Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Leslie, David J.
    et al.
    Philipps University Marburg, Germany; Max Planck Institute for Terrestrial Microbiology, Germany.
    Heinen, Christian
    Philipps University Marburg, Germany, Max Planck Institute for Terrestrial Microbiology, Germany.
    Schramm, Frederic D.
    Philipps University Marburg, Germany.
    Thüring, Marietta
    Philipps University Marburg, Germany.
    Aakre, Christopher D.
    Massachusetts Institute of Technology, United States of America.
    Murray, Sean M.
    Philipps University Marburg, Germany; Max Planck Institute for Terrestrial Microbiology, Germany.
    Laub, Michael T.
    Massachusetts Institute of Technology, United States of America.
    Jonas, Kristina
    Philipps University Marburg, Germany.
    Nutritional Control of DNA Replication Initiation through the Proteolysis and Regulated Translation of DnaA2015In: PLOS Genetics, ISSN 1553-7390, E-ISSN 1553-7404, Vol. 11, no 7, article id e1005342Article in journal (Refereed)
    Abstract [en]

    Bacteria can arrest their own growth and proliferation upon nutrient depletion and under various stressful conditions to ensure their survival. However, the molecular mechanisms responsible for suppressing growth and arresting the cell cycle under such conditions remain incompletely understood. Here, we identify post-transcriptional mechanisms that help enforce a cell-cycle arrest in Caulobacter crescentus following nutrient limitation and during entry into stationary phase by limiting the accumulation of DnaA, the conserved replication initiator protein. DnaA is rapidly degraded by the Lon protease following nutrient limitation. However, the rate of DnaA degradation is not significantly altered by changes in nutrient availability. Instead, we demonstrate that decreased nutrient availability downregulates dnaA translation by a mechanism involving the 5' untranslated leader region of the dnaA transcript; Lon-dependent proteolysis of DnaA then outpaces synthesis, leading to the elimination of DnaA and the arrest of DNA replication. Our results demonstrate how regulated translation and constitutive degradation provide cells a means of precisely and rapidly modulating the concentration of key regulatory proteins in response to environmental inputs.

  • 2.
    Schramm, Frederic D.
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. Stockholm University, Science for Life Laboratory (SciLifeLab). Philipps University Marburg, Germany.
    Heinrich, Kristina
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. Stockholm University, Science for Life Laboratory (SciLifeLab). Philipps University Marburg, Germany.
    Thüring, Marietta
    Bernhardt, Jörg
    Jonas, Kristina
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. Stockholm University, Science for Life Laboratory (SciLifeLab). Philipps University Marburg, Germany.
    An essential regulatory function of the DnaK chaperone dictates the decision between proliferation and maintenance in Caulobacter crescentus2017In: PLoS Genetics, ISSN 1553-7390, E-ISSN 1553-7404, Vol. 13, no 12, article id e1007148Article in journal (Refereed)
    Abstract [en]

    Hsp70 chaperones are well known for their important functions in maintaining protein homeostasis during thermal stress conditions. In many bacteria the Hsp70 homolog DnaK is also required for growth in the absence of stress. The molecular reasons underlying Hsp70 essentiality remain in most cases unclear. Here, we demonstrate that DnaK is essential in the alpha-proteobacterium Caulobacter crescentus due to its regulatory function in gene expression. Using a suppressor screen we identified mutations that allow growth in the absence of DnaK. All mutations reduced the activity of the heat shock sigma factor sigma(32) , demonstrating that the DnaK-dependent inactivation of sigma(32) is a growth requirement. While most mutations occurred in the rpoH gene encoding sigma(32) , we also identified mutations affecting sigma(32) activity or stability in trans, providing important new insight into the regulatory mechanisms controlling sigma(32) activity. Most notably, we describe a mutation in the ATP dependent protease HslUV that induces rapid degradation of sigma(32) , and a mutation leading to increased levels of the house keeping sigma(70) that outcompete sigma(32) for binding to the RNA polymerase. We demonstrate that sigma(32) inhibits growth and that its unrestrained activity leads to an extensive reprogramming of global gene expression, resulting in upregulation of repair and maintenance functions and downregulation of the growth-promoting functions of protein translation, DNA replication and certain metabolic processes. While this re-allocation from proliferative to maintenance functions could provide an advantage during heat stress, it leads to growth defects under favorable conditions. We conclude that Caulobacter has coopted the DnaK chaperone system as an essential regulator of gene expression under conditions when its folding activity is dispensable.

  • 3.
    Schramm, Frederic D.
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Schroeder, Kristen
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Alvelid, Jonatan
    Testa, Ilaria
    Jonas, Kristina
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Growth‐driven displacement of protein aggregates along the cell length ensures partitioning to both daughter cells in Caulobacter crescentus2019In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 111, no 6, p. 1430-1448Article in journal (Refereed)
    Abstract [en]

    All living cells must cope with protein aggregation, which occurs as a result of experiencing stress. In previously studied bacteria, aggregated protein collects at the cell poles and is retained throughout consecutive cell divisions only in old pole‐inheriting daughter cells, resulting in aggregation‐free progeny within a few generations. In this study we describe the in vivo kinetics of aggregate formation and elimination following heat and antibiotic stress in the asymmetrically dividing bacterium Caulobacter crescentus. Unexpectedly, in this bacterium protein aggregates form as multiple distributed foci located throughout the cell volume. Time‐lapse microscopy revealed that under moderate stress, the majority of these protein aggregates are short‐lived and rapidly dissolved by the major chaperone DnaK and the disaggregase ClpB. Severe stress or genetic perturbation of the protein quality control machinery induces the formation of long‐lived aggregates. Importantly, the majority of persistent aggregates neither collect at the cell poles nor are they partitioned to only one daughter cell type. Instead, we show that aggregates are distributed to both daughter cells in the same ratio at each division, which is driven by the continuous elongation of the growing mother cell. Therefore, our study has revealed a new pattern of protein aggregate inheritance in bacteria.

