaches the elastocapillarity length L equivalent to gamma/E. Here, we use a three-phase generalized self-consistent method to calculate the elastic moduli of composites comprised of an isotropic, linear-elastic compliant solid hosting a spatially random monodisperse distribution of spherical liquid droplets. As opposed to similar approaches, we explicitly capture the liquid-solid interfacial stress when it is treated as an isotropic, strain-independent surface tension. Within this framework, the composite stiffness depends solely on the ratio of the elastocapillarity length L to the inclusion radius R. Independent of inclusion volume fraction, we find that the composite is stiffened by the inclusions whenever R < 3L/2. Over the same range of parameters, we compare our results with alternative approaches (dilute and Mori-Tanaka theories that include surface tension). Our framework can be easily extended to calculate the composite properties of more general soft materials where surface tension plays a role.

Eshelby's theory is the foundation of composite mechanics, allowing calculation of the effective elastic moduli of composites from a knowledge of their microstructure. However, it ignores interfacial stress and only applies to very dilute composites-i.e. where any inclusions are widely spaced apart. Here, within the framework of the Mori-Tanaka multiphase approximation scheme, we extend Eshelby's theory to treat a composite with interfacial stress in the non-dilute limit. In particular, we calculate the elastic moduli of composites comprised of a compliant, elastic solid hosting a non-dilute distribution of identical liquid droplets. The composite stiffness depends strongly on the ratio of the droplet size, R, to an elastocapillary lengthscale, L. Interfacial tension substantially impacts the effective elastic moduli of the composite when R/L less than or similar to 100. When R < 3L/2 (R = 3L/2) liquid inclusions stiffen (cloak the far-field signature of) the solid.

The importance of surface tension effects is being recognized in the context of soft composite solids, where they are found to significantly affect the mechanical properties, such as the elastic response to an external stress. It has recently been discovered that Eshelby's inclusion theory breaks down when the inclusion size approaches the elastocapillary length L = gamma/E, where gamma is the inclusion/host surface tension and E is the host Young's modulus. Extending our recent results for liquid inclusions, here we model the elastic behavior of a non-dilute distribution of isotropic elastic spherical inclusions in a soft isotropic elastic matrix, subject to a prescribed infinitesimal far-field loading. Within our framework, the composite stiffness is uniquely determined by the elastocapillary length L, the spherical inclusion radius R, and the stiffness contrast parameter C, which is the ratio of the inclusion to the matrix stiffness. We compare the results with those from the case of liquid inclusions, and we derive an analytical expression for elastic cloaking of the composite by the inclusions. Remarkably, we find that the composite stiffness is influenced significantly by surface tension even for inclusions two orders of magnitude more stiff than the host matrix. Finally, we show how to simultaneously determine the surface tension and the inclusion stiffness using two independent constraints provided by global and local measurements.

Superfluidity and superconductivity have been widely studied since the last century in many different contexts ranging from nuclear matter to atomic quantum gases. The rigidity of these systems with respect to external perturbations results in frictionless motion for superfluids and resistance-free electric current flow in superconductors. This peculiar behaviour is lost when external perturbations overcome a critical threshold, i.e. above a critical magnetic field or a critical current for superconductors. In superfluids, such as liquid helium or ultracold gases, the corresponding quantities are a critical rotation rate and a critical velocity respectively. Enhancing the critical values is of great fundamental and practical value. Here we demonstrate that superfluidity can be completely restored for specific, arbitrarily large flow velocities above the critical velocity through quantum interference-induced resonances providing a nonlinear counterpart of the Ramsauer-Townsend effect occurring in ordinary quantum mechanics. We illustrate the robustness of this phenomenon through a thorough analysis in one dimension and prove its generality by showing the persistence of the effect in non-trivial 2d systems. This has far reaching consequences for the fundamental understanding of superfluidity and superconductivity and opens up new application possibilities in quantum metrology, e.g. in rotation sensing.