  • 4.
    Schramm, Frederic D.
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Schroeder, Kristen
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Jonas, Kristina
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Protein aggregation in bacteria2020In: FEMS Microbiology Reviews, ISSN 0168-6445, E-ISSN 1574-6976, Vol. 44, no 1, p. 54-72Article, review/survey (Refereed)
    Abstract [en]

    Protein aggregation occurs as a consequence of perturbations in protein homeostasis that can be triggered by environmental and cellular stresses. The accumulation of protein aggregates has been associated with aging and other pathologies in eukaryotes, and in bacteria with changes in growth rate, stress resistance and virulence. Numerous past studies, mostly performed in Escherichia coli, have led to a detailed understanding of the functions of the bacterial protein quality control machinery in preventing and reversing protein aggregation. However, more recent research points toward unexpected diversity in how phylogenetically different bacteria utilize components of this machinery to cope with protein aggregation. Furthermore, how persistent protein aggregates localize and are passed on to progeny during cell division and how their presence impacts reproduction and the fitness of bacterial populations remains a controversial field of research. Finally, although protein aggregation is generally seen as a symptom of stress, recent work suggests that aggregation of specific proteins under certain conditions can regulate gene expression and cellular resource allocation. This review discusses recent advances in understanding the consequences of protein aggregation and how this process is dealt with in bacteria, with focus on highlighting the differences and similarities observed between phylogenetically different groups of bacteria.

  • 5.
    Schramm, Frederic Dominique
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Stress response regulation and protein aggregate inheritance in Caulobacter crescentus2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Many stress conditions a cell encounters threaten the continuation of basic biological processes ultimately endangering its survival. Heat shock and antibiotic exposure can lead to a sudden surge of protein un- and misfolding, while nutrient starvation directly causes a lack of energy and molecular building blocks. Our understanding of how cells integrate environmental stress signals, execute protective functions and handle persistent damage is still far from comprehensive. In this thesis the model bacterium Caulobacter crescentus was used to answer basic questions about the regulation and execution of bacterial stress responses and damage clearance.

    Persistent larger protein aggregates can be maintained as remnants of a past stress exposure and in all of the few bacteria studied to date these particles collect at the poles. In the symmetrically dividing bacterium E. coli this aggregate localization pattern was shown to lead to an old pole lineage-specific retention. In paper I, we studied aggregate formation and inheritance in an asymmetrically dividing bacterium. While aggregates are dissolved by molecular chaperones following moderate heat stress, intense stress induces the emergence of long-lived aggregates. Surprisingly, we find that the majority of persistent aggregates do not collect at the old poles but instead describe a mechanism by which they are constantly displaced towards the new pole. This causes inheritance of aggregates by old and new pole cells at a stable rate without lineage-specific retention, a previously unknown pattern of aggregate inheritance in bacteria.

    While we found that deletion of most chaperones in C. crescentus does not affect viability in the absence of stress, the mechanistic basis for why DnaK, like in other bacteria, is also required in the absence of stress remains unclear. In paper II, we show that DnaK's function as a negative regulator of the heat shock sigma factor σ32 is essential for viability at physiological temperatures and uncover potential new layers of σ32 regulation. We find that the σ32-dependent response comprises a reallocation of resources from proliferative to maintenance functions and in addition to its known function in blocking DNA replication also affects other processes like protein translation, a process vulnerable to proteotoxic stress. Prolonged unrestricted activity of this stress response induced by the absence of DnaK is lethal. We conclude that while DnaK is essential for protein folding at elevated temperatures, its evolutionarily newer function in balancing the cell's proliferative and maintenance programs is a requirement for survival.

    Growth and cell cycle progression is also regulated in response to nutrient limitation. Like under heat shock conditions, we show in paper III that carbon starvation during entry into stationary phase leads to a block of DNA replication for which, in contrast to heat stress, the molecular basis was not yet understood. We find that downregulation of DnaA levels is achieved by an as yet unknown nutrient availability sensing process involving the 5' untranslated region, inhibiting translation of the dnaA mRNA, which combined with constant degradation of DnaA by the protease Lon results in its elimination. This study provided new mechanistic insight into nutrient-dependent control of DNA replication and shows that the same regulatory outcomes can be achieved through different means depending on the stress response.

    In conclusion this thesis describes the discovery of an unanticipated alternative way of protein aggregate inheritance with implications for our view on damage segregation in bacterial populations as well as new mechanistic insight into how cells balance proliferative with protective functions in response to heat shock and nutrient limitation.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